1 |
|
|
! |
2 |
|
|
! $Header$ |
3 |
|
|
! |
4 |
|
|
SUBROUTINE ADVYP(LIMIT,DTY,PBARV,SM,S0,SSX,SY,SZ |
5 |
|
|
. ,SSXX,SSXY,SSXZ,SYY,SYZ,SZZ,ntra ) |
6 |
|
|
IMPLICIT NONE |
7 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
8 |
|
|
C C |
9 |
|
|
C second-order moments (SOM) advection of tracer in Y direction C |
10 |
|
|
C C |
11 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
12 |
|
|
C C |
13 |
|
|
C Source : Pascal Simon ( Meteo, CNRM ) C |
14 |
|
|
C Adaptation : A.A. (LGGE) C |
15 |
|
|
C Derniere Modif : 19/10/95 LAST |
16 |
|
|
C C |
17 |
|
|
C sont les arguments d'entree pour le s-pg C |
18 |
|
|
C C |
19 |
|
|
C argument de sortie du s-pg C |
20 |
|
|
C C |
21 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
22 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
23 |
|
|
C |
24 |
|
|
C Rem : Probleme aux poles il faut reecrire ce cas specifique |
25 |
|
|
C Attention au sens de l'indexation |
26 |
|
|
C |
27 |
|
|
C parametres principaux du modele |
28 |
|
|
C |
29 |
|
|
C |
30 |
|
|
include "dimensions.h" |
31 |
|
|
include "paramet.h" |
32 |
|
|
include "comgeom.h" |
33 |
|
|
|
34 |
|
|
C Arguments : |
35 |
|
|
C ---------- |
36 |
|
|
C dty : frequence fictive d'appel du transport |
37 |
|
|
C parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
38 |
|
|
|
39 |
|
|
INTEGER lon,lat,niv |
40 |
|
|
INTEGER i,j,jv,k,kp,l |
41 |
|
|
INTEGER ntra |
42 |
|
|
C PARAMETER (ntra = 1) |
43 |
|
|
|
44 |
|
|
REAL dty |
45 |
|
|
REAL pbarv ( iip1,jjm, llm ) |
46 |
|
|
|
47 |
|
|
C moments: SM total mass in each grid box |
48 |
|
|
C S0 mass of tracer in each grid box |
49 |
|
|
C Si 1rst order moment in i direction |
50 |
|
|
C |
51 |
|
|
REAL SM(iip1,jjp1,llm) |
52 |
|
|
+ ,S0(iip1,jjp1,llm,ntra) |
53 |
|
|
REAL SSX(iip1,jjp1,llm,ntra) |
54 |
|
|
+ ,SY(iip1,jjp1,llm,ntra) |
55 |
|
|
+ ,SZ(iip1,jjp1,llm,ntra) |
56 |
|
|
+ ,SSXX(iip1,jjp1,llm,ntra) |
57 |
|
|
+ ,SSXY(iip1,jjp1,llm,ntra) |
58 |
|
|
+ ,SSXZ(iip1,jjp1,llm,ntra) |
59 |
|
|
+ ,SYY(iip1,jjp1,llm,ntra) |
60 |
|
|
+ ,SYZ(iip1,jjp1,llm,ntra) |
61 |
|
|
+ ,SZZ(iip1,jjp1,llm,ntra) |
62 |
|
|
C |
63 |
|
|
C Local : |
64 |
|
|
C ------- |
65 |
|
|
|
66 |
|
|
C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
67 |
|
|
C mass fluxes in kg |
68 |
|
|
C declaration : |
69 |
|
|
|
70 |
|
|
REAL VGRI(iip1,0:jjp1,llm) |
71 |
|
|
|
72 |
|
|
C Rem : UGRI et WGRI ne sont pas utilises dans |
73 |
|
|
C cette subroutine ( advection en y uniquement ) |
74 |
|
|
C Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
75 |
|
|
C |
76 |
|
|
C the moments F are similarly defined and used as temporary |
77 |
|
|
C storage for portions of the grid boxes in transit |
78 |
|
|
C |
79 |
|
|
C the moments Fij are used as temporary storage for |
80 |
|
|
C portions of the grid boxes in transit at the current level |
81 |
|
|
C |
82 |
|
|
C work arrays |
83 |
|
|
C |
84 |
|
|
C |
85 |
|
|
