1 |
|
|
! |
2 |
|
|
! $Id: diagedyn.F 4593 2023-06-29 13:55:54Z ymeurdesoif $ |
3 |
|
|
! |
4 |
|
|
|
5 |
|
|
C====================================================================== |
6 |
|
|
SUBROUTINE diagedyn(tit,iprt,idiag,idiag2,dtime |
7 |
|
|
e , ucov , vcov , ps, p ,pk , teta , q, ql) |
8 |
|
|
C====================================================================== |
9 |
|
|
C |
10 |
|
|
C Purpose: |
11 |
|
|
C Calcul la difference d'enthalpie et de masse d'eau entre 2 appels, |
12 |
|
|
C et calcul le flux de chaleur et le flux d'eau necessaire a ces |
13 |
|
|
C changements. Ces valeurs sont moyennees sur la surface de tout |
14 |
|
|
C le globe et sont exprime en W/2 et kg/s/m2 |
15 |
|
|
C Outil pour diagnostiquer la conservation de l'energie |
16 |
|
|
C et de la masse dans la dynamique. |
17 |
|
|
C |
18 |
|
|
C |
19 |
|
|
c====================================================================== |
20 |
|
|
C Arguments: |
21 |
|
|
C tit-----imput-A15- Comment added in PRINT (CHARACTER*15) |
22 |
|
|
C iprt----input-I- PRINT level ( <=1 : no PRINT) |
23 |
|
|
C idiag---input-I- indice dans lequel sera range les nouveaux |
24 |
|
|
C bilans d' entalpie et de masse |
25 |
|
|
C idiag2--input-I-les nouveaux bilans d'entalpie et de masse |
26 |
|
|
C sont compare au bilan de d'enthalpie de masse de |
27 |
|
|
C l'indice numero idiag2 |
28 |
|
|
C Cas parriculier : si idiag2=0, pas de comparaison, on |
29 |
|
|
c sort directement les bilans d'enthalpie et de masse |
30 |
|
|
C dtime----input-R- time step (s) |
31 |
|
|
C uconv, vconv-input-R- vents covariants (m/s) |
32 |
|
|
C ps-------input-R- Surface pressure (Pa) |
33 |
|
|
C p--------input-R- pressure at the interfaces |
34 |
|
|
C pk-------input-R- pk= (p/Pref)**kappa |
35 |
|
|
c teta-----input-R- potential temperature (K) |
36 |
|
|
c q--------input-R- vapeur d'eau (kg/kg) |
37 |
|
|
c ql-------input-R- liquid watter (kg/kg) |
38 |
|
|
c aire-----input-R- mesh surafce (m2) |
39 |
|
|
c |
40 |
|
|
C the following total value are computed by UNIT of earth surface |
41 |
|
|
C |
42 |
|
|
C d_h_vcol--output-R- Heat flux (W/m2) define as the Enthalpy |
43 |
|
|
c change (J/m2) during one time step (dtime) for the whole |
44 |
|
|
C atmosphere (air, watter vapour, liquid and solid) |
45 |
|
|
C d_qt------output-R- total water mass flux (kg/m2/s) defined as the |
46 |
|
|
C total watter (kg/m2) change during one time step (dtime), |
47 |
|
|
C d_qw------output-R- same, for the watter vapour only (kg/m2/s) |
48 |
|
|
C d_ql------output-R- same, for the liquid watter only (kg/m2/s) |
49 |
|
|
C d_ec------output-R- Cinetic Energy Budget (W/m2) for vertical air column |
50 |
|
|
C |
51 |
|
|
C |
52 |
|
|
C J.L. Dufresne, July 2002 |
