1 |
|
|
! |
2 |
|
|
! $Id: inigeom.F 2603 2016-07-25 09:31:56Z emillour $ |
3 |
|
|
! |
4 |
|
|
c |
5 |
|
|
c |
6 |
|
5 |
SUBROUTINE inigeom |
7 |
|
|
c |
8 |
|
|
c Auteur : P. Le Van |
9 |
|
|
c |
10 |
|
|
c ............ Version du 01/04/2001 ........................ |
11 |
|
|
c |
12 |
|
|
c Calcul des elongations cuij1,.cuij4 , cvij1,..cvij4 aux memes en- |
13 |
|
|
c endroits que les aires aireij1,..aireij4 . |
14 |
|
|
|
15 |
|
|
c Choix entre f(y) a derivee sinusoid. ou a derivee tangente hyperbol. |
16 |
|
|
c |
17 |
|
|
c |
18 |
|
|
use fxhyp_m, only: fxhyp |
19 |
|
|
use fyhyp_m, only: fyhyp |
20 |
|
|
USE comconst_mod, ONLY: pi, g, omeg, rad |
21 |
|
|
USE logic_mod, ONLY: fxyhypb, ysinus |
22 |
|
|
USE serre_mod, ONLY: clon,clat,grossismx,grossismy,dzoomx,dzoomy, |
23 |
|
|
& alphax,alphay,taux,tauy,transx,transy,pxo,pyo |
24 |
|
|
IMPLICIT NONE |
25 |
|
|
c |
26 |
|
|
include "dimensions.h" |
27 |
|
|
include "paramet.h" |
28 |
|
|
include "comgeom2.h" |
29 |
|
|
include "comdissnew.h" |
30 |
|
|
|
31 |
|
|
c----------------------------------------------------------------------- |
32 |
|
|
c .... Variables locales .... |
33 |
|
|
c |
34 |
|
|
INTEGER i,j,itmax,itmay,iter |
35 |
|
|
REAL cvu(iip1,jjp1),cuv(iip1,jjm) |
36 |
|
|
REAL ai14,ai23,airez,rlatp,rlatm,xprm,xprp,un4rad2,yprp,yprm |
37 |
|
|
REAL eps,x1,xo1,f,df,xdm,y1,yo1,ydm |
38 |
|
|
REAL coslatm,coslatp,radclatm,radclatp |
39 |
|
|
REAL cuij1(iip1,jjp1),cuij2(iip1,jjp1),cuij3(iip1,jjp1), |
40 |
|
|
* cuij4(iip1,jjp1) |
41 |
|
|
REAL cvij1(iip1,jjp1),cvij2(iip1,jjp1),cvij3(iip1,jjp1), |
42 |
|
|
* cvij4(iip1,jjp1) |
43 |
|
|
REAL rlonvv(iip1),rlatuu(jjp1) |
44 |
|
|
REAL rlatu1(jjm),yprimu1(jjm),rlatu2(jjm),yprimu2(jjm) , |
45 |
|
|
* yprimv(jjm),yprimu(jjp1) |
46 |
|
|
REAL gamdi_gdiv, gamdi_grot, gamdi_h |
47 |
|
|
|
48 |
|
|
REAL rlonm025(iip1),xprimm025(iip1), rlonp025(iip1), |
49 |
|
|
, xprimp025(iip1) |
50 |
|
|
SAVE rlatu1,yprimu1,rlatu2,yprimu2,yprimv,yprimu |
51 |
|
|
SAVE rlonm025,xprimm025,rlonp025,xprimp025 |
52 |
|
|
|
53 |
|
|
REAL SSUM |
54 |
|
|
c |
55 |
|
|
c |
56 |
|
|
c ------------------------------------------------------------------ |
57 |
|
|
c - - |
58 |
|
|
c - calcul des coeff. ( cu, cv , 1./cu**2, 1./cv**2 ) - |
59 |
|
|
c - - |
60 |
|
|
c ------------------------------------------------------------------ |
61 |
|
|
c |
62 |
|
|
c les coef. ( cu, cv ) permettent de passer des vitesses naturelles |
63 |
|
|
c aux vitesses covariantes et contravariantes , ou vice-versa ... |
64 |
|
|
c |
65 |
|
|
c |
66 |
|
|
c on a : u (covariant) = cu * u (naturel) , u(contrav)= u(nat)/cu |
67 |
|
|
c v (covariant) = cv * v (naturel) , v(contrav)= v(nat)/cv |
68 |
|
|
c |
69 |
|
|
c on en tire : u(covariant) = cu * cu * u(contravariant) |
70 |
|
|
c v(covariant) = cv * cv * v(contravariant) |
71 |
|
|
c |
72 |
|
|
c |
73 |
|
|
c on a l'application ( x(X) , y(Y) ) avec - im/2 +1 < X < im/2 |
74 |
|
|
c = = |
75 |
|
|
c et - jm/2 < Y < jm/2 |
76 |
|
|
c = = |
77 |
|
|
c |
78 |
|
|
c ................................................... |
79 |
|
|
c ................................................... |
80 |
|
|
c . x est la longitude du point en radians . |
81 |
|
|
c . y est la latitude du point en radians . |
82 |
|
|
c . . |
83 |
|
|