REAL F0(iim,0:jjp1,ntra),FM(iim,0:jjp1) |
86 |
|
|
REAL FX(iim,jjm,ntra),FY(iim,jjm,ntra) |
87 |
|
|
REAL FZ(iim,jjm,ntra) |
88 |
|
|
REAL FXX(iim,jjm,ntra),FXY(iim,jjm,ntra) |
89 |
|
|
REAL FXZ(iim,jjm,ntra),FYY(iim,jjm,ntra) |
90 |
|
|
REAL FYZ(iim,jjm,ntra),FZZ(iim,jjm,ntra) |
91 |
|
|
REAL S00(ntra) |
92 |
|
|
REAL SM0 ! Just temporal variable |
93 |
|
|
C |
94 |
|
|
C work arrays |
95 |
|
|
C |
96 |
|
|
REAL ALF(iim,0:jjp1),ALF1(iim,0:jjp1) |
97 |
|
|
REAL ALFQ(iim,0:jjp1),ALF1Q(iim,0:jjp1) |
98 |
|
|
REAL ALF2(iim,0:jjp1),ALF3(iim,0:jjp1) |
99 |
|
|
REAL ALF4(iim,0:jjp1) |
100 |
|
|
REAL TEMPTM ! Just temporal variable |
101 |
|
|
REAL SLPMAX,S1MAX,S1NEW,S2NEW |
102 |
|
|
c |
103 |
|
|
C Special pour poles |
104 |
|
|
c |
105 |
|
|
REAL sbms,sfms,sfzs,sbmn,sfmn,sfzn |
106 |
|
|
REAL sns0(ntra),snsz(ntra),snsm |
107 |
|
|
REAL qy1(iim,llm,ntra),qylat(iim,llm,ntra) |
108 |
|
|
REAL cx1(llm,ntra), cxLAT(llm,ntra) |
109 |
|
|
REAL cy1(llm,ntra), cyLAT(llm,ntra) |
110 |
|
|
REAL z1(iim), zcos(iim), zsin(iim) |
111 |
|
|
REAL SSUM |
112 |
|
|
EXTERNAL SSUM |
113 |
|
|
C |
114 |
|
|
REAL sqi,sqf |
115 |
|
|
LOGICAL LIMIT |
116 |
|
|
|
117 |
|
|
lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
118 |
|
|
lat = jjp1 ! a cause des dim. differentes entre les |
119 |
|
|
niv = llm ! tab. S et VGRI |
120 |
|
|
|
121 |
|
|
c----------------------------------------------------------------- |
122 |
|
|
C initialisations |
123 |
|
|
|
124 |
|
|
sbms = 0. |
125 |
|
|
sfms = 0. |
126 |
|
|
sfzs = 0. |
127 |
|
|
sbmn = 0. |
128 |
|
|
sfmn = 0. |
129 |
|
|
sfzn = 0. |
130 |
|
|
|
131 |
|
|
c----------------------------------------------------------------- |
132 |
|
|
C *** Test : diag de la qtite totale de traceur dans |
133 |
|
|
C l'atmosphere avant l'advection en Y |
134 |
|
|
c |
135 |
|
|
sqi = 0. |
136 |
|
|
sqf = 0. |
137 |
|
|
|
138 |
|
|
DO l = 1,llm |
139 |
|
|
DO j = 1,jjp1 |
140 |
|
|
DO i = 1,iim |
141 |
|
|
sqi = sqi + S0(i,j,l,ntra) |
142 |
|
|
END DO |
143 |
|
|
END DO |
144 |
|
|
END DO |
145 |
|
|
PRINT*,'---------- DIAG DANS ADVY - ENTREE --------' |
146 |
|
|
PRINT*,'sqi=',sqi |
147 |
|
|
|
148 |
|
|
c----------------------------------------------------------------- |
149 |
|
|
C Interface : adaptation nouveau modele |
150 |
|
|
C ------------------------------------- |
151 |
|
|
C |
152 |
|
|
C Conversion des flux de masses en kg |
153 |
|
|
C-AA 20/10/94 le signe -1 est necessaire car indexation opposee |
154 |
|
|
|
155 |
|
|
DO 500 l = 1,llm |
156 |
|
|
DO 500 j = 1,jjm |
157 |
|
|
DO 500 i = 1,iip1 |
158 |
|
|
vgri (i,j,llm+1-l)=-1.*pbarv (i,j,l) |
159 |
|
|
500 CONTINUE |
160 |
|
|
|
161 |
|
|
CAA Initialisation de flux fictifs aux bords sup. des boites pol. |
162 |
|
|
|
163 |
|
|
DO l = 1,llm |
164 |
|
|
DO i = 1,iip1 |
165 |
|
|
vgri(i,0,l) = 0. |
166 |
|
|
vgri(i,jjp1,l) = 0. |
167 |
|
|
ENDDO |
168 |
|
|
ENDDO |
169 |
|
|
c |
170 |
|
|
