1 |
|
|
! |
2 |
|
|
! $Id: ppm3d.F 2197 2015-02-09 07:13:05Z emillour $ |
3 |
|
|
! |
4 |
|
|
|
5 |
|
|
cFrom lin@explorer.gsfc.nasa.gov Wed Apr 15 17:44:44 1998 |
6 |
|
|
cDate: Wed, 15 Apr 1998 11:37:03 -0400 |
7 |
|
|
cFrom: lin@explorer.gsfc.nasa.gov |
8 |
|
|
cTo: Frederic.Hourdin@lmd.jussieu.fr |
9 |
|
|
cSubject: 3D transport module of the GSFC CTM and GEOS GCM |
10 |
|
|
|
11 |
|
|
|
12 |
|
|
cThis code is sent to you by S-J Lin, DAO, NASA-GSFC |
13 |
|
|
|
14 |
|
|
cNote: this version is intended for machines like CRAY |
15 |
|
|
C-90. No multitasking directives implemented. |
16 |
|
|
|
17 |
|
|
|
18 |
|
|
C ******************************************************************** |
19 |
|
|
C |
20 |
|
|
C TransPort Core for Goddard Chemistry Transport Model (G-CTM), Goddard |
21 |
|
|
C Earth Observing System General Circulation Model (GEOS-GCM), and Data |
22 |
|
|
C Assimilation System (GEOS-DAS). |
23 |
|
|
C |
24 |
|
|
C ******************************************************************** |
25 |
|
|
C |
26 |
|
|
C Purpose: given horizontal winds on a hybrid sigma-p surfaces, |
27 |
|
|
C one call to tpcore updates the 3-D mixing ratio |
28 |
|
|
C fields one time step (NDT). [vertical mass flux is computed |
29 |
|
|
C internally consistent with the discretized hydrostatic mass |
30 |
|
|
C continuity equation of the C-Grid GEOS-GCM (for IGD=1)]. |
31 |
|
|
C |
32 |
|
|
C Schemes: Multi-dimensional Flux Form Semi-Lagrangian (FFSL) scheme based |
33 |
|
|
C on the van Leer or PPM. |
34 |
|
|
C (see Lin and Rood 1996). |
35 |
|
|
C Version 4.5 |
36 |
|
|
C Last modified: Dec. 5, 1996 |
37 |
|
|
C Major changes from version 4.0: a more general vertical hybrid sigma- |
38 |
|
|
C pressure coordinate. |
39 |
|
|
C Subroutines modified: xtp, ytp, fzppm, qckxyz |
40 |
|
|
C Subroutines deleted: vanz |
41 |
|
|
C |
42 |
|
|
C Author: Shian-Jiann Lin |
43 |
|
|
C mail address: |
44 |
|
|
C Shian-Jiann Lin* |
45 |
|
|
C Code 910.3, NASA/GSFC, Greenbelt, MD 20771 |
46 |
|
|
C Phone: 301-286-9540 |
47 |
|
|
C E-mail: lin@dao.gsfc.nasa.gov |
48 |
|
|
C |
49 |
|
|
C *affiliation: |
50 |
|
|
C Joint Center for Earth Systems Technology |
51 |
|
|
C The University of Maryland Baltimore County |
52 |
|
|
C NASA - Goddard Space Flight Center |
53 |
|
|
C References: |
54 |
|
|
C |
55 |
|
|
C 1. Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux form semi- |
56 |
|
|
C Lagrangian transport schemes. Mon. Wea. Rev., 124, 2046-2070. |
57 |
|
|
C |
58 |
|
|
C 2. Lin, S.-J., W. C. Chao, Y. C. Sud, and G. K. Walker, 1994: A class of |
59 |
|
|
C the van Leer-type transport schemes and its applications to the moist- |
60 |
|
|
C ure transport in a General Circulation Model. Mon. Wea. Rev., 122, |
61 |
|
|
C 1575-1593. |
62 |
|
|
C |
63 |
|
|
C ****6***0*********0*********0*********0*********0*********0**********72 |
64 |
|
|
C |
65 |
|
|
subroutine ppm3d(IGD,Q,PS1,PS2,U,V,W,NDT,IORD,JORD,KORD,NC,IMR, |
66 |
|
|
& JNP,j1,NLAY,AP,BP,PT,AE,fill,dum,Umax) |
67 |
|
|
|
68 |
|
|
implicit none |
69 |
|
|
|
70 |
|
|
c rajout de d�clarations |
71 |
|
|
c integer Jmax,kmax,ndt0,nstep,k,j,i,ic,l,js,jn,imh,iad,jad,krd |
72 |
|
|
c integer iu,iiu,j2,jmr,js0,jt |
73 |
|
|
c real dtdy,dtdy5,rcap,iml,jn0,imjm,pi,dl,dp |
74 |
|
|
c real dt,cr1,maxdt,ztc,d5,sum1,sum2,ru |
75 |
|
|
C |
76 |
|
|
C ******************************************************************** |