c . on a : cu(i,j) = rad * COS(y) * dx/dX . |
84 |
|
|
c . cv( j ) = rad * dy/dY . |
85 |
|
|
c . aire(i,j) = cu(i,j) * cv(j) . |
86 |
|
|
c . . |
87 |
|
|
c . y, dx/dX, dy/dY calcules aux points concernes . |
88 |
|
|
c . . |
89 |
|
|
c ................................................... |
90 |
|
|
c ................................................... |
91 |
|
|
c |
92 |
|
|
c |
93 |
|
|
c |
94 |
|
|
c , |
95 |
|
|
c cv , bien que dependant de j uniquement,sera ici indice aussi en i |
96 |
|
|
c pour un adressage plus facile en ij . |
97 |
|
|
c |
98 |
|
|
c |
99 |
|
|
c |
100 |
|
|
c ************** aux points u et v , ***************** |
101 |
|
|
c xprimu et xprimv sont respectivement les valeurs de dx/dX |
102 |
|
|
c yprimu et yprimv . . . . . . . . . . . dy/dY |
103 |
|
|
c rlatu et rlatv . . . . . . . . . . .la latitude |
104 |
|
|
c cvu et cv . . . . . . . . . . . cv |
105 |
|
|
c |
106 |
|
|
c ************** aux points u, v, scalaires, et z **************** |
107 |
|
|
c cu, cuv, cuscal, cuz sont respectiv. les valeurs de cu |
108 |
|
|
c |
109 |
|
|
c |
110 |
|
|
c |
111 |
|
|
c Exemple de distribution de variables sur la grille dans le |
112 |
|
|
c domaine de travail ( X,Y ) . |
113 |
|
|
c ................................................................ |
114 |
|
|
c DX=DY= 1 |
115 |
|
|
c |
116 |
|
|
c |
117 |
|
|
c + represente un point scalaire ( p.exp la pression ) |
118 |
|
|
c > represente la composante zonale du vent |
119 |
|
|
c V represente la composante meridienne du vent |
120 |
|
|
c o represente la vorticite |
121 |
|
|
c |
122 |
|
|
c ---- , car aux poles , les comp.zonales covariantes sont nulles |
123 |
|
|
c |
124 |
|
|
c |
125 |
|
|
c |
126 |
|
|
c i -> |
127 |
|
|
c |
128 |
|
|
c 1 2 3 4 5 6 7 8 |
129 |
|
|
c j |
130 |
|
|
c v 1 + ---- + ---- + ---- + ---- + ---- + ---- + ---- + -- |
131 |
|
|
c |
132 |
|
|
c V o V o V o V o V o V o V o V o |
133 |
|
|
c |
134 |
|
|
c 2 + > + > + > + > + > + > + > + > |
135 |
|
|
c |
136 |
|
|
c V o V o V o V o V o V o V o V o |
137 |
|
|
c |
138 |
|
|
c 3 + > + > + > + > + > + > + > + > |
139 |
|
|
c |
140 |
|
|
c V o V o V o V o V o V o V o V o |
141 |
|
|
c |
142 |
|
|
c 4 + > + > + > + > + > + > + > + > |
143 |
|
|
c |
144 |
|
|
c V o V o V o V o V o V o V o V o |
145 |
|
|
c |
146 |
|
|
c 5 + ---- + ---- + ---- + ---- + ---- + ---- + ---- + -- |
147 |
|
|
c |
148 |
|
|
c |
149 |
|
|
c Ci-dessus, on voit que le nombre de pts.en longitude est egal |
150 |
|
|
c a IM = 8 |
151 |
|
|
c De meme , le nombre d'intervalles entre les 2 poles est egal |
152 |
|
|
c a JM = 4 |
153 |
|
|
c |
154 |
|
|
c Les points scalaires ( + ) correspondent donc a des valeurs |
155 |
|
|
c entieres de i ( 1 a IM ) et de j ( 1 a JM +1 ) . |
156 |
|
|
c |
157 |
|
|
c Les vents U ( > ) correspondent a des valeurs semi- |
158 |
|
|
c entieres de i ( 1+ 0.5 a IM+ 0.5) et entieres de j ( 1 a JM+1) |
159 |
|
|
c |
160 |
|
|
c Les vents V ( V ) correspondent a des valeurs entieres |
161 |
|
|
c de i ( 1 a IM ) et semi-entieres de j ( 1 +0.5 a JM +0.5) |
162 |
|
|
c |
163 |
|
|
c |
164 |
|
|
c |
165 |
|
1 |
WRITE(6,3) |
166 |
|
|
3 FORMAT( // 10x,' .... INIGEOM date du 01/06/98 ..... ', |
167 |
|
|
* //5x,' Calcul des elongations cu et cv comme sommes des 4 ' / |
168 |
|
|