c----------------- START HERE ----------------------- |
171 |
|
|
C boucle sur les niveaux |
172 |
|
|
C |
173 |
|
|
DO 1 L=1,NIV |
174 |
|
|
C |
175 |
|
|
C place limits on appropriate moments before transport |
176 |
|
|
C (if flux-limiting is to be applied) |
177 |
|
|
C |
178 |
|
|
IF(.NOT.LIMIT) GO TO 11 |
179 |
|
|
C |
180 |
|
|
DO 10 JV=1,NTRA |
181 |
|
|
DO 10 K=1,LAT |
182 |
|
|
DO 100 I=1,LON |
183 |
|
|
IF(S0(I,K,L,JV).GT.0.) THEN |
184 |
|
|
SLPMAX=AMAX1(S0(I,K,L,JV),0.) |
185 |
|
|
S1MAX=1.5*SLPMAX |
186 |
|
|
S1NEW=AMIN1(S1MAX,AMAX1(-S1MAX,SY(I,K,L,JV))) |
187 |
|
|
S2NEW=AMIN1( 2.*SLPMAX-ABS(S1NEW)/3. , |
188 |
|
|
+ AMAX1(ABS(S1NEW)-SLPMAX,SYY(I,K,L,JV)) ) |
189 |
|
|
SY (I,K,L,JV)=S1NEW |
190 |
|
|
SYY(I,K,L,JV)=S2NEW |
191 |
|
|
SSXY(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SSXY(I,K,L,JV))) |
192 |
|
|
SYZ(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SYZ(I,K,L,JV))) |
193 |
|
|
ELSE |
194 |
|
|
SY (I,K,L,JV)=0. |
195 |
|
|
SYY(I,K,L,JV)=0. |
196 |
|
|
SSXY(I,K,L,JV)=0. |
197 |
|
|
SYZ(I,K,L,JV)=0. |
198 |
|
|
ENDIF |
199 |
|
|
100 CONTINUE |
200 |
|
|
10 CONTINUE |
201 |
|
|
C |
202 |
|
|
11 CONTINUE |
203 |
|
|
C |
204 |
|
|
C le flux a travers le pole Nord est traite separement |
205 |
|
|
C |
206 |
|
|
SM0=0. |
207 |
|
|
DO 20 JV=1,NTRA |
208 |
|
|
S00(JV)=0. |
209 |
|
|
20 CONTINUE |
210 |
|
|
C |
211 |
|
|
DO 21 I=1,LON |
212 |
|
|
C |
213 |
|
|
IF(VGRI(I,0,L).LE.0.) THEN |
214 |
|
|
FM(I,0)=-VGRI(I,0,L)*DTY |
215 |
|
|
ALF(I,0)=FM(I,0)/SM(I,1,L) |
216 |
|
|
SM(I,1,L)=SM(I,1,L)-FM(I,0) |
217 |
|
|
SM0=SM0+FM(I,0) |
218 |
|
|
ENDIF |
219 |
|
|
C |
220 |
|
|
ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
221 |
|
|
ALF1(I,0)=1.-ALF(I,0) |
222 |
|
|
ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
223 |
|
|
ALF2(I,0)=ALF1(I,0)-ALF(I,0) |
224 |
|
|
ALF3(I,0)=ALF(I,0)*ALFQ(I,0) |
225 |
|
|
ALF4(I,0)=ALF1(I,0)*ALF1Q(I,0) |
226 |
|
|
C |
227 |
|
|
21 CONTINUE |
228 |
|
|
c print*,'ADVYP 21' |
229 |
|
|
C |
230 |
|
|
DO 22 JV=1,NTRA |
231 |
|
|
DO 220 I=1,LON |
232 |
|
|
C |
233 |
|
|
IF(VGRI(I,0,L).LE.0.) THEN |
234 |
|
|
C |
235 |
|
|
F0(I,0,JV)=ALF(I,0)* ( S0(I,1,L,JV)-ALF1(I,0)* |
236 |
|
|
+ ( SY(I,1,L,JV)-ALF2(I,0)*SYY(I,1,L,JV) ) ) |
237 |
|
|
C |
238 |
|
|
S00(JV)=S00(JV)+F0(I,0,JV) |
239 |
|
|
S0 (I,1,L,JV)=S0(I,1,L,JV)-F0(I,0,JV) |
240 |
|
|
SY (I,1,L,JV)=ALF1Q(I,0)* |
241 |
|
|
+ (SY(I,1,L,JV)+3.*ALF(I,0)*SYY(I,1,L,JV)) |
242 |
|
|
SYY(I,1,L,JV)=ALF4 (I,0)*SYY(I,1,L,JV) |
243 |
|
|
SSX (I,1,L,JV)=ALF1 (I,0)* |
244 |
|
|
+ (SSX(I,1,L,JV)+ALF(I,0)*SSXY(I,1,L,JV) ) |
245 |
|
|
SZ (I,1,L,JV)=ALF1 (I,0)* |
246 |
|
|
+ (SZ(I,1,L,JV)+ALF(I,0)*SSXZ(I,1,L,JV) ) |
247 |
|
|
SSXX(I,1,L,JV)=ALF1 (I,0)*SSXX(I,1,L,JV) |
248 |
|
|
SSXZ(I,1,L,JV)=ALF1 (I,0)*SSXZ(I,1,L,JV) |
249 |
|
|
SZZ(I,1,L,JV)=ALF1 (I,0)*SZZ(I,1,L,JV) |
250 |
|
|
SSXY(I,1,L,JV)=ALF1Q(I,0)*SSXY(I,1,L,JV) |
251 |
|
|
SYZ(I,1,L,JV)=ALF1Q(I,0)*SYZ(I,1,L,JV) |
252 |
