1 |
|
|
! |
2 |
|
|
! $Header$ |
3 |
|
|
! |
4 |
|
|
SUBROUTINE ADVZP(LIMIT,DTZ,W,SM,S0,SSX,SY,SZ |
5 |
|
|
. ,SSXX,SSXY,SSXZ,SYY,SYZ,SZZ,ntra ) |
6 |
|
|
|
7 |
|
|
IMPLICIT NONE |
8 |
|
|
|
9 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
10 |
|
|
C C |
11 |
|
|
C second-order moments (SOM) advection of tracer in Z direction C |
12 |
|
|
C C |
13 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
14 |
|
|
C C |
15 |
|
|
C Source : Pascal Simon ( Meteo, CNRM ) C |
16 |
|
|
C Adaptation : A.A. (LGGE) C |
17 |
|
|
C Derniere Modif : 19/11/95 LAST C |
18 |
|
|
C C |
19 |
|
|
C sont les arguments d'entree pour le s-pg C |
20 |
|
|
C C |
21 |
|
|
C argument de sortie du s-pg C |
22 |
|
|
C C |
23 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
24 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
25 |
|
|
C |
26 |
|
|
C Rem : Probleme aux poles il faut reecrire ce cas specifique |
27 |
|
|
C Attention au sens de l'indexation |
28 |
|
|
C |
29 |
|
|
|
30 |
|
|
C |
31 |
|
|
C parametres principaux du modele |
32 |
|
|
C |
33 |
|
|
include "dimensions.h" |
34 |
|
|
include "paramet.h" |
35 |
|
|
include "comgeom.h" |
36 |
|
|
C |
37 |
|
|
C Arguments : |
38 |
|
|
C ---------- |
39 |
|
|
C dty : frequence fictive d'appel du transport |
40 |
|
|
C parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
41 |
|
|
c |
42 |
|
|
INTEGER lon,lat,niv |
43 |
|
|
INTEGER i,j,jv,k,kp,l,lp |
44 |
|
|
INTEGER ntra |
45 |
|
|
c PARAMETER (ntra = 1) |
46 |
|
|
c |
47 |
|
|
REAL dtz |
48 |
|
|
REAL w ( iip1,jjp1,llm ) |
49 |
|
|
c |
50 |
|
|
C moments: SM total mass in each grid box |
51 |
|
|
C S0 mass of tracer in each grid box |
52 |
|
|
C Si 1rst order moment in i direction |
53 |
|
|
C |
54 |
|
|
REAL SM(iip1,jjp1,llm) |
55 |
|
|
+ ,S0(iip1,jjp1,llm,ntra) |
56 |
|
|
REAL SSX(iip1,jjp1,llm,ntra) |
57 |
|
|
+ ,SY(iip1,jjp1,llm,ntra) |
58 |
|
|
+ ,SZ(iip1,jjp1,llm,ntra) |
59 |
|
|
+ ,SSXX(iip1,jjp1,llm,ntra) |
60 |
|
|
+ ,SSXY(iip1,jjp1,llm,ntra) |
61 |
|
|
+ ,SSXZ(iip1,jjp1,llm,ntra) |
62 |
|
|
+ ,SYY(iip1,jjp1,llm,ntra) |
63 |
|
|
+ ,SYZ(iip1,jjp1,llm,ntra) |
64 |
|
|
+ ,SZZ(iip1,jjp1,llm,ntra) |
65 |
|
|
C |
66 |
|
|
C Local : |
67 |
|
|
C ------- |
68 |
|
|
C |
69 |
|
|
C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
70 |
|
|
C mass fluxes in kg |
71 |
|
|