* 5x,' elong. cuij1, .. 4 , cvij1,.. 4 qui les entourent , aux |
169 |
|
|
* '/ 5x,' memes endroits que les aires aireij1,...j4 . ' / ) |
170 |
|
|
c |
171 |
|
|
c |
172 |
✓✗ |
1 |
IF( nitergdiv.NE.2 ) THEN |
173 |
|
1 |
gamdi_gdiv = coefdis/ ( REAL(nitergdiv) -2. ) |
174 |
|
|
ELSE |
175 |
|
|
gamdi_gdiv = 0. |
176 |
|
|
ENDIF |
177 |
✗✓ |
1 |
IF( nitergrot.NE.2 ) THEN |
178 |
|
|
gamdi_grot = coefdis/ ( REAL(nitergrot) -2. ) |
179 |
|
|
ELSE |
180 |
|
1 |
gamdi_grot = 0. |
181 |
|
|
ENDIF |
182 |
✗✓ |
1 |
IF( niterh.NE.2 ) THEN |
183 |
|
|
gamdi_h = coefdis/ ( REAL(niterh) -2. ) |
184 |
|
|
ELSE |
185 |
|
1 |
gamdi_h = 0. |
186 |
|
|
ENDIF |
187 |
|
|
|
188 |
|
1 |
WRITE(6,*) ' gamdi_gd ',gamdi_gdiv,gamdi_grot,gamdi_h,coefdis, |
189 |
|
2 |
* nitergdiv,nitergrot,niterh |
190 |
|
|
c |
191 |
|
1 |
pi = 2.* ASIN(1.) |
192 |
|
|
c |
193 |
|
1 |
WRITE(6,990) |
194 |
|
|
|
195 |
|
|
c ---------------------------------------------------------------- |
196 |
|
|
c |
197 |
✗✓ |
1 |
IF( .NOT.fxyhypb ) THEN |
198 |
|
|
c |
199 |
|
|
c |
200 |
|
|
IF( ysinus ) THEN |
201 |
|
|
c |
202 |
|
|
WRITE(6,*) ' *** Inigeom , Y = Sinus ( Latitude ) *** ' |
203 |
|
|
c |
204 |
|
|
c .... utilisation de f(x,y ) avec y = sinus de la latitude ..... |
205 |
|
|
|
206 |
|
|
CALL fxysinus (rlatu,yprimu,rlatv,yprimv,rlatu1,yprimu1, |
207 |
|
|
, rlatu2,yprimu2, |
208 |
|
|
, rlonu,xprimu,rlonv,xprimv,rlonm025,xprimm025,rlonp025,xprimp025) |
209 |
|
|
|
210 |
|
|
ELSE |
211 |
|
|
c |
212 |
|
|
WRITE(6,*) '*** Inigeom , Y = Latitude , der. sinusoid . ***' |
213 |
|
|
|
214 |
|
|
c .... utilisation de f(x,y) a tangente sinusoidale , y etant la latit. ... |
215 |
|
|
c |
216 |
|
|
|
217 |
|
|
pxo = clon *pi /180. |
218 |
|
|
pyo = 2.* clat* pi /180. |
219 |
|
|
c |
220 |
|
|
c .... determination de transx ( pour le zoom ) par Newton-Raphson ... |
221 |
|
|
c |
222 |
|
|
itmax = 10 |
223 |
|
|
eps = .1e-7 |
224 |
|
|
c |
225 |
|
|
xo1 = 0. |
226 |
|
|
DO 10 iter = 1, itmax |
227 |
|
|
x1 = xo1 |
228 |
|
|
f = x1+ alphax *SIN(x1-pxo) |
229 |
|
|
df = 1.+ alphax *COS(x1-pxo) |
230 |
|
|
x1 = x1 - f/df |
231 |
|
|
xdm = ABS( x1- xo1 ) |
232 |
|
|
IF( xdm.LE.eps )GO TO 11 |
233 |
|
|
xo1 = x1 |
234 |
|
|
10 CONTINUE |
235 |
|
|
11 CONTINUE |
236 |
|
|
c |
237 |
|
|
transx = xo1 |
238 |
|
|
|
239 |
|
|
itmay = 10 |
240 |
|
|
eps = .1e-7 |
241 |
|
|
C |
242 |
|
|
yo1 = 0. |
243 |
|
|
DO 15 iter = 1,itmay |
244 |
|
|
y1 = yo1 |
245 |
|
|
f = y1 + alphay* SIN(y1-pyo) |
246 |
|
|
df = 1. + alphay* COS(y1-pyo) |
247 |
|
|
y1 = y1 -f/df |
248 |
|
|
ydm = ABS(y1-yo1) |
249 |
|
|
IF(ydm.LE.eps) GO TO 17 |
250 |
|
|
yo1 = y1 |
251 |
|
|
15 CONTINUE |
252 |
|
|
c |
253 |
|
|
17 CONTINUE |
254 |
|
|
transy = yo1 |
255 |
|
|
|
256 |
|
|
CALL fxy ( rlatu,yprimu,rlatv,yprimv,rlatu1,yprimu1, |
257 |
|
|
, rlatu2,yprimu2, |
258 |
|
|
, rlonu,xprimu,rlonv,xprimv,rlonm025,xprimm025,rlonp025,xprimp025) |
259 |
|
|
|
260 |
|
|
ENDIF |
261 |
|
|
c |
262 |
|
|
ELSE |
263 |
|
|
c |
264 |
|
|
c .... Utilisation de fxyhyper , f(x,y) a derivee tangente hyperbol. |
265 |
|
|
c ..................................................................... |
266 |
|
|
|
267 |
|
1 |
WRITE(6,*)'*** Inigeom , Y = Latitude , der.tg. hyperbolique ***' |
268 |
|
|
|
269 |
|
1 |
