1 |
|
|
! |
2 |
|
|
! $Header$ |
3 |
|
|
! |
4 |
|
|
SUBROUTINE diverg_gam(klevel,cuvscvgam,cvuscugam,unsairegam , |
5 |
|
|
* unsapolnga,unsapolsga, x, y, div ) |
6 |
|
|
c |
7 |
|
|
c P. Le Van |
8 |
|
|
c |
9 |
|
|
c ********************************************************************* |
10 |
|
|
c ... calcule la divergence a tous les niveaux d'1 vecteur de compos. |
11 |
|
|
c x et y... |
12 |
|
|
c x et y etant des composantes covariantes ... |
13 |
|
|
c ********************************************************************* |
14 |
|
|
IMPLICIT NONE |
15 |
|
|
c |
16 |
|
|
c x et y sont des arguments d'entree pour le s-prog |
17 |
|
|
c div est un argument de sortie pour le s-prog |
18 |
|
|
c |
19 |
|
|
c |
20 |
|
|
c --------------------------------------------------------------------- |
21 |
|
|
c |
22 |
|
|
c ATTENTION : pendant ce s-pg , ne pas toucher au COMMON/scratch/ . |
23 |
|
|
c |
24 |
|
|
c --------------------------------------------------------------------- |
25 |
|
|
INCLUDE "dimensions.h" |
26 |
|
|
INCLUDE "paramet.h" |
27 |
|
|
INCLUDE "comgeom.h" |
28 |
|
|
c |
29 |
|
|
c .......... variables en arguments ................... |
30 |
|
|
c |
31 |
|
|
INTEGER klevel |
32 |
|
|
REAL x( ip1jmp1,klevel ),y( ip1jm,klevel ),div( ip1jmp1,klevel ) |
33 |
|
|
REAL cuvscvgam(ip1jm),cvuscugam(ip1jmp1),unsairegam(ip1jmp1) |
34 |
|
|
REAL unsapolnga,unsapolsga |
35 |
|
|
c |
36 |
|
|
c ............... variables locales ......................... |
37 |
|
|
|
38 |
|
|
REAL aiy1( iip1 ) , aiy2( iip1 ) |
39 |
|
|
REAL sumypn,sumyps |
40 |
|
|
INTEGER l,ij |
41 |
|
|
c ................................................................... |
42 |
|
|
c |
43 |
|
|
REAL SSUM |
44 |
|
|
c |
45 |
|
|
c |
46 |
|
|
DO 10 l = 1,klevel |
47 |
|
|
c |
48 |
|
|
DO ij = iip2, ip1jm - 1 |
49 |
|
|
div( ij + 1, l ) = ( |
50 |
|
|
* cvuscugam( ij+1 ) * x( ij+1,l ) - cvuscugam( ij ) * x( ij , l) + |
51 |
|
|
* cuvscvgam(ij-iim) * y(ij-iim,l) - cuvscvgam(ij+1) * y(ij+1,l) )* |
52 |
|
|
* unsairegam( ij+1 ) |
53 |
|
|
ENDDO |
54 |
|
|
c |
55 |
|
|
c .... correction pour div( 1,j,l) ...... |
56 |
|
|
c .... div(1,j,l)= div(iip1,j,l) .... |
57 |
|
|
c |
58 |
|
|
CDIR$ IVDEP |
59 |
|
|
DO ij = iip2,ip1jm,iip1 |
60 |
|
|
div( ij,l ) = div( ij + iim,l ) |
61 |
|
|
ENDDO |
62 |
|
|
c |
63 |
|
|
c .... calcul aux poles ..... |
64 |
|
|
c |
65 |
|
|
DO ij = 1,iim |
66 |
|
|
aiy1(ij) = cuvscvgam( ij ) * y( ij , l ) |
67 |
|
|
aiy2(ij) = cuvscvgam( ij+ ip1jmi1 ) * y( ij+ ip1jmi1, l ) |
68 |
|
|
ENDDO |
69 |
|
|
sumypn = SSUM ( iim,aiy1,1 ) * unsapolnga |
70 |
|
|
sumyps = SSUM ( iim,aiy2,1 ) * unsapolsga |
71 |
|
|
c |
72 |
|
|
DO ij = 1,iip1 |
73 |
|
|
div( ij , l ) = - sumypn |
74 |
|
|
div( ij + ip1jm, l ) = sumyps |
75 |
|
|
ENDDO |
76 |
|
|
10 CONTINUE |
77 |
|
|
c |
78 |
|
|
|
79 |
|
|
RETURN |
80 |
|
|
END |