C declaration : |
72 |
|
|
C |
73 |
|
|
REAL WGRI(iip1,jjp1,0:llm) |
74 |
|
|
|
75 |
|
|
C Rem : UGRI et VGRI ne sont pas utilises dans |
76 |
|
|
C cette subroutine ( advection en z uniquement ) |
77 |
|
|
C Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
78 |
|
|
C attention a celui de WGRI |
79 |
|
|
C |
80 |
|
|
C the moments F are similarly defined and used as temporary |
81 |
|
|
C storage for portions of the grid boxes in transit |
82 |
|
|
C |
83 |
|
|
C the moments Fij are used as temporary storage for |
84 |
|
|
C portions of the grid boxes in transit at the current level |
85 |
|
|
C |
86 |
|
|
C work arrays |
87 |
|
|
C |
88 |
|
|
C |
89 |
|
|
REAL F0(iim,llm,ntra),FM(iim,llm) |
90 |
|
|
REAL FX(iim,llm,ntra),FY(iim,llm,ntra) |
91 |
|
|
REAL FZ(iim,llm,ntra) |
92 |
|
|
REAL FXX(iim,llm,ntra),FXY(iim,llm,ntra) |
93 |
|
|
REAL FXZ(iim,llm,ntra),FYY(iim,llm,ntra) |
94 |
|
|
REAL FYZ(iim,llm,ntra),FZZ(iim,llm,ntra) |
95 |
|
|
REAL S00(ntra) |
96 |
|
|
REAL SM0 ! Just temporal variable |
97 |
|
|
C |
98 |
|
|
C work arrays |
99 |
|
|
C |
100 |
|
|
REAL ALF(iim),ALF1(iim) |
101 |
|
|
REAL ALFQ(iim),ALF1Q(iim) |
102 |
|
|
REAL ALF2(iim),ALF3(iim) |
103 |
|
|
REAL ALF4(iim) |
104 |
|
|
REAL TEMPTM ! Just temporal variable |
105 |
|
|
REAL SLPMAX,S1MAX,S1NEW,S2NEW |
106 |
|
|
c |
107 |
|
|
REAL sqi,sqf |
108 |
|
|
LOGICAL LIMIT |
109 |
|
|
|
110 |
|
|
lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
111 |
|
|
lat = jjp1 ! a cause des dim. differentes entre les |
112 |
|
|
niv = llm ! tab. S et VGRI |
113 |
|
|
|
114 |
|
|
c----------------------------------------------------------------- |
115 |
|
|
C *** Test : diag de la qtite totale de traceur dans |
116 |
|
|
C l'atmosphere avant l'advection en Y |
117 |
|
|
c |
118 |
|
|
sqi = 0. |
119 |
|
|
sqf = 0. |
120 |
|
|
c |
121 |
|
|
DO l = 1,llm |
122 |
|
|
DO j = 1,jjp1 |
123 |
|
|
DO i = 1,iim |
124 |
|
|
sqi = sqi + S0(i,j,l,ntra) |
125 |
|
|
END DO |
126 |
|
|
END DO |
127 |
|
|
END DO |
128 |
|
|
PRINT*,'---------- DIAG DANS ADVZP - ENTREE --------' |
129 |
|
|
PRINT*,'sqi=',sqi |
130 |
|
|
|
131 |
|
|
c----------------------------------------------------------------- |
132 |
|
|
C Interface : adaptation nouveau modele |
133 |
|
|
C ------------------------------------- |
134 |
|
|
C |
135 |
|
|