CALL fyhyp(rlatu, yprimu, rlatv, rlatu2, yprimu2, rlatu1, yprimu1) |
270 |
|
1 |
CALL fxhyp(xprimm025, rlonv, xprimv, rlonu, xprimu, xprimp025) |
271 |
|
|
|
272 |
|
|
ENDIF |
273 |
|
|
c |
274 |
|
|
c ------------------------------------------------------------------- |
275 |
|
|
|
276 |
|
|
c |
277 |
|
1 |
rlatu(1) = ASIN(1.) |
278 |
|
1 |
rlatu(jjp1) = - rlatu(1) |
279 |
|
|
c |
280 |
|
|
c |
281 |
|
|
c .... calcul aux poles .... |
282 |
|
|
c |
283 |
|
1 |
yprimu(1) = 0. |
284 |
|
1 |
yprimu(jjp1) = 0. |
285 |
|
|
c |
286 |
|
|
c |
287 |
|
1 |
un4rad2 = 0.25 * rad * rad |
288 |
|
|
c |
289 |
|
|
c -------------------------------------------------------------------- |
290 |
|
|
c -------------------------------------------------------------------- |
291 |
|
|
c - - |
292 |
|
|
c - calcul des aires ( aire,aireu,airev, 1./aire, 1./airez ) - |
293 |
|
|
c - et de fext , force de coriolis extensive . - |
294 |
|
|
c - - |
295 |
|
|
c -------------------------------------------------------------------- |
296 |
|
|
c -------------------------------------------------------------------- |
297 |
|
|
c |
298 |
|
|
c |
299 |
|
|
c |
300 |
|
|
c A 1 point scalaire P (i,j) de la grille, reguliere en (X,Y) , sont |
301 |
|
|
c affectees 4 aires entourant P , calculees respectivement aux points |
302 |
|
|
c ( i + 1/4, j - 1/4 ) : aireij1 (i,j) |
303 |
|
|
c ( i + 1/4, j + 1/4 ) : aireij2 (i,j) |
304 |
|
|
c ( i - 1/4, j + 1/4 ) : aireij3 (i,j) |
305 |
|
|
c ( i - 1/4, j - 1/4 ) : aireij4 (i,j) |
306 |
|
|
c |
307 |
|
|
c , |
308 |
|
|
c Les cotes de chacun de ces 4 carres etant egaux a 1/2 suivant (X,Y). |
309 |
|
|
c Chaque aire centree en 1 point scalaire P(i,j) est egale a la somme |
310 |
|
|
c des 4 aires aireij1,aireij2,aireij3,aireij4 qui sont affectees au |
311 |
|
|
c point (i,j) . |
312 |
|
|
c On definit en outre les coefficients alpha comme etant egaux a |
313 |
|
|
c (aireij / aire), c.a.d par exp. alpha1(i,j)=aireij1(i,j)/aire(i,j) |
314 |
|
|
c |
315 |
|
|
c De meme, toute aire centree en 1 point U est egale a la somme des |
316 |
|
|
c 4 aires aireij1,aireij2,aireij3,aireij4 entourant le point U . |
317 |
|
|
c Idem pour airev, airez . |
318 |
|
|
c |
319 |
|
|
c On a ,pour chaque maille : dX = dY = 1 |
320 |
|
|
c |
321 |
|
|
c |
322 |
|
|
c . V |
323 |
|
|
c |
324 |
|
|
c aireij4 . . aireij1 |
325 |
|
|
c |
326 |
|
|
c U . . P . U |
327 |
|
|
c |
328 |
|
|
c aireij3 . . aireij2 |
329 |
|
|
c |
330 |
|
|
c . V |
331 |
|
|
c |
332 |
|
|
c |
333 |
|
|
c |
334 |
|
|
c |
335 |
|
|
c |
336 |
|
|
c .................................................................... |
337 |
|
|
c |
338 |
|
|
c Calcul des 4 aires elementaires aireij1,aireij2,aireij3,aireij4 |
339 |
|
|
c qui entourent chaque aire(i,j) , ainsi que les 4 elongations elemen |
340 |
|
|
c taires cuij et les 4 elongat. cvij qui sont calculees aux memes |
341 |
|
|
c endroits que les aireij . |
342 |
|
|
c |
343 |
|
|
c .................................................................... |
344 |
|
|
c |
345 |
|
|
c ....... do 35 : boucle sur les jjm + 1 latitudes ..... |
346 |
|
|
c |
347 |
|
|
c |
348 |
✓✓ |
34 |
DO 35 j = 1, jjp1 |
349 |
|
|
c |
350 |
✓✓ |
33 |
IF ( j. eq. 1 ) THEN |
351 |
|
|
c |
352 |
|
1 |
yprm = yprimu1(j) |
353 |
|
1 |
rlatm = rlatu1(j) |
354 |
|
|