53 |
|
|
c====================================================================== |
54 |
|
|
|
55 |
|
|
USE control_mod, ONLY : planet_type |
56 |
|
|
|
57 |
|
|
IMPLICIT NONE |
58 |
|
|
C |
59 |
|
|
INCLUDE "dimensions.h" |
60 |
|
|
INCLUDE "paramet.h" |
61 |
|
|
INCLUDE "comgeom.h" |
62 |
|
|
INCLUDE "iniprint.h" |
63 |
|
|
|
64 |
|
|
!#ifdef CPP_EARTH |
65 |
|
|
! INCLUDE "../phylmd/YOMCST.h" |
66 |
|
|
! INCLUDE "../phylmd/YOETHF.h" |
67 |
|
|
!#endif |
68 |
|
|
! Ehouarn: for now set these parameters to what is in Earth physics... |
69 |
|
|
! (cf ../phylmd/suphel.h) |
70 |
|
|
! this should be generalized... |
71 |
|
|
REAL,PARAMETER :: RCPD= |
72 |
|
|
& 3.5*(1000.*(6.0221367E+23*1.380658E-23)/28.9644) |
73 |
|
|
REAL,PARAMETER :: RCPV= |
74 |
|
|
& 4.*(1000.*(6.0221367E+23*1.380658E-23)/18.0153) |
75 |
|
|
REAL,PARAMETER :: RCS=RCPV |
76 |
|
|
REAL,PARAMETER :: RCW=RCPV |
77 |
|
|
REAL,PARAMETER :: RLSTT=2.8345E+6 |
78 |
|
|
REAL,PARAMETER :: RLVTT=2.5008E+6 |
79 |
|
|
! |
80 |
|
|
C |
81 |
|
|
INTEGER imjmp1 |
82 |
|
|
PARAMETER( imjmp1=iim*jjp1) |
83 |
|
|
c Input variables |
84 |
|
|
CHARACTER*15 tit |
85 |
|
|
INTEGER iprt,idiag, idiag2 |
86 |
|
|
REAL dtime |
87 |
|
|
REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm) ! vents covariants |
88 |
|
|
REAL ps(ip1jmp1) ! pression au sol |
89 |
|
|
REAL p (ip1jmp1,llmp1 ) ! pression aux interfac.des couches |
90 |
|
|
REAL pk (ip1jmp1,llm ) ! = (p/Pref)**kappa |
91 |
|
|
REAL teta(ip1jmp1,llm) ! temperature potentielle |
92 |
|
|
REAL q(ip1jmp1,llm) ! champs eau vapeur |
93 |
|
|
REAL ql(ip1jmp1,llm) ! champs eau liquide |
94 |
|
|
|
95 |
|
|
|
96 |
|
|
c Output variables |
97 |
|
|
REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec |
98 |
|
|
C |
99 |
|
|
C Local variables |
100 |
|
|
c |
101 |
|
|
REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
102 |
|
|
. , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
103 |
|
|
c h_vcol_tot-- total enthalpy of vertical air column |
104 |
|
|
C (air with watter vapour, liquid and solid) (J/m2) |
105 |
|
|
c h_dair_tot-- total enthalpy of dry air (J/m2) |
106 |
|
|
c h_qw_tot---- total enthalpy of watter vapour (J/m2) |
107 |
|
|
c h_ql_tot---- total enthalpy of liquid watter (J/m2) |
108 |
|
|
c h_qs_tot---- total enthalpy of solid watter (J/m2) |
109 |
|
|
c qw_tot------ total mass of watter vapour (kg/m2) |
110 |
|
|
c ql_tot------ total mass of liquid watter (kg/m2) |
111 |
|
|
c qs_tot------ total mass of solid watter (kg/m2) |
112 |
|
|
c ec_tot------ total cinetic energy (kg/m2) |
113 |
|
|
C |
114 |
|
|
REAL masse(ip1jmp1,llm) ! masse d'air |
115 |
|
|
REAL vcont(ip1jm,llm),ucont(ip1jmp1,llm) |
116 |
|
|
REAL ecin(ip1jmp1,llm) |