C Conversion des flux de masses en kg |
136 |
|
|
|
137 |
|
|
DO 500 l = 1,llm |
138 |
|
|
DO 500 j = 1,jjp1 |
139 |
|
|
DO 500 i = 1,iip1 |
140 |
|
|
wgri (i,j,llm+1-l) = w (i,j,l) |
141 |
|
|
500 CONTINUE |
142 |
|
|
do j=1,jjp1 |
143 |
|
|
do i=1,iip1 |
144 |
|
|
wgri(i,j,0)=0. |
145 |
|
|
enddo |
146 |
|
|
enddo |
147 |
|
|
c |
148 |
|
|
cAA rem : Je ne suis pas sur du signe |
149 |
|
|
cAA Je ne suis pas sur pour le 0:llm |
150 |
|
|
c |
151 |
|
|
c----------------------------------------------------------------- |
152 |
|
|
C---------------------- START HERE ------------------------------- |
153 |
|
|
C |
154 |
|
|
C boucle sur les latitudes |
155 |
|
|
C |
156 |
|
|
DO 1 K=1,LAT |
157 |
|
|
C |
158 |
|
|
C place limits on appropriate moments before transport |
159 |
|
|
C (if flux-limiting is to be applied) |
160 |
|
|
C |
161 |
|
|
IF(.NOT.LIMIT) GO TO 101 |
162 |
|
|
C |
163 |
|
|
DO 10 JV=1,NTRA |
164 |
|
|
DO 10 L=1,NIV |
165 |
|
|
DO 100 I=1,LON |
166 |
|
|
IF(S0(I,K,L,JV).GT.0.) THEN |
167 |
|
|
SLPMAX=S0(I,K,L,JV) |
168 |
|
|
S1MAX =1.5*SLPMAX |
169 |
|
|
S1NEW =AMIN1(S1MAX,AMAX1(-S1MAX,SZ(I,K,L,JV))) |
170 |
|
|
S2NEW =AMIN1( 2.*SLPMAX-ABS(S1NEW)/3. , |
171 |
|
|
+ AMAX1(ABS(S1NEW)-SLPMAX,SZZ(I,K,L,JV)) ) |
172 |
|
|
SZ (I,K,L,JV)=S1NEW |
173 |
|
|
SZZ(I,K,L,JV)=S2NEW |
174 |
|
|
SSXZ(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SSXZ(I,K,L,JV))) |
175 |
|
|
SYZ(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SYZ(I,K,L,JV))) |
176 |
|
|
ELSE |
177 |
|
|
SZ (I,K,L,JV)=0. |
178 |
|
|
SZZ(I,K,L,JV)=0. |
179 |
|
|
SSXZ(I,K,L,JV)=0. |
180 |
|
|
SYZ(I,K,L,JV)=0. |
181 |
|
|
ENDIF |
182 |
|
|
100 CONTINUE |
183 |
|
|
10 CONTINUE |
184 |
|
|
C |
185 |
|
|
101 CONTINUE |
186 |
|
|
C |
187 |
|
|
C boucle sur les niveaux intercouches de 1 a NIV-1 |
188 |
|
|
C (flux nul au sommet L=0 et a la base L=NIV) |
189 |
|
|
C |
190 |
|
|
C calculate flux and moments between adjacent boxes |
191 |
|
|
C (flux from LP to L if WGRI(L).lt.0, from L to LP if WGRI(L).gt.0) |
192 |
|
|
C 1- create temporary moments/masses for partial boxes in transit |
193 |
|
|
C 2- reajusts moments remaining in the box |
194 |
|
|
C |
195 |
|
|
DO 11 L=1,NIV-1 |
196 |
|
|
LP=L+1 |
197 |
|
|
C |
198 |
|
|
DO 110 I=1,LON |
199 |
|
|
C |
200 |
|
|
IF(WGRI(I,K,L).LT.0.) THEN |
201 |
|
|