c |
355 |
|
1 |
coslatm = COS( rlatm ) |
356 |
|
1 |
radclatm = 0.5* rad * coslatm |
357 |
|
|
c |
358 |
✓✓ |
33 |
DO 30 i = 1, iim |
359 |
|
32 |
xprp = xprimp025( i ) |
360 |
|
32 |
xprm = xprimm025( i ) |
361 |
|
32 |
aireij2( i,1 ) = un4rad2 * coslatm * xprp * yprm |
362 |
|
32 |
aireij3( i,1 ) = un4rad2 * coslatm * xprm * yprm |
363 |
|
32 |
cuij2 ( i,1 ) = radclatm * xprp |
364 |
|
32 |
cuij3 ( i,1 ) = radclatm * xprm |
365 |
|
32 |
cvij2 ( i,1 ) = 0.5* rad * yprm |
366 |
|
32 |
cvij3 ( i,1 ) = cvij2(i,1) |
367 |
|
1 |
30 CONTINUE |
368 |
|
|
c |
369 |
✓✓ |
33 |
DO i = 1, iim |
370 |
|
32 |
aireij1( i,1 ) = 0. |
371 |
|
32 |
aireij4( i,1 ) = 0. |
372 |
|
32 |
cuij1 ( i,1 ) = 0. |
373 |
|
32 |
cuij4 ( i,1 ) = 0. |
374 |
|
32 |
cvij1 ( i,1 ) = 0. |
375 |
|
33 |
cvij4 ( i,1 ) = 0. |
376 |
|
|
ENDDO |
377 |
|
|
c |
378 |
|
|
END IF |
379 |
|
|
c |
380 |
✓✓ |
33 |
IF ( j. eq. jjp1 ) THEN |
381 |
|
1 |
yprp = yprimu2(j-1) |
382 |
|
1 |
rlatp = rlatu2 (j-1) |
383 |
|
|
ccc yprp = fyprim( REAL(j) - 0.25 ) |
384 |
|
|
ccc rlatp = fy ( REAL(j) - 0.25 ) |
385 |
|
|
c |
386 |
|
1 |
coslatp = COS( rlatp ) |
387 |
|
1 |
radclatp = 0.5* rad * coslatp |
388 |
|
|
c |
389 |
✓✓ |
33 |
DO 31 i = 1,iim |
390 |
|
32 |
xprp = xprimp025( i ) |
391 |
|
32 |
xprm = xprimm025( i ) |
392 |
|
32 |
aireij1( i,jjp1 ) = un4rad2 * coslatp * xprp * yprp |
393 |
|
32 |
aireij4( i,jjp1 ) = un4rad2 * coslatp * xprm * yprp |
394 |
|
32 |
cuij1(i,jjp1) = radclatp * xprp |
395 |
|
32 |
cuij4(i,jjp1) = radclatp * xprm |
396 |
|
32 |
cvij1(i,jjp1) = 0.5 * rad* yprp |
397 |
|
32 |
cvij4(i,jjp1) = cvij1(i,jjp1) |
398 |
|
1 |
31 CONTINUE |
399 |
|
|
c |
400 |
✓✓ |
33 |
DO i = 1, iim |
401 |
|
32 |
aireij2( i,jjp1 ) = 0. |
402 |
|
32 |
aireij3( i,jjp1 ) = 0. |
403 |
|
32 |
cvij2 ( i,jjp1 ) = 0. |
404 |
|
32 |
cvij3 ( i,jjp1 ) = 0. |
405 |
|
32 |
cuij2 ( i,jjp1 ) = 0. |
406 |
|
33 |
cuij3 ( i,jjp1 ) = 0. |
407 |
|
|
ENDDO |
408 |
|
|
c |
409 |
|
|
END IF |
410 |
|
|
c |
411 |
|
|
|
412 |
✓✓ |
33 |
IF ( j .gt. 1 .AND. j .lt. jjp1 ) THEN |
413 |
|
|
c |
414 |
|
31 |
rlatp = rlatu2 ( j-1 ) |
415 |
|
31 |
yprp = yprimu2( j-1 ) |
416 |
|
31 |
rlatm = rlatu1 ( j ) |
417 |
|
31 |
yprm = yprimu1( j ) |
418 |
|
|
cc rlatp = fy ( REAL(j) - 0.25 ) |
419 |
|
|
cc yprp = fyprim( REAL(j) - 0.25 ) |
420 |
|
|
cc rlatm = fy ( REAL(j) + 0.25 ) |
421 |
|
|
cc yprm = fyprim( REAL(j) + 0.25 ) |
422 |
|
|
|
423 |
|
31 |
coslatm = COS( rlatm ) |
424 |
|
31 |
coslatp = COS( rlatp ) |
425 |
|
31 |
radclatp = 0.5* rad * coslatp |
426 |
|
31 |
radclatm = 0.5* rad * coslatm |
427 |
|
|
c |
428 |
|
31 |
ai14 = un4rad2 * coslatp * yprp |
429 |
|
31 |
ai23 = un4rad2 * coslatm * yprm |
430 |
✓✓ |
1023 |
DO 32 i = 1,iim |
431 |
|
992 |
xprp = xprimp025( i ) |
432 |
|
992 |
xprm = xprimm025( i ) |
433 |
|
|
|
434 |
|
992 |
aireij1 ( i,j ) = ai14 * xprp |
435 |
|
992 |
aireij2 ( i,j ) = ai23 * xprp |
436 |
|
992 |
aireij3 ( i,j ) = ai23 * xprm |
437 |
|
992 |
aireij4 ( i,j ) = ai14 * xprm |
438 |
|
992 |
cuij1 ( i,j ) = radclatp * xprp |
439 |
|
992 |
cuij2 ( i,j ) = radclatm * xprp |
440 |
|
992 |
cuij3 ( i,j ) = radclatm * xprm |
441 |
|
992 |
cuij4 ( i,j ) = radclatp * xprm |
442 |
|
992 |
cvij1 ( i,j ) = 0.5* rad * yprp |
443 |
|
992 |
cvij2 ( i,j ) = 0.5* rad * yprm |
444 |
|
992 |