|
|
C |
253 |
|
|
ENDIF |
254 |
|
|
C |
255 |
|
|
220 CONTINUE |
256 |
|
|
22 CONTINUE |
257 |
|
|
C |
258 |
|
|
DO 23 I=1,LON |
259 |
|
|
IF(VGRI(I,0,L).GT.0.) THEN |
260 |
|
|
FM(I,0)=VGRI(I,0,L)*DTY |
261 |
|
|
ALF(I,0)=FM(I,0)/SM0 |
262 |
|
|
ENDIF |
263 |
|
|
23 CONTINUE |
264 |
|
|
C |
265 |
|
|
DO 24 JV=1,NTRA |
266 |
|
|
DO 240 I=1,LON |
267 |
|
|
IF(VGRI(I,0,L).GT.0.) THEN |
268 |
|
|
F0(I,0,JV)=ALF(I,0)*S00(JV) |
269 |
|
|
ENDIF |
270 |
|
|
240 CONTINUE |
271 |
|
|
24 CONTINUE |
272 |
|
|
C |
273 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
274 |
|
|
C |
275 |
|
|
c print*,'av ADVYP 25' |
276 |
|
|
DO 25 I=1,LON |
277 |
|
|
C |
278 |
|
|
IF(VGRI(I,0,L).GT.0.) THEN |
279 |
|
|
SM(I,1,L)=SM(I,1,L)+FM(I,0) |
280 |
|
|
ALF(I,0)=FM(I,0)/SM(I,1,L) |
281 |
|
|
ENDIF |
282 |
|
|
C |
283 |
|
|
ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
284 |
|
|
ALF1(I,0)=1.-ALF(I,0) |
285 |
|
|
ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
286 |
|
|
ALF2(I,0)=ALF1(I,0)-ALF(I,0) |
287 |
|
|
ALF3(I,0)=ALF1(I,0)*ALF(I,0) |
288 |
|
|
C |
289 |
|
|
25 CONTINUE |
290 |
|
|
c print*,'av ADVYP 25' |
291 |
|
|
C |
292 |
|
|
DO 26 JV=1,NTRA |
293 |
|
|
DO 260 I=1,LON |
294 |
|
|
C |
295 |
|
|
IF(VGRI(I,0,L).GT.0.) THEN |
296 |
|
|
C |
297 |
|
|
TEMPTM=ALF(I,0)*S0(I,1,L,JV)-ALF1(I,0)*F0(I,0,JV) |
298 |
|
|
S0 (I,1,L,JV)=S0(I,1,L,JV)+F0(I,0,JV) |
299 |
|
|
SYY(I,1,L,JV)=ALF1Q(I,0)*SYY(I,1,L,JV) |
300 |
|
|
+ +5.*( ALF3 (I,0)*SY (I,1,L,JV)-ALF2(I,0)*TEMPTM ) |
301 |
|
|
SY (I,1,L,JV)=ALF1 (I,0)*SY (I,1,L,JV)+3.*TEMPTM |
302 |
|
|
SSXY(I,1,L,JV)=ALF1 (I,0)*SSXY(I,1,L,JV)+3.*ALF(I,0)*SSX(I,1,L,JV) |
303 |
|
|
SYZ(I,1,L,JV)=ALF1 (I,0)*SYZ(I,1,L,JV)+3.*ALF(I,0)*SZ(I,1,L,JV) |
304 |
|
|
C |
305 |
|
|
ENDIF |
306 |
|
|
C |
307 |
|
|
260 CONTINUE |
308 |
|
|
26 CONTINUE |
309 |
|
|
C |
310 |
|
|
C calculate flux and moments between adjacent boxes |
311 |
|
|
C 1- create temporary moments/masses for partial boxes in transit |
312 |
|
|
C 2- reajusts moments remaining in the box |
313 |
|
|
C |
314 |
|
|
C flux from KP to K if V(K).lt.0 and from K to KP if V(K).gt.0 |
315 |
|
|
C |
316 |
|
|
c print*,'av ADVYP 30' |
317 |
|
|
DO 30 K=1,LAT-1 |
318 |
|
|
KP=K+1 |
319 |
|
|
DO 300 I=1,LON |
320 |
|
|
C |
321 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
322 |
|
|
FM(I,K)=-VGRI(I,K,L)*DTY |
323 |
|
|
ALF(I,K)=FM(I,K)/SM(I,KP,L) |
324 |
|
|
SM(I,KP,L)=SM(I,KP,L)-FM(I,K) |
325 |
|
|
ELSE |
326 |
|
|
FM(I,K)=VGRI(I,K,L)*DTY |
327 |
|
|
ALF(I,K)=FM(I,K)/SM(I,K,L) |
328 |
|
|
SM(I,K,L)=SM(I,K,L)-FM(I,K) |
329 |
|
|
ENDIF |
330 |
|
|
C |
331 |
|
|
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
332 |
|
|
ALF1(I,K)=1.-ALF(I,K) |
333 |
|
|
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
334 |
|
|
ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
335 |
|
|
ALF3(I,K)=ALF(I,K)*ALFQ(I,K) |
336 |
|
|
ALF4(I,K)=ALF1(I,K)*ALF1Q(I,K) |
337 |
|
|
C |
338 |
|
|