117 |
|
|
|
118 |
|
|
REAL zaire(imjmp1) |
119 |
|
|
REAL zps(imjmp1) |
120 |
|
|
REAL zairm(imjmp1,llm) |
121 |
|
|
REAL zecin(imjmp1,llm) |
122 |
|
|
REAL zpaprs(imjmp1,llm) |
123 |
|
|
REAL zpk(imjmp1,llm) |
124 |
|
|
REAL zt(imjmp1,llm) |
125 |
|
|
REAL zh(imjmp1,llm) |
126 |
|
|
REAL zqw(imjmp1,llm) |
127 |
|
|
REAL zql(imjmp1,llm) |
128 |
|
|
REAL zqs(imjmp1,llm) |
129 |
|
|
|
130 |
|
|
REAL zqw_col(imjmp1) |
131 |
|
|
REAL zql_col(imjmp1) |
132 |
|
|
REAL zqs_col(imjmp1) |
133 |
|
|
REAL zec_col(imjmp1) |
134 |
|
|
REAL zh_dair_col(imjmp1) |
135 |
|
|
REAL zh_qw_col(imjmp1), zh_ql_col(imjmp1), zh_qs_col(imjmp1) |
136 |
|
|
C |
137 |
|
|
REAL d_h_dair, d_h_qw, d_h_ql, d_h_qs |
138 |
|
|
C |
139 |
|
|
REAL airetot, zcpvap, zcwat, zcice |
140 |
|
|
C |
141 |
|
|
INTEGER i, k, jj, ij , l ,ip1jjm1 |
142 |
|
|
C |
143 |
|
|
INTEGER ndiag ! max number of diagnostic in parallel |
144 |
|
|
PARAMETER (ndiag=10) |
145 |
|
|
integer pas(ndiag) |
146 |
|
|
save pas |
147 |
|
|
data pas/ndiag*0/ |
148 |
|
|
C |
149 |
|
|
REAL h_vcol_pre(ndiag), h_dair_pre(ndiag), h_qw_pre(ndiag) |
150 |
|
|
$ , h_ql_pre(ndiag), h_qs_pre(ndiag), qw_pre(ndiag) |
151 |
|
|
$ , ql_pre(ndiag), qs_pre(ndiag) , ec_pre(ndiag) |
152 |
|
|
SAVE h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre |
153 |
|
|
$ , h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre |
154 |
|
|
|
155 |
|
|
|
156 |
|
|
!#ifdef CPP_EARTH |
157 |
|
|
IF (planet_type=="earth") THEN |
158 |
|
|
|
159 |
|
|
c====================================================================== |
160 |
|
|
C Compute Kinetic enrgy |
161 |
|
|
CALL covcont ( llm , ucov , vcov , ucont, vcont ) |
162 |
|
|
CALL enercin ( vcov , ucov , vcont , ucont , ecin ) |
163 |
|
|
CALL massdair( p, masse ) |
164 |
|
|
c====================================================================== |
165 |
|
|
C |
166 |
|
|
C |
167 |
|
|
print*,'MAIS POURQUOI DONC DIAGEDYN NE MARCHE PAS ?' |
168 |
|
|
return |
169 |
|
|
C On ne garde les donnees que dans les colonnes i=1,iim |
170 |
|
|
DO jj = 1,jjp1 |
171 |
|
|
ip1jjm1=iip1*(jj-1) |
172 |
|
|
DO ij = 1,iim |
173 |
|
|
i=iim*(jj-1)+ij |
174 |
|
|
zaire(i)=aire(ij+ip1jjm1) |
175 |
|
|
zps(i)=ps(ij+ip1jjm1) |
176 |
|
|
ENDDO |
177 |
|
|
ENDDO |
178 |
|
|
C 3D arrays |
179 |
|
|
DO l = 1, llm |
180 |
|
|
DO jj = 1,jjp1 |
181 |
|
|
ip1jjm1=iip1*(jj-1) |
182 |
|
|
DO ij = 1,iim |
183 |
|
|
i=iim*(jj-1)+ij |
184 |
|
|
zairm(i,l) = masse(ij+ip1jjm1,l) |
185 |
|
|
zecin(i,l) = ecin(ij+ip1jjm1,l) |
186 |
|
|
zpaprs(i,l) = p(ij+ip1jjm1,l) |
187 |
|
|
zpk(i,l) = pk(ij+ip1jjm1,l) |
188 |
|
|
zh(i,l) = teta(ij+ip1jjm1,l) |
189 |
|
|
zqw(i,l) = q(ij+ip1jjm1,l) |
190 |
|
|
zql(i,l) = ql(ij+ip1jjm1,l) |
191 |
|
|
zqs(i,l) = 0. |