FM(I,L)=-WGRI(I,K,L)*DTZ |
202 |
|
|
ALF(I)=FM(I,L)/SM(I,K,LP) |
203 |
|
|
SM(I,K,LP)=SM(I,K,LP)-FM(I,L) |
204 |
|
|
ELSE |
205 |
|
|
FM(I,L)=WGRI(I,K,L)*DTZ |
206 |
|
|
ALF(I)=FM(I,L)/SM(I,K,L) |
207 |
|
|
SM(I,K,L)=SM(I,K,L)-FM(I,L) |
208 |
|
|
ENDIF |
209 |
|
|
C |
210 |
|
|
ALFQ (I)=ALF(I)*ALF(I) |
211 |
|
|
ALF1 (I)=1.-ALF(I) |
212 |
|
|
ALF1Q(I)=ALF1(I)*ALF1(I) |
213 |
|
|
ALF2 (I)=ALF1(I)-ALF(I) |
214 |
|
|
ALF3 (I)=ALF(I)*ALFQ(I) |
215 |
|
|
ALF4 (I)=ALF1(I)*ALF1Q(I) |
216 |
|
|
C |
217 |
|
|
110 CONTINUE |
218 |
|
|
C |
219 |
|
|
DO 111 JV=1,NTRA |
220 |
|
|
DO 1110 I=1,LON |
221 |
|
|
C |
222 |
|
|
IF(WGRI(I,K,L).LT.0.) THEN |
223 |
|
|
C |
224 |
|
|
F0 (I,L,JV)=ALF (I)* ( S0(I,K,LP,JV)-ALF1(I)* |
225 |
|
|
+ ( SZ(I,K,LP,JV)-ALF2(I)*SZZ(I,K,LP,JV) ) ) |
226 |
|
|
FZ (I,L,JV)=ALFQ(I)*(SZ(I,K,LP,JV)-3.*ALF1(I)*SZZ(I,K,LP,JV)) |
227 |
|
|
FZZ(I,L,JV)=ALF3(I)*SZZ(I,K,LP,JV) |
228 |
|
|
FXZ(I,L,JV)=ALFQ(I)*SSXZ(I,K,LP,JV) |
229 |
|
|
FYZ(I,L,JV)=ALFQ(I)*SYZ(I,K,LP,JV) |
230 |
|
|
FX (I,L,JV)=ALF (I)*(SSX(I,K,LP,JV)-ALF1(I)*SSXZ(I,K,LP,JV)) |
231 |
|
|
FY (I,L,JV)=ALF (I)*(SY(I,K,LP,JV)-ALF1(I)*SYZ(I,K,LP,JV)) |
232 |
|
|
FXX(I,L,JV)=ALF (I)*SSXX(I,K,LP,JV) |
233 |
|
|
FXY(I,L,JV)=ALF (I)*SSXY(I,K,LP,JV) |
234 |
|
|
FYY(I,L,JV)=ALF (I)*SYY(I,K,LP,JV) |
235 |
|
|
C |
236 |
|
|
S0 (I,K,LP,JV)=S0 (I,K,LP,JV)-F0 (I,L,JV) |
237 |
|
|
SZ (I,K,LP,JV)=ALF1Q(I) |
238 |
|
|
+ *(SZ(I,K,LP,JV)+3.*ALF(I)*SZZ(I,K,LP,JV)) |
239 |
|
|
SZZ(I,K,LP,JV)=ALF4 (I)*SZZ(I,K,LP,JV) |
240 |
|
|
SSXZ(I,K,LP,JV)=ALF1Q(I)*SSXZ(I,K,LP,JV) |
241 |
|
|
SYZ(I,K,LP,JV)=ALF1Q(I)*SYZ(I,K,LP,JV) |
242 |
|
|
SSX (I,K,LP,JV)=SSX (I,K,LP,JV)-FX (I,L,JV) |
243 |
|
|
SY (I,K,LP,JV)=SY (I,K,LP,JV)-FY (I,L,JV) |
244 |
|
|
SSXX(I,K,LP,JV)=SSXX(I,K,LP,JV)-FXX(I,L,JV) |
245 |
|
|
SSXY(I,K,LP,JV)=SSXY(I,K,LP,JV)-FXY(I,L,JV) |
246 |
|
|
SYY(I,K,LP,JV)=SYY(I,K,LP,JV)-FYY(I,L,JV) |
247 |
|
|
C |
248 |
|
|
ELSE |
249 |
|
|
C |
250 |
|
|
F0 (I,L,JV)=ALF (I)*(S0(I,K,L,JV) |
251 |
|
|
+ +ALF1(I) * (SZ(I,K,L,JV)+ALF2(I)*SZZ(I,K,L,JV)) ) |
252 |
|
|
FZ (I,L,JV)=ALFQ(I)*(SZ(I,K,L,JV)+3.*ALF1(I)*SZZ(I,K,L,JV)) |
253 |
|
|
FZZ(I,L,JV)=ALF3(I)*SZZ(I,K,L,JV) |
254 |
|
|
FXZ(I,L,JV)=ALFQ(I)*SSXZ(I,K,L,JV) |
255 |
|
|
FYZ(I,L,JV)=ALFQ(I)*SYZ(I,K,L,JV) |
256 |
|
|
FX (I,L,JV)=ALF (I)*(SSX(I,K,L,JV)+ALF1(I)*SSXZ(I,K,L,JV)) |
257 |
|
|