300 CONTINUE |
339 |
|
|
30 CONTINUE |
340 |
|
|
c print*,'ap ADVYP 30' |
341 |
|
|
C |
342 |
|
|
DO 31 JV=1,NTRA |
343 |
|
|
DO 31 K=1,LAT-1 |
344 |
|
|
KP=K+1 |
345 |
|
|
DO 310 I=1,LON |
346 |
|
|
C |
347 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
348 |
|
|
C |
349 |
|
|
F0 (I,K,JV)=ALF (I,K)* ( S0(I,KP,L,JV)-ALF1(I,K)* |
350 |
|
|
+ ( SY(I,KP,L,JV)-ALF2(I,K)*SYY(I,KP,L,JV) ) ) |
351 |
|
|
FY (I,K,JV)=ALFQ(I,K)* |
352 |
|
|
+ (SY(I,KP,L,JV)-3.*ALF1(I,K)*SYY(I,KP,L,JV)) |
353 |
|
|
FYY(I,K,JV)=ALF3(I,K)*SYY(I,KP,L,JV) |
354 |
|
|
FX (I,K,JV)=ALF (I,K)* |
355 |
|
|
+ (SSX(I,KP,L,JV)-ALF1(I,K)*SSXY(I,KP,L,JV)) |
356 |
|
|
FZ (I,K,JV)=ALF (I,K)* |
357 |
|
|
+ (SZ(I,KP,L,JV)-ALF1(I,K)*SYZ(I,KP,L,JV)) |
358 |
|
|
FXY(I,K,JV)=ALFQ(I,K)*SSXY(I,KP,L,JV) |
359 |
|
|
FYZ(I,K,JV)=ALFQ(I,K)*SYZ(I,KP,L,JV) |
360 |
|
|
FXX(I,K,JV)=ALF (I,K)*SSXX(I,KP,L,JV) |
361 |
|
|
FXZ(I,K,JV)=ALF (I,K)*SSXZ(I,KP,L,JV) |
362 |
|
|
FZZ(I,K,JV)=ALF (I,K)*SZZ(I,KP,L,JV) |
363 |
|
|
C |
364 |
|
|
S0 (I,KP,L,JV)=S0(I,KP,L,JV)-F0(I,K,JV) |
365 |
|
|
SY (I,KP,L,JV)=ALF1Q(I,K)* |
366 |
|
|
+ (SY(I,KP,L,JV)+3.*ALF(I,K)*SYY(I,KP,L,JV)) |
367 |
|
|
SYY(I,KP,L,JV)=ALF4(I,K)*SYY(I,KP,L,JV) |
368 |
|
|
SSX (I,KP,L,JV)=SSX (I,KP,L,JV)-FX (I,K,JV) |
369 |
|
|
SZ (I,KP,L,JV)=SZ (I,KP,L,JV)-FZ (I,K,JV) |
370 |
|
|
SSXX(I,KP,L,JV)=SSXX(I,KP,L,JV)-FXX(I,K,JV) |
371 |
|
|
SSXZ(I,KP,L,JV)=SSXZ(I,KP,L,JV)-FXZ(I,K,JV) |
372 |
|
|
SZZ(I,KP,L,JV)=SZZ(I,KP,L,JV)-FZZ(I,K,JV) |
373 |
|
|
SSXY(I,KP,L,JV)=ALF1Q(I,K)*SSXY(I,KP,L,JV) |
374 |
|
|
SYZ(I,KP,L,JV)=ALF1Q(I,K)*SYZ(I,KP,L,JV) |
375 |
|
|
C |
376 |
|
|
ELSE |
377 |
|
|
C |
378 |
|
|
F0 (I,K,JV)=ALF (I,K)* ( S0(I,K,L,JV)+ALF1(I,K)* |
379 |
|
|
+ ( SY(I,K,L,JV)+ALF2(I,K)*SYY(I,K,L,JV) ) ) |
380 |
|
|
FY (I,K,JV)=ALFQ(I,K)* |
381 |
|
|
+ (SY(I,K,L,JV)+3.*ALF1(I,K)*SYY(I,K,L,JV)) |
382 |
|
|
FYY(I,K,JV)=ALF3(I,K)*SYY(I,K,L,JV) |
383 |
|
|
FX (I,K,JV)=ALF (I,K)*(SSX(I,K,L,JV)+ALF1(I,K)*SSXY(I,K,L,JV)) |
384 |
|
|
FZ (I,K,JV)=ALF (I,K)*(SZ(I,K,L,JV)+ALF1(I,K)*SYZ(I,K,L,JV)) |
385 |
|
|
FXY(I,K,JV)=ALFQ(I,K)*SSXY(I,K,L,JV) |
386 |
|
|
FYZ(I,K,JV)=ALFQ(I,K)*SYZ(I,K,L,JV) |
387 |
|
|
FXX(I,K,JV)=ALF (I,K)*SSXX(I,K,L,JV) |
388 |
|
|
FXZ(I,K,JV)=ALF (I,K)*SSXZ(I,K,L,JV) |
389 |
|
|
FZZ(I,K,JV)=ALF (I,K)*SZZ(I,K,L,JV) |
390 |
|
|
C |
391 |
|
|
S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
392 |
|
|
SY (I,K,L,JV)=ALF1Q(I,K)* |
393 |
|
|
+ (SY(I,K,L,JV)-3.*ALF(I,K)*SYY(I,K,L,JV)) |
394 |
|
|
SYY(I,K,L,JV)=ALF4(I,K)*SYY(I,K,L,JV) |
395 |
|
|
SSX (I,K,L,JV)=SSX (I,K,L,JV)-FX (I,K,JV) |
396 |
|
|
SZ (I,K,L,JV)=SZ (I,K,L,JV)-FZ (I,K,JV) |
397 |
|
|
SSXX(I,K,L,JV)=SSXX(I,K,L,JV)-FXX(I,K,JV) |
398 |
|
|
SSXZ(I,K,L,JV)=SSXZ(I,K,L,JV)-FXZ(I,K,JV) |
399 |
|
|
SZZ(I,K,L,JV)=SZZ(I,K,L,JV)-FZZ(I,K,JV) |
400 |
|
|
SSXY(I,K,L,JV)=ALF1Q(I,K)*SSXY(I,K,L,JV) |
401 |
|
|
SYZ(I,K,L,JV)=ALF1Q(I,K)*SYZ(I,K,L,JV) |
402 |
|
|
C |
403 |
|
|
ENDIF |
404 |
|
|
C |
405 |
|
|