192 |
|
|
ENDDO |
193 |
|
|
ENDDO |
194 |
|
|
ENDDO |
195 |
|
|
C |
196 |
|
|
C Reset variables |
197 |
|
|
DO i = 1, imjmp1 |
198 |
|
|
zqw_col(i)=0. |
199 |
|
|
zql_col(i)=0. |
200 |
|
|
zqs_col(i)=0. |
201 |
|
|
zec_col(i) = 0. |
202 |
|
|
zh_dair_col(i) = 0. |
203 |
|
|
zh_qw_col(i) = 0. |
204 |
|
|
zh_ql_col(i) = 0. |
205 |
|
|
zh_qs_col(i) = 0. |
206 |
|
|
ENDDO |
207 |
|
|
C |
208 |
|
|
zcpvap=RCPV |
209 |
|
|
zcwat=RCW |
210 |
|
|
zcice=RCS |
211 |
|
|
C |
212 |
|
|
C Compute vertical sum for each atmospheric column |
213 |
|
|
C ================================================ |
214 |
|
|
DO k = 1, llm |
215 |
|
|
DO i = 1, imjmp1 |
216 |
|
|
C Watter mass |
217 |
|
|
zqw_col(i) = zqw_col(i) + zqw(i,k)*zairm(i,k) |
218 |
|
|
zql_col(i) = zql_col(i) + zql(i,k)*zairm(i,k) |
219 |
|
|
zqs_col(i) = zqs_col(i) + zqs(i,k)*zairm(i,k) |
220 |
|
|
C Cinetic Energy |
221 |
|
|
zec_col(i) = zec_col(i) |
222 |
|
|
$ +zecin(i,k)*zairm(i,k) |
223 |
|
|
C Air enthalpy |
224 |
|
|
zt(i,k)= zh(i,k) * zpk(i,k) / RCPD |
225 |
|
|
zh_dair_col(i) = zh_dair_col(i) |
226 |
|
|
$ + RCPD*(1.-zqw(i,k)-zql(i,k)-zqs(i,k))*zairm(i,k)*zt(i,k) |
227 |
|
|
zh_qw_col(i) = zh_qw_col(i) |
228 |
|
|
$ + zcpvap*zqw(i,k)*zairm(i,k)*zt(i,k) |
229 |
|
|
zh_ql_col(i) = zh_ql_col(i) |
230 |
|
|
$ + zcwat*zql(i,k)*zairm(i,k)*zt(i,k) |
231 |
|
|
$ - RLVTT*zql(i,k)*zairm(i,k) |
232 |
|
|
zh_qs_col(i) = zh_qs_col(i) |
233 |
|
|
$ + zcice*zqs(i,k)*zairm(i,k)*zt(i,k) |
234 |
|
|
$ - RLSTT*zqs(i,k)*zairm(i,k) |
235 |
|
|
|
236 |
|
|
END DO |
237 |
|
|
ENDDO |
238 |
|
|
C |
239 |
|
|
C Mean over the planete surface |
240 |
|
|
C ============================= |
241 |
|
|
qw_tot = 0. |
242 |
|
|
ql_tot = 0. |
243 |
|
|
qs_tot = 0. |
244 |
|
|
ec_tot = 0. |
245 |
|
|
h_vcol_tot = 0. |
246 |
|
|
h_dair_tot = 0. |
247 |
|
|
h_qw_tot = 0. |
248 |
|
|
h_ql_tot = 0. |
249 |
|
|
h_qs_tot = 0. |
250 |
|
|
airetot=0. |
251 |
|
|
C |
252 |
|
|
do i=1,imjmp1 |
253 |
|
|
qw_tot = qw_tot + zqw_col(i) |
254 |
|
|
ql_tot = ql_tot + zql_col(i) |
255 |
|
|
qs_tot = qs_tot + zqs_col(i) |
256 |
|
|
ec_tot = ec_tot + zec_col(i) |
257 |
|
|
h_dair_tot = h_dair_tot + zh_dair_col(i) |
258 |
|
|
h_qw_tot = h_qw_tot + zh_qw_col(i) |
259 |
|
|
h_ql_tot = h_ql_tot + zh_ql_col(i) |
260 |
|
|
h_qs_tot = h_qs_tot + zh_qs_col(i) |
261 |
|
|
airetot=airetot+zaire(i) |
262 |
|
|
END DO |
263 |
|
|
C |
264 |
|
|
qw_tot = qw_tot/airetot |
265 |
|
|
ql_tot = ql_tot/airetot |
266 |
|
|
qs_tot = qs_tot/airetot |
267 |
|
|
ec_tot = ec_tot/airetot |
268 |
|
|
h_dair_tot = h_dair_tot/airetot |
269 |
|
|
h_qw_tot = h_qw_tot/airetot |
270 |
|
|
h_ql_tot = h_ql_tot/airetot |
271 |
|
|
h_qs_tot = h_qs_tot/airetot |
272 |
|
|
C |
273 |
|
|