FY (I,L,JV)=ALF (I)*(SY(I,K,L,JV)+ALF1(I)*SYZ(I,K,L,JV)) |
258 |
|
|
FXX(I,L,JV)=ALF (I)*SSXX(I,K,L,JV) |
259 |
|
|
FXY(I,L,JV)=ALF (I)*SSXY(I,K,L,JV) |
260 |
|
|
FYY(I,L,JV)=ALF (I)*SYY(I,K,L,JV) |
261 |
|
|
C |
262 |
|
|
S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0(I,L,JV) |
263 |
|
|
SZ (I,K,L,JV)=ALF1Q(I)*(SZ(I,K,L,JV)-3.*ALF(I)*SZZ(I,K,L,JV)) |
264 |
|
|
SZZ(I,K,L,JV)=ALF4 (I)*SZZ(I,K,L,JV) |
265 |
|
|
SSXZ(I,K,L,JV)=ALF1Q(I)*SSXZ(I,K,L,JV) |
266 |
|
|
SYZ(I,K,L,JV)=ALF1Q(I)*SYZ(I,K,L,JV) |
267 |
|
|
SSX (I,K,L,JV)=SSX (I,K,L,JV)-FX (I,L,JV) |
268 |
|
|
SY (I,K,L,JV)=SY (I,K,L,JV)-FY (I,L,JV) |
269 |
|
|
SSXX(I,K,L,JV)=SSXX(I,K,L,JV)-FXX(I,L,JV) |
270 |
|
|
SSXY(I,K,L,JV)=SSXY(I,K,L,JV)-FXY(I,L,JV) |
271 |
|
|
SYY(I,K,L,JV)=SYY(I,K,L,JV)-FYY(I,L,JV) |
272 |
|
|
C |
273 |
|
|
ENDIF |
274 |
|
|
C |
275 |
|
|
1110 CONTINUE |
276 |
|
|
111 CONTINUE |
277 |
|
|
C |
278 |
|
|
11 CONTINUE |
279 |
|
|
C |
280 |
|
|
C puts the temporary moments Fi into appropriate neighboring boxes |
281 |
|
|
C |
282 |
|
|
DO 12 L=1,NIV-1 |
283 |
|
|
LP=L+1 |
284 |
|
|
C |
285 |
|
|
DO 120 I=1,LON |
286 |
|
|
C |
287 |
|
|
IF(WGRI(I,K,L).LT.0.) THEN |
288 |
|
|
SM(I,K,L)=SM(I,K,L)+FM(I,L) |
289 |
|
|
ALF(I)=FM(I,L)/SM(I,K,L) |
290 |
|
|
ELSE |
291 |
|
|
SM(I,K,LP)=SM(I,K,LP)+FM(I,L) |
292 |
|
|
ALF(I)=FM(I,L)/SM(I,K,LP) |
293 |
|
|
ENDIF |
294 |
|
|
C |
295 |
|
|
ALF1(I)=1.-ALF(I) |
296 |
|
|
ALFQ(I)=ALF(I)*ALF(I) |
297 |
|
|
ALF1Q(I)=ALF1(I)*ALF1(I) |
298 |
|
|
ALF2(I)=ALF(I)*ALF1(I) |
299 |
|
|
ALF3(I)=ALF1(I)-ALF(I) |
300 |
|
|
C |
301 |
|
|
120 CONTINUE |
302 |
|
|
C |
303 |
|
|
DO 121 JV=1,NTRA |
304 |
|
|
DO 1210 I=1,LON |
305 |
|
|
C |
306 |
|
|
IF(WGRI(I,K,L).LT.0.) THEN |
307 |
|
|
C |
308 |
|
|
TEMPTM=-ALF(I)*S0(I,K,L,JV)+ALF1(I)*F0(I,L,JV) |
309 |
|
|
S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,L,JV) |
310 |
|
|
SZZ(I,K,L,JV)=ALFQ(I)*FZZ(I,L,JV)+ALF1Q(I)*SZZ(I,K,L,JV) |
311 |
|
|
+ +5.*( ALF2(I)*(FZ(I,L,JV)-SZ(I,K,L,JV))+ALF3(I)*TEMPTM ) |
312 |
|
|
SZ (I,K,L,JV)=ALF (I)*FZ (I,L,JV)+ALF1 (I)*SZ (I,K,L,JV) |
313 |
|
|
+ +3.*TEMPTM |
314 |
|
|
SSXZ(I,K,L,JV)=ALF (I)*FXZ(I,L,JV)+ALF1 (I)*SSXZ(I,K,L,JV) |
315 |
|
|
+ +3.*(ALF1(I)*FX (I,L,JV)-ALF (I)*SSX (I,K,L,JV)) |
316 |
|
|
SYZ(I,K,L,JV)=ALF (I)*FYZ(I,L,JV)+ALF1 (I)*SYZ(I,K,L,JV) |
317 |
|
|