cvij3 ( i,j ) = cvij2(i,j) |
445 |
|
992 |
cvij4 ( i,j ) = cvij1(i,j) |
446 |
|
31 |
32 CONTINUE |
447 |
|
|
c |
448 |
|
|
END IF |
449 |
|
|
c |
450 |
|
|
c ........ periodicite ............ |
451 |
|
|
c |
452 |
|
33 |
cvij1 (iip1,j) = cvij1 (1,j) |
453 |
|
33 |
cvij2 (iip1,j) = cvij2 (1,j) |
454 |
|
33 |
cvij3 (iip1,j) = cvij3 (1,j) |
455 |
|
33 |
cvij4 (iip1,j) = cvij4 (1,j) |
456 |
|
33 |
cuij1 (iip1,j) = cuij1 (1,j) |
457 |
|
33 |
cuij2 (iip1,j) = cuij2 (1,j) |
458 |
|
33 |
cuij3 (iip1,j) = cuij3 (1,j) |
459 |
|
33 |
cuij4 (iip1,j) = cuij4 (1,j) |
460 |
|
33 |
aireij1 (iip1,j) = aireij1 (1,j ) |
461 |
|
33 |
aireij2 (iip1,j) = aireij2 (1,j ) |
462 |
|
33 |
aireij3 (iip1,j) = aireij3 (1,j ) |
463 |
|
33 |
aireij4 (iip1,j) = aireij4 (1,j ) |
464 |
|
|
|
465 |
|
1 |
35 CONTINUE |
466 |
|
|
c |
467 |
|
|
c .............................................................. |
468 |
|
|
c |
469 |
✓✓ |
34 |
DO 37 j = 1, jjp1 |
470 |
✓✓ |
1089 |
DO 36 i = 1, iim |
471 |
|
|
aire ( i,j ) = aireij1(i,j) + aireij2(i,j) + aireij3(i,j) + |
472 |
|
1056 |
* aireij4(i,j) |
473 |
|
1056 |
alpha1 ( i,j ) = aireij1(i,j) / aire(i,j) |
474 |
|
1056 |
alpha2 ( i,j ) = aireij2(i,j) / aire(i,j) |
475 |
|
1056 |
alpha3 ( i,j ) = aireij3(i,j) / aire(i,j) |
476 |
|
1056 |
alpha4 ( i,j ) = aireij4(i,j) / aire(i,j) |
477 |
|
1056 |
alpha1p2( i,j ) = alpha1 (i,j) + alpha2 (i,j) |
478 |
|
1056 |
alpha1p4( i,j ) = alpha1 (i,j) + alpha4 (i,j) |
479 |
|
1056 |
alpha2p3( i,j ) = alpha2 (i,j) + alpha3 (i,j) |
480 |
|
1056 |
alpha3p4( i,j ) = alpha3 (i,j) + alpha4 (i,j) |
481 |
|
33 |
36 CONTINUE |
482 |
|
|
c |
483 |
|
|
c |
484 |
|
33 |
aire (iip1,j) = aire (1,j) |
485 |
|
33 |
alpha1 (iip1,j) = alpha1 (1,j) |
486 |
|
33 |
alpha2 (iip1,j) = alpha2 (1,j) |
487 |
|
33 |
alpha3 (iip1,j) = alpha3 (1,j) |
488 |
|
33 |
alpha4 (iip1,j) = alpha4 (1,j) |
489 |
|
33 |
alpha1p2(iip1,j) = alpha1p2(1,j) |
490 |
|
33 |
alpha1p4(iip1,j) = alpha1p4(1,j) |
491 |
|
33 |
alpha2p3(iip1,j) = alpha2p3(1,j) |
492 |
|
33 |
alpha3p4(iip1,j) = alpha3p4(1,j) |
493 |
|
1 |
37 CONTINUE |
494 |
|
|
c |
495 |
|
|
|
496 |
✓✓ |
34 |
DO 42 j = 1,jjp1 |
497 |
✓✓ |
1089 |
DO 41 i = 1,iim |
498 |
|
|
aireu (i,j)= aireij1(i,j) + aireij2(i,j) + aireij4(i+1,j) + |
499 |
|
1056 |
* aireij3(i+1,j) |
500 |
|
1056 |
unsaire ( i,j)= 1./ aire(i,j) |
501 |
|
1056 |
unsair_gam1( i,j)= unsaire(i,j)** ( - gamdi_gdiv ) |
502 |
|
1056 |
unsair_gam2( i,j)= unsaire(i,j)** ( - gamdi_h ) |
503 |
|
1056 |
airesurg ( i,j)= aire(i,j)/ g |
504 |
|
33 |
41 CONTINUE |
505 |
|
33 |
aireu (iip1,j) = aireu (1,j) |
506 |
|
33 |
unsaire (iip1,j) = unsaire(1,j) |
507 |
|
33 |
unsair_gam1(iip1,j) = unsair_gam1(1,j) |
508 |
|
33 |
unsair_gam2(iip1,j) = unsair_gam2(1,j) |
509 |
|
33 |
airesurg (iip1,j) = airesurg(1,j) |
510 |
|
1 |
42 CONTINUE |
511 |
|
|
c |
512 |
|
|
c |
513 |
✓✓ |
33 |
DO 48 j = 1,jjm |
514 |
|
|
c |
515 |
✓✓ |
1056 |
DO i=1,iim |
516 |
|
|
airev (i,j) = aireij2(i,j)+ aireij3(i,j)+ aireij1(i,j+1) + |
517 |
|
1056 |
* aireij4(i,j+1) |
518 |
|
|
ENDDO |
519 |
✓✓ |
1056 |
DO i=1,iim |
520 |
|
|
airez = aireij2(i,j)+aireij1(i,j+1)+aireij3(i+1,j) + |
521 |
|
1024 |
* aireij4(i+1,j+1) |
522 |
|
1024 |
unsairez(i,j) = 1./ airez |
523 |
|
1024 |
unsairz_gam(i,j)= unsairez(i,j)** ( - gamdi_grot ) |
524 |