h_vcol_tot = h_dair_tot+h_qw_tot+h_ql_tot+h_qs_tot |
274 |
|
|
C |
275 |
|
|
C Compute the change of the atmospheric state compare to the one |
276 |
|
|
C stored in "idiag2", and convert it in flux. THis computation |
277 |
|
|
C is performed IF idiag2 /= 0 and IF it is not the first CALL |
278 |
|
|
c for "idiag" |
279 |
|
|
C =================================== |
280 |
|
|
C |
281 |
|
|
IF ( (idiag2.gt.0) .and. (pas(idiag2) .ne. 0) ) THEN |
282 |
|
|
d_h_vcol = (h_vcol_tot - h_vcol_pre(idiag2) )/dtime |
283 |
|
|
d_h_dair = (h_dair_tot- h_dair_pre(idiag2))/dtime |
284 |
|
|
d_h_qw = (h_qw_tot - h_qw_pre(idiag2) )/dtime |
285 |
|
|
d_h_ql = (h_ql_tot - h_ql_pre(idiag2) )/dtime |
286 |
|
|
d_h_qs = (h_qs_tot - h_qs_pre(idiag2) )/dtime |
287 |
|
|
d_qw = (qw_tot - qw_pre(idiag2) )/dtime |
288 |
|
|
d_ql = (ql_tot - ql_pre(idiag2) )/dtime |
289 |
|
|
d_qs = (qs_tot - qs_pre(idiag2) )/dtime |
290 |
|
|
d_ec = (ec_tot - ec_pre(idiag2) )/dtime |
291 |
|
|
d_qt = d_qw + d_ql + d_qs |
292 |
|
|
ELSE |
293 |
|
|
d_h_vcol = 0. |
294 |
|
|
d_h_dair = 0. |
295 |
|
|
d_h_qw = 0. |
296 |
|
|
d_h_ql = 0. |
297 |
|
|
d_h_qs = 0. |
298 |
|
|
d_qw = 0. |
299 |
|
|
d_ql = 0. |
300 |
|
|
d_qs = 0. |
301 |
|
|
d_ec = 0. |
302 |
|
|
d_qt = 0. |
303 |
|
|
ENDIF |
304 |
|
|
C |
305 |
|
|
IF (iprt.ge.2) THEN |
306 |
|
|
WRITE(6,9000) tit,pas(idiag),d_qt,d_qw,d_ql,d_qs |
307 |
|
|
9000 format('Dyn3d. Watter Mass Budget (kg/m2/s)',A15 |
308 |
|
|
$ ,1i6,10(1pE14.6)) |
309 |
|
|
WRITE(6,9001) tit,pas(idiag), d_h_vcol |
310 |
|
|
9001 format('Dyn3d. Enthalpy Budget (W/m2) ',A15,1i6,10(F8.2)) |
311 |
|
|
WRITE(6,9002) tit,pas(idiag), d_ec |
312 |
|
|
9002 format('Dyn3d. Cinetic Energy Budget (W/m2) ',A15,1i6,10(F8.2)) |
313 |
|
|
C WRITE(6,9003) tit,pas(idiag), ec_tot |
314 |
|
|
9003 format('Dyn3d. Cinetic Energy (W/m2) ',A15,1i6,10(E15.6)) |
315 |
|
|
WRITE(6,9004) tit,pas(idiag), d_h_vcol+d_ec |
316 |
|
|
9004 format('Dyn3d. Total Energy Budget (W/m2) ',A15,1i6,10(F8.2)) |
317 |
|
|
END IF |
318 |
|
|
C |
319 |
|
|
C Store the new atmospheric state in "idiag" |
320 |
|
|
C |
321 |
|
|
pas(idiag)=pas(idiag)+1 |
322 |
|
|
h_vcol_pre(idiag) = h_vcol_tot |
323 |
|
|
h_dair_pre(idiag) = h_dair_tot |
324 |
|
|
h_qw_pre(idiag) = h_qw_tot |
325 |
|
|
h_ql_pre(idiag) = h_ql_tot |
326 |
|
|
h_qs_pre(idiag) = h_qs_tot |
327 |
|
|
qw_pre(idiag) = qw_tot |
328 |
|
|
ql_pre(idiag) = ql_tot |
329 |
|
|
qs_pre(idiag) = qs_tot |
330 |
|
|
ec_pre (idiag) = ec_tot |
331 |
|
|
C |
332 |
|
|
!#else |
333 |
|
|
ELSE |
334 |
|
|
write(lunout,*)'diagedyn: set to function with Earth parameters' |
335 |
|
|
ENDIF ! of if (planet_type=="earth") |
336 |
|
|
!#endif |
337 |
|
|
! #endif of #ifdef CPP_EARTH |
338 |
|
|
RETURN |
339 |
|
|
END |