+ +3.*(ALF1(I)*FY (I,L,JV)-ALF (I)*SY (I,K,L,JV)) |
318 |
|
|
SSX (I,K,L,JV)=SSX (I,K,L,JV)+FX (I,L,JV) |
319 |
|
|
SY (I,K,L,JV)=SY (I,K,L,JV)+FY (I,L,JV) |
320 |
|
|
SSXX(I,K,L,JV)=SSXX(I,K,L,JV)+FXX(I,L,JV) |
321 |
|
|
SSXY(I,K,L,JV)=SSXY(I,K,L,JV)+FXY(I,L,JV) |
322 |
|
|
SYY(I,K,L,JV)=SYY(I,K,L,JV)+FYY(I,L,JV) |
323 |
|
|
C |
324 |
|
|
ELSE |
325 |
|
|
C |
326 |
|
|
TEMPTM=ALF(I)*S0(I,K,LP,JV)-ALF1(I)*F0(I,L,JV) |
327 |
|
|
S0 (I,K,LP,JV)=S0(I,K,LP,JV)+F0(I,L,JV) |
328 |
|
|
SZZ(I,K,LP,JV)=ALFQ(I)*FZZ(I,L,JV)+ALF1Q(I)*SZZ(I,K,LP,JV) |
329 |
|
|
+ +5.*( ALF2(I)*(SZ(I,K,LP,JV)-FZ(I,L,JV))-ALF3(I)*TEMPTM ) |
330 |
|
|
SZ (I,K,LP,JV)=ALF (I)*FZ(I,L,JV)+ALF1(I)*SZ(I,K,LP,JV) |
331 |
|
|
+ +3.*TEMPTM |
332 |
|
|
SSXZ(I,K,LP,JV)=ALF(I)*FXZ(I,L,JV)+ALF1(I)*SSXZ(I,K,LP,JV) |
333 |
|
|
+ +3.*(ALF(I)*SSX(I,K,LP,JV)-ALF1(I)*FX(I,L,JV)) |
334 |
|
|
SYZ(I,K,LP,JV)=ALF(I)*FYZ(I,L,JV)+ALF1(I)*SYZ(I,K,LP,JV) |
335 |
|
|
+ +3.*(ALF(I)*SY(I,K,LP,JV)-ALF1(I)*FY(I,L,JV)) |
336 |
|
|
SSX (I,K,LP,JV)=SSX (I,K,LP,JV)+FX (I,L,JV) |
337 |
|
|
SY (I,K,LP,JV)=SY (I,K,LP,JV)+FY (I,L,JV) |
338 |
|
|
SSXX(I,K,LP,JV)=SSXX(I,K,LP,JV)+FXX(I,L,JV) |
339 |
|
|
SSXY(I,K,LP,JV)=SSXY(I,K,LP,JV)+FXY(I,L,JV) |
340 |
|
|
SYY(I,K,LP,JV)=SYY(I,K,LP,JV)+FYY(I,L,JV) |
341 |
|
|
C |
342 |
|
|
ENDIF |
343 |
|
|
C |
344 |
|
|
1210 CONTINUE |
345 |
|
|
121 CONTINUE |
346 |
|
|
C |
347 |
|
|
12 CONTINUE |
348 |
|
|
C |
349 |
|
|
C fin de la boucle principale sur les latitudes |
350 |
|
|
C |
351 |
|
|
1 CONTINUE |
352 |
|
|
C |
353 |
|
|
DO l = 1,llm |
354 |
|
|
DO j = 1,jjp1 |
355 |
|
|
SM(iip1,j,l) = SM(1,j,l) |
356 |
|
|
S0(iip1,j,l,ntra) = S0(1,j,l,ntra) |
357 |
|
|
SSX(iip1,j,l,ntra) = SSX(1,j,l,ntra) |
358 |
|
|
SY(iip1,j,l,ntra) = SY(1,j,l,ntra) |
359 |
|
|
SZ(iip1,j,l,ntra) = SZ(1,j,l,ntra) |
360 |
|
|
ENDDO |
361 |
|
|
ENDDO |
362 |
|
|
c C------------------------------------------------------------- |
363 |
|
|
C *** Test : diag de la qqtite totale de tarceur |
364 |
|
|
C dans l'atmosphere avant l'advection en z |
365 |
|
|
DO l = 1,llm |
366 |
|
|
DO j = 1,jjp1 |
367 |
|
|
DO i = 1,iim |
368 |
|
|
sqf = sqf + S0(i,j,l,ntra) |
369 |
|
|
ENDDO |
370 |
|
|
ENDDO |
371 |
|
|
ENDDO |
372 |
|
|
PRINT*,'-------- DIAG DANS ADVZ - SORTIE ---------' |
373 |
|
|
PRINT*,'sqf=', sqf |
374 |
|
|
|
375 |
|
|
RETURN |
376 |
|
|
END |