|
1056 |
fext (i,j) = airez * SIN(rlatv(j))* 2.* omeg |
525 |
|
|
ENDDO |
526 |
|
32 |
airev (iip1,j) = airev(1,j) |
527 |
|
32 |
unsairez (iip1,j) = unsairez(1,j) |
528 |
|
32 |
fext (iip1,j) = fext(1,j) |
529 |
|
32 |
unsairz_gam(iip1,j) = unsairz_gam(1,j) |
530 |
|
|
c |
531 |
|
1 |
48 CONTINUE |
532 |
|
|
c |
533 |
|
|
c |
534 |
|
|
c ..... Calcul des elongations cu,cv, cvu ......... |
535 |
|
|
c |
536 |
✓✓ |
33 |
DO j = 1, jjm |
537 |
✓✓ |
1056 |
DO i = 1, iim |
538 |
|
1024 |
cv(i,j) = 0.5 *( cvij2(i,j)+cvij3(i,j)+cvij1(i,j+1)+cvij4(i,j+1)) |
539 |
|
1024 |
cvu(i,j)= 0.5 *( cvij1(i,j)+cvij4(i,j)+cvij2(i,j) +cvij3(i,j) ) |
540 |
|
1024 |
cuv(i,j)= 0.5 *( cuij2(i,j)+cuij3(i,j)+cuij1(i,j+1)+cuij4(i,j+1)) |
541 |
|
1056 |
unscv2(i,j) = 1./ ( cv(i,j)*cv(i,j) ) |
542 |
|
|
ENDDO |
543 |
✓✓ |
1056 |
DO i = 1, iim |
544 |
|
1024 |
cuvsurcv (i,j) = airev(i,j) * unscv2(i,j) |
545 |
|
1024 |
cvsurcuv (i,j) = 1./cuvsurcv(i,j) |
546 |
|
1024 |
cuvscvgam1(i,j) = cuvsurcv (i,j) ** ( - gamdi_gdiv ) |
547 |
|
1024 |
cuvscvgam2(i,j) = cuvsurcv (i,j) ** ( - gamdi_h ) |
548 |
|
1056 |
cvscuvgam(i,j) = cvsurcuv (i,j) ** ( - gamdi_grot ) |
549 |
|
|
ENDDO |
550 |
|
32 |
cv (iip1,j) = cv (1,j) |
551 |
|
32 |
cvu (iip1,j) = cvu (1,j) |
552 |
|
32 |
unscv2 (iip1,j) = unscv2 (1,j) |
553 |
|
32 |
cuv (iip1,j) = cuv (1,j) |
554 |
|
32 |
cuvsurcv (iip1,j) = cuvsurcv (1,j) |
555 |
|
32 |
cvsurcuv (iip1,j) = cvsurcuv (1,j) |
556 |
|
32 |
cuvscvgam1(iip1,j) = cuvscvgam1(1,j) |
557 |
|
32 |
cuvscvgam2(iip1,j) = cuvscvgam2(1,j) |
558 |
|
33 |
cvscuvgam(iip1,j) = cvscuvgam(1,j) |
559 |
|
|
ENDDO |
560 |
|
|
|
561 |
✓✓ |
32 |
DO j = 2, jjm |
562 |
✓✓ |
1023 |
DO i = 1, iim |
563 |
|
992 |
cu(i,j) = 0.5*(cuij1(i,j)+cuij4(i+1,j)+cuij2(i,j)+cuij3(i+1,j)) |
564 |
|
992 |
unscu2 (i,j) = 1./ ( cu(i,j) * cu(i,j) ) |
565 |
|
992 |
cvusurcu (i,j) = aireu(i,j) * unscu2(i,j) |
566 |
|
992 |
cusurcvu (i,j) = 1./ cvusurcu(i,j) |
567 |
|
992 |
cvuscugam1 (i,j) = cvusurcu(i,j) ** ( - gamdi_gdiv ) |
568 |
|
992 |
cvuscugam2 (i,j) = cvusurcu(i,j) ** ( - gamdi_h ) |
569 |
|
1023 |
cuscvugam (i,j) = cusurcvu(i,j) ** ( - gamdi_grot ) |
570 |
|
|
ENDDO |
571 |
|
31 |
cu (iip1,j) = cu(1,j) |
572 |
|
31 |
unscu2 (iip1,j) = unscu2(1,j) |
573 |
|
31 |
cvusurcu (iip1,j) = cvusurcu(1,j) |
574 |
|
31 |
cusurcvu (iip1,j) = cusurcvu(1,j) |
575 |
|
31 |
cvuscugam1(iip1,j) = cvuscugam1(1,j) |
576 |
|
31 |
cvuscugam2(iip1,j) = cvuscugam2(1,j) |
577 |
|
32 |
cuscvugam (iip1,j) = cuscvugam(1,j) |
578 |
|
|
ENDDO |
579 |
|
|
|
580 |
|
|
c |
581 |
|
|
c .... calcul aux poles .... |
582 |
|
|
c |
583 |
✓✓ |
34 |
DO i = 1, iip1 |
584 |
|
33 |
cu ( i, 1 ) = 0. |
585 |
|
33 |
unscu2( i, 1 ) = 0. |
586 |
|
|
cvu ( i, 1 ) = 0. |
587 |
|
|
c |
588 |
|
33 |
cu (i, jjp1) = 0. |
589 |
|
33 |
unscu2(i, jjp1) = 0. |
590 |
|
1 |
cvu (i, jjp1) = 0. |
591 |
|
|
ENDDO |
592 |
|
|
c |
593 |
|
|
c .............................................................. |
594 |
|
|
c |
595 |
✓✓ |
33 |
DO j = 1, jjm |
596 |
✓✓ |
1056 |
DO i= 1, iim |
597 |
|
1024 |
airvscu2 (i,j) = airev(i,j)/ ( cuv(i,j) * cuv(i,j) ) |
598 |
|
1056 |
aivscu2gam(i,j) = airvscu2(i,j)** ( - gamdi_grot ) |
599 |
|
|
ENDDO |
600 |
|
32 |
airvscu2 (iip1,j) = airvscu2(1,j) |
601 |
|
33 |
aivscu2gam(iip1,j) = aivscu2gam(1,j) |
602 |