310 CONTINUE |
406 |
|
|
31 CONTINUE |
407 |
|
|
c print*,'ap ADVYP 31' |
408 |
|
|
C |
409 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
410 |
|
|
C |
411 |
|
|
DO 32 K=1,LAT-1 |
412 |
|
|
KP=K+1 |
413 |
|
|
DO 320 I=1,LON |
414 |
|
|
C |
415 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
416 |
|
|
SM(I,K,L)=SM(I,K,L)+FM(I,K) |
417 |
|
|
ALF(I,K)=FM(I,K)/SM(I,K,L) |
418 |
|
|
ELSE |
419 |
|
|
SM(I,KP,L)=SM(I,KP,L)+FM(I,K) |
420 |
|
|
ALF(I,K)=FM(I,K)/SM(I,KP,L) |
421 |
|
|
ENDIF |
422 |
|
|
C |
423 |
|
|
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
424 |
|
|
ALF1(I,K)=1.-ALF(I,K) |
425 |
|
|
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
426 |
|
|
ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
427 |
|
|
ALF3(I,K)=ALF1(I,K)*ALF(I,K) |
428 |
|
|
C |
429 |
|
|
320 CONTINUE |
430 |
|
|
32 CONTINUE |
431 |
|
|
c print*,'ap ADVYP 32' |
432 |
|
|
C |
433 |
|
|
DO 33 JV=1,NTRA |
434 |
|
|
DO 33 K=1,LAT-1 |
435 |
|
|
KP=K+1 |
436 |
|
|
DO 330 I=1,LON |
437 |
|
|
C |
438 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
439 |
|
|
C |
440 |
|
|
TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
441 |
|
|
S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
442 |
|
|
SYY(I,K,L,JV)=ALFQ(I,K)*FYY(I,K,JV)+ALF1Q(I,K)*SYY(I,K,L,JV) |
443 |
|
|
+ +5.*( ALF3(I,K)*(FY(I,K,JV)-SY(I,K,L,JV))+ALF2(I,K)*TEMPTM ) |
444 |
|
|
SY (I,K,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*SY(I,K,L,JV) |
445 |
|
|
+ +3.*TEMPTM |
446 |
|
|
SSXY(I,K,L,JV)=ALF (I,K)*FXY(I,K,JV)+ALF1(I,K)*SSXY(I,K,L,JV) |
447 |
|
|
+ +3.*(ALF1(I,K)*FX (I,K,JV)-ALF (I,K)*SSX (I,K,L,JV)) |
448 |
|
|
SYZ(I,K,L,JV)=ALF (I,K)*FYZ(I,K,JV)+ALF1(I,K)*SYZ(I,K,L,JV) |
449 |
|
|
+ +3.*(ALF1(I,K)*FZ (I,K,JV)-ALF (I,K)*SZ (I,K,L,JV)) |
450 |
|
|
SSX (I,K,L,JV)=SSX (I,K,L,JV)+FX (I,K,JV) |
451 |
|
|
SZ (I,K,L,JV)=SZ (I,K,L,JV)+FZ (I,K,JV) |
452 |
|
|
SSXX(I,K,L,JV)=SSXX(I,K,L,JV)+FXX(I,K,JV) |
453 |
|
|
SSXZ(I,K,L,JV)=SSXZ(I,K,L,JV)+FXZ(I,K,JV) |
454 |
|
|
SZZ(I,K,L,JV)=SZZ(I,K,L,JV)+FZZ(I,K,JV) |
455 |
|
|
C |
456 |
|
|
ELSE |
457 |
|
|
C |
458 |
|
|
TEMPTM=ALF(I,K)*S0(I,KP,L,JV)-ALF1(I,K)*F0(I,K,JV) |
459 |
|
|
S0 (I,KP,L,JV)=S0(I,KP,L,JV)+F0(I,K,JV) |
460 |
|
|
SYY(I,KP,L,JV)=ALFQ(I,K)*FYY(I,K,JV)+ALF1Q(I,K)*SYY(I,KP,L,JV) |
461 |
|
|
+ +5.*( ALF3(I,K)*(SY(I,KP,L,JV)-FY(I,K,JV))-ALF2(I,K)*TEMPTM ) |
462 |
|
|
SY (I,KP,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*SY(I,KP,L,JV) |
463 |
|
|
+ +3.*TEMPTM |
464 |
|
|
SSXY(I,KP,L,JV)=ALF(I,K)*FXY(I,K,JV)+ALF1(I,K)*SSXY(I,KP,L,JV) |
465 |
|
|
+ +3.*(ALF(I,K)*SSX(I,KP,L,JV)-ALF1(I,K)*FX(I,K,JV)) |
466 |
|
|
SYZ(I,KP,L,JV)=ALF(I,K)*FYZ(I,K,JV)+ALF1(I,K)*SYZ(I,KP,L,JV) |
467 |
|
|
+ +3.*(ALF(I,K)*SZ(I,KP,L,JV)-ALF1(I,K)*FZ(I,K,JV)) |
468 |
|
|
SSX (I,KP,L,JV)=SSX (I,KP,L,JV)+FX (I,K,JV) |
469 |
|
|
SZ (I,KP,L,JV)=SZ (I,KP,L,JV)+FZ (I,K,JV) |
470 |
|
|
SSXX(I,KP,L,JV)=SSXX(I,KP,L,JV)+FXX(I,K,JV) |
471 |
|
|