|
|
ENDDO |
603 |
|
|
|
604 |
✓✓ |
32 |
DO j=2,jjm |
605 |
✓✓ |
1023 |
DO i=1,iim |
606 |
|
992 |
airuscv2 (i,j) = aireu(i,j)/ ( cvu(i,j) * cvu(i,j) ) |
607 |
|
1023 |
aiuscv2gam (i,j) = airuscv2(i,j)** ( - gamdi_grot ) |
608 |
|
|
ENDDO |
609 |
|
31 |
airuscv2 (iip1,j) = airuscv2 (1,j) |
610 |
|
32 |
aiuscv2gam(iip1,j) = aiuscv2gam(1,j) |
611 |
|
|
ENDDO |
612 |
|
|
|
613 |
|
|
c |
614 |
|
|
c calcul des aires aux poles : |
615 |
|
|
c ----------------------------- |
616 |
|
|
c |
617 |
|
1 |
apoln = SSUM(iim,aire(1,1),1) |
618 |
|
1 |
apols = SSUM(iim,aire(1,jjp1),1) |
619 |
|
1 |
unsapolnga1 = 1./ ( apoln ** ( - gamdi_gdiv ) ) |
620 |
|
1 |
unsapolsga1 = 1./ ( apols ** ( - gamdi_gdiv ) ) |
621 |
|
1 |
unsapolnga2 = 1./ ( apoln ** ( - gamdi_h ) ) |
622 |
|
1 |
unsapolsga2 = 1./ ( apols ** ( - gamdi_h ) ) |
623 |
|
|
c |
624 |
|
|
c----------------------------------------------------------------------- |
625 |
|
|
c gtitre='Coriolis version ancienne' |
626 |
|
|
c gfichier='fext1' |
627 |
|
|
c CALL writestd(fext,iip1*jjm) |
628 |
|
|
c |
629 |
|
|
c changement F. Hourdin calcul conservatif pour fext |
630 |
|
|
c constang contient le produit a * cos ( latitude ) * omega |
631 |
|
|
c |
632 |
✓✓ |
33 |
DO i=1,iim |
633 |
|
33 |
constang(i,1) = 0. |
634 |
|
|
ENDDO |
635 |
✓✓ |
32 |
DO j=1,jjm-1 |
636 |
✓✓ |
1024 |
DO i=1,iim |
637 |
|
1023 |
constang(i,j+1) = rad*omeg*cu(i,j+1)*COS(rlatu(j+1)) |
638 |
|
|
ENDDO |
639 |
|
|
ENDDO |
640 |
✓✓ |
33 |
DO i=1,iim |
641 |
|
33 |
constang(i,jjp1) = 0. |
642 |
|
|
ENDDO |
643 |
|
|
c |
644 |
|
|
c periodicite en longitude |
645 |
|
|
c |
646 |
✓✓ |
33 |
DO j=1,jjm |
647 |
|
33 |
fext(iip1,j) = fext(1,j) |
648 |
|
|
ENDDO |
649 |
✓✓ |
34 |
DO j=1,jjp1 |
650 |
|
34 |
constang(iip1,j) = constang(1,j) |
651 |
|
|
ENDDO |
652 |
|
|
|
653 |
|
|
c fin du changement |
654 |
|
|
|
655 |
|
|
c |
656 |
|
|
c----------------------------------------------------------------------- |
657 |
|
|
c |
658 |
|
1 |
WRITE(6,*) ' *** Coordonnees de la grille *** ' |
659 |
|
1 |
WRITE(6,995) |
660 |
|
|
c |
661 |
|
1 |
WRITE(6,*) ' LONGITUDES aux pts. V ( degres ) ' |
662 |
|
1 |
WRITE(6,995) |
663 |
✓✓ |
34 |
DO i=1,iip1 |
664 |
|
34 |
rlonvv(i) = rlonv(i)*180./pi |
665 |
|
|
ENDDO |
666 |
|
1 |
WRITE(6,400) rlonvv |
667 |
|
|
c |
668 |
|
1 |
WRITE(6,995) |
669 |
|
1 |
WRITE(6,*) ' LATITUDES aux pts. V ( degres ) ' |
670 |
|
1 |
WRITE(6,995) |
671 |
✓✓ |
33 |
DO i=1,jjm |
672 |
|
33 |
rlatuu(i)=rlatv(i)*180./pi |
673 |
|
|
ENDDO |
674 |
|
1 |
WRITE(6,400) (rlatuu(i),i=1,jjm) |
675 |
|
|
c |
676 |
✓✓ |
34 |
DO i=1,iip1 |
677 |
|
34 |
rlonvv(i)=rlonu(i)*180./pi |
678 |
|
|
ENDDO |
679 |
|
1 |
WRITE(6,995) |
680 |
|
1 |
WRITE(6,*) ' LONGITUDES aux pts. U ( degres ) ' |
681 |
|
1 |
WRITE(6,995) |
682 |
|
1 |
WRITE(6,400) rlonvv |
683 |
|
1 |
WRITE(6,995) |
684 |
|
|
|
685 |
|
1 |
WRITE(6,*) ' LATITUDES aux pts. U ( degres ) ' |
686 |
|
1 |
WRITE(6,995) |
687 |
✓✓ |
34 |
DO i=1,jjp1 |
688 |
|
34 |
rlatuu(i)=rlatu(i)*180./pi |
689 |
|
|
ENDDO |
690 |
|
1 |
WRITE(6,400) (rlatuu(i),i=1,jjp1) |
691 |
|
1 |
WRITE(6,995) |
692 |
|
|
c |
693 |
|
|
444 format(f10.3,f6.0) |
694 |
|
|
400 FORMAT(1x,8f8.2) |
695 |
|
|
990 FORMAT(//) |
696 |
|
|
995 FORMAT(/) |
697 |
|
|
c |
698 |
|
1 |
RETURN |
699 |
|
|
END |