SSXZ(I,KP,L,JV)=SSXZ(I,KP,L,JV)+FXZ(I,K,JV) |
472 |
|
|
SZZ(I,KP,L,JV)=SZZ(I,KP,L,JV)+FZZ(I,K,JV) |
473 |
|
|
C |
474 |
|
|
ENDIF |
475 |
|
|
C |
476 |
|
|
330 CONTINUE |
477 |
|
|
33 CONTINUE |
478 |
|
|
c print*,'ap ADVYP 33' |
479 |
|
|
C |
480 |
|
|
C traitement special pour le pole Sud (idem pole Nord) |
481 |
|
|
C |
482 |
|
|
K=LAT |
483 |
|
|
C |
484 |
|
|
SM0=0. |
485 |
|
|
DO 40 JV=1,NTRA |
486 |
|
|
S00(JV)=0. |
487 |
|
|
40 CONTINUE |
488 |
|
|
C |
489 |
|
|
DO 41 I=1,LON |
490 |
|
|
C |
491 |
|
|
IF(VGRI(I,K,L).GE.0.) THEN |
492 |
|
|
FM(I,K)=VGRI(I,K,L)*DTY |
493 |
|
|
ALF(I,K)=FM(I,K)/SM(I,K,L) |
494 |
|
|
SM(I,K,L)=SM(I,K,L)-FM(I,K) |
495 |
|
|
SM0=SM0+FM(I,K) |
496 |
|
|
ENDIF |
497 |
|
|
C |
498 |
|
|
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
499 |
|
|
ALF1(I,K)=1.-ALF(I,K) |
500 |
|
|
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
501 |
|
|
ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
502 |
|
|
ALF3(I,K)=ALF(I,K)*ALFQ(I,K) |
503 |
|
|
ALF4(I,K)=ALF1(I,K)*ALF1Q(I,K) |
504 |
|
|
C |
505 |
|
|
41 CONTINUE |
506 |
|
|
c print*,'ap ADVYP 41' |
507 |
|
|
C |
508 |
|
|
DO 42 JV=1,NTRA |
509 |
|
|
DO 420 I=1,LON |
510 |
|
|
C |
511 |
|
|
IF(VGRI(I,K,L).GE.0.) THEN |
512 |
|
|
F0 (I,K,JV)=ALF(I,K)* ( S0(I,K,L,JV)+ALF1(I,K)* |
513 |
|
|
+ ( SY(I,K,L,JV)+ALF2(I,K)*SYY(I,K,L,JV) ) ) |
514 |
|
|
S00(JV)=S00(JV)+F0(I,K,JV) |
515 |
|
|
C |
516 |
|
|
S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
517 |
|
|
SY (I,K,L,JV)=ALF1Q(I,K)* |
518 |
|
|
+ (SY(I,K,L,JV)-3.*ALF(I,K)*SYY(I,K,L,JV)) |
519 |
|
|
SYY(I,K,L,JV)=ALF4 (I,K)*SYY(I,K,L,JV) |
520 |
|
|
SSX (I,K,L,JV)=ALF1(I,K)*(SSX(I,K,L,JV)-ALF(I,K)*SSXY(I,K,L,JV)) |
521 |
|
|
SZ (I,K,L,JV)=ALF1(I,K)*(SZ(I,K,L,JV)-ALF(I,K)*SYZ(I,K,L,JV)) |
522 |
|
|
SSXX(I,K,L,JV)=ALF1 (I,K)*SSXX(I,K,L,JV) |
523 |
|
|
SSXZ(I,K,L,JV)=ALF1 (I,K)*SSXZ(I,K,L,JV) |
524 |
|
|
SZZ(I,K,L,JV)=ALF1 (I,K)*SZZ(I,K,L,JV) |
525 |
|
|
SSXY(I,K,L,JV)=ALF1Q(I,K)*SSXY(I,K,L,JV) |
526 |
|
|
SYZ(I,K,L,JV)=ALF1Q(I,K)*SYZ(I,K,L,JV) |
527 |
|
|
ENDIF |
528 |
|
|
C |
529 |
|
|
420 CONTINUE |
530 |
|
|
42 CONTINUE |
531 |
|
|
c print*,'ap ADVYP 42' |
532 |
|
|
C |
533 |
|
|
DO 43 I=1,LON |
534 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
535 |
|
|
FM(I,K)=-VGRI(I,K,L)*DTY |
536 |
|
|
ALF(I,K)=FM(I,K)/SM0 |
537 |
|
|
ENDIF |
538 |
|
|
43 CONTINUE |
539 |
|
|
c print*,'ap ADVYP 43' |
540 |
|
|
C |
541 |
|
|
DO 44 JV=1,NTRA |
542 |
|
|
DO 440 I=1,LON |
543 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
544 |
|
|
F0(I,K,JV)=ALF(I,K)*S00(JV) |
545 |
|
|
ENDIF |
546 |
|
|
440 CONTINUE |
547 |
|
|
44 CONTINUE |
548 |
|
|
C |
549 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
550 |
|
|
C |
551 |
|
|
DO 45 I=1,LON |
552 |
|
|
C |
553 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
554 |
|
|
SM(I,K,L)=SM(I,K,L)+FM(I,K) |
555 |
|
|
ALF(I,K)=FM(I,K)/SM(I,K,L) |
556 |
|
|
ENDIF |
557 |
|
|
C |
558 |
|
|
ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
559 |
|
|
ALF1(I,K)=1.-ALF(I,K) |
560 |
|
|
ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
561 |
|
|
ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
562 |
|
|
ALF3(I,K)=ALF1(I,K)*ALF(I,K) |
563 |
|
|
C |
564 |
|
|
45 CONTINUE |
565 |
|
|
c print*,'ap ADVYP 45' |
566 |
|
|
C |
567 |
|
|
DO 46 JV=1,NTRA |
568 |
|
|
DO 460 I=1,LON |
569 |
|
|
C |
570 |
|
|
IF(VGRI(I,K,L).LT.0.) THEN |
571 |
|
|
C |
572 |
|
|
TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
573 |
|
|
S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
574 |
|
|
SYY(I,K,L,JV)=ALF1Q(I,K)*SYY(I,K,L,JV) |
575 |
|
|
+ +5.*(-ALF3 (I,K)*SY (I,K,L,JV)+ALF2(I,K)*TEMPTM ) |
576 |
|
|
SY (I,K,L,JV)=ALF1(I,K)*SY (I,K,L,JV)+3.*TEMPTM |
577 |
|
|
SSXY(I,K,L,JV)=ALF1(I,K)*SSXY(I,K,L,JV)-3.*ALF(I,K)*SSX(I,K,L,JV) |
578 |
|
|
SYZ(I,K,L,JV)=ALF1(I,K)*SYZ(I,K,L,JV)-3.*ALF(I,K)*SZ(I,K,L,JV) |
579 |
|
|
C |
580 |
|
|
ENDIF |
581 |
|
|
C |
582 |
|
|
460 CONTINUE |
583 |
|
|
46 CONTINUE |
584 |
|
|
c print*,'ap ADVYP 46' |
585 |
|
|
C |
586 |
|
|
1 CONTINUE |
587 |
|
|
|
588 |
|
|
c-------------------------------------------------- |
589 |
|
|
C bouclage cyclique horizontal . |
590 |
|
|
|
591 |
|
|
DO l = 1,llm |
592 |
|
|
DO jv = 1,ntra |
593 |
|
|
DO j = 1,jjp1 |
594 |
|
|
SM(iip1,j,l) = SM(1,j,l) |
595 |
|
|
S0(iip1,j,l,jv) = S0(1,j,l,jv) |
596 |
|
|
SSX(iip1,j,l,jv) = SSX(1,j,l,jv) |
597 |
|
|
SY(iip1,j,l,jv) = SY(1,j,l,jv) |
598 |
|
|
SZ(iip1,j,l,jv) = SZ(1,j,l,jv) |
599 |
|
|
END DO |
600 |
|
|
END DO |
601 |
|
|
END DO |
602 |
|
|
|
603 |
|
|
c ------------------------------------------------------------------- |
604 |
|
|
C *** Test negativite: |
605 |
|
|
|
606 |
|
|
c DO jv = 1,ntra |
607 |
|
|
c DO l = 1,llm |
608 |
|
|
c DO j = 1,jjp1 |
609 |
|
|
c DO i = 1,iip1 |
610 |
|
|
c IF (s0( i,j,l,jv ).lt.0.) THEN |
611 |
|
|
c PRINT*, '------ S0 < 0 en FIN ADVYP ---' |
612 |
|
|
c PRINT*, 'S0(',i,j,l,jv,')=', S0(i,j,l,jv) |
613 |
|
|
cc STOP |
614 |
|
|
c ENDIF |
615 |
|
|
c ENDDO |
616 |
|
|
c ENDDO |
617 |
|
|
c ENDDO |
618 |
|
|
c ENDDO |
619 |
|
|
|
620 |
|
|
|
621 |
|
|
c ------------------------------------------------------------------- |
622 |
|
|
C *** Test : diag de la qtite totale de traceur dans |
623 |
|
|
C l'atmosphere avant l'advection en Y |
624 |
|
|
|
625 |
|
|
DO l = 1,llm |
626 |
|
|
DO j = 1,jjp1 |
627 |
|
|
DO i = 1,iim |
628 |
|
|
sqf = sqf + S0(i,j,l,ntra) |
629 |
|
|
END DO |
630 |
|
|
END DO |
631 |
|
|
END DO |
632 |
|
|
PRINT*,'---------- DIAG DANS ADVY - SORTIE --------' |
633 |
|
|
PRINT*,'sqf=',sqf |
634 |
|
|
c print*,'ap ADVYP fin' |
635 |
|
|
|
636 |
|
|
c----------------------------------------------------------------- |
637 |
|
|
C |
638 |
|
|
RETURN |
639 |
|
|
END |
640 |
|
|
|
641 |
|
|
|
642 |
|
|
|
643 |
|
|
|
644 |
|
|
|
645 |
|
|
|
646 |
|
|
|
647 |
|
|
|
648 |
|
|
|
649 |
|
|
|
650 |
|
|
|
651 |
|
|
|