77 |
|
|
C |
78 |
|
|
C ============= |
79 |
|
|
C INPUT: |
80 |
|
|
C ============= |
81 |
|
|
C |
82 |
|
|
C Q(IMR,JNP,NLAY,NC): mixing ratios at current time (t) |
83 |
|
|
C NC: total # of constituents |
84 |
|
|
C IMR: first dimension (E-W); # of Grid intervals in E-W is IMR |
85 |
|
|
C JNP: 2nd dimension (N-S); # of Grid intervals in N-S is JNP-1 |
86 |
|
|
C NLAY: 3rd dimension (# of layers); vertical index increases from 1 at |
87 |
|
|
C the model top to NLAY near the surface (see fig. below). |
88 |
|
|
C It is assumed that 6 <= NLAY <= JNP (for dynamic memory allocation) |
89 |
|
|
C |
90 |
|
|
C PS1(IMR,JNP): surface pressure at current time (t) |
91 |
|
|
C PS2(IMR,JNP): surface pressure at mid-time-level (t+NDT/2) |
92 |
|
|
C PS2 is replaced by the predicted PS (at t+NDT) on output. |
93 |
|
|
C Note: surface pressure can have any unit or can be multiplied by any |
94 |
|
|
C const. |
95 |
|
|
C |
96 |
|
|
C The pressure at layer edges are defined as follows: |
97 |
|
|
C |
98 |
|
|
C p(i,j,k) = AP(k)*PT + BP(k)*PS(i,j) (1) |
99 |
|
|
C |
100 |
|
|
C Where PT is a constant having the same unit as PS. |
101 |
|
|
C AP and BP are unitless constants given at layer edges |
102 |
|
|
C defining the vertical coordinate. |
103 |
|
|
C BP(1) = 0., BP(NLAY+1) = 1. |
104 |
|
|
C The pressure at the model top is PTOP = AP(1)*PT |
105 |
|
|
C |
106 |
|
|
C For pure sigma system set AP(k) = 1 for all k, PT = PTOP, |
107 |
|
|
C BP(k) = sige(k) (sigma at edges), PS = Psfc - PTOP. |
108 |
|
|
C |
109 |
|
|
C Note: the sigma-P coordinate is a subset of Eq. 1, which in turn |
110 |
|
|
C is a subset of the following even more general sigma-P-thelta coord. |
111 |
|
|
C currently under development. |
112 |
|
|
C p(i,j,k) = (AP(k)*PT + BP(k)*PS(i,j))/(D(k)-C(k)*TE**(-1/kapa)) |
113 |
|
|
C |
114 |
|
|
C ///////////////////////////////// |
115 |
|
|
C / \ ------------- PTOP -------------- AP(1), BP(1) |
116 |
|
|
C | |
117 |
|
|
C delp(1) | ........... Q(i,j,1) ............ |
118 |
|
|
C | |
119 |
|
|
C W(1) \ / --------------------------------- AP(2), BP(2) |
120 |
|
|
C |
121 |
|
|
C |
122 |
|
|
C |
123 |
|
|
C W(k-1) / \ --------------------------------- AP(k), BP(k) |
124 |
|
|
C | |
125 |
|
|
C delp(K) | ........... Q(i,j,k) ............ |
126 |
|
|
C | |
127 |
|
|
C W(k) \ / --------------------------------- AP(k+1), BP(k+1) |
128 |
|
|
C |
129 |
|
|
C |
130 |
|
|
C |
131 |
|
|
C / \ --------------------------------- AP(NLAY), BP(NLAY) |
132 |
|
|
C | |
133 |
|
|
C delp(NLAY) | ........... Q(i,j,NLAY) ......... |
134 |
|
|
C | |
135 |
|
|
C W(NLAY)=0 \ / ------------- surface ----------- AP(NLAY+1), BP(NLAY+1) |
136 |
|
|
C ////////////////////////////////// |
137 |
|
|
C |
138 |
|
|
C U(IMR,JNP,NLAY) & V(IMR,JNP,NLAY):winds (m/s) at mid-time-level (t+NDT/2) |
139 |
|
|
C U and V may need to be polar filtered in advance in some cases. |
140 |
|
|
C |
141 |
|
|
C IGD: grid type on which winds are defined. |
142 |
|
|
C IGD = 0: A-Grid [all variables defined at the same point from south |
143 |
|
|
C pole (j=1) to north pole (j=JNP) ] |
144 |
|
|
C |
145 |
|
|
C IGD = 1 GEOS-GCM C-Grid |
146 |
|
|
C [North] |
147 |
|
|
C |
148 |
|
|
C V(i,j) |
149 |
|
|
C | |
150 |
|
|
C | |
151 |
|
|
C | |
152 |
|
|
C U(i-1,j)---Q(i,j)---U(i,j) [EAST] |
153 |
|
|
C | |
154 |
|
|
C | |
155 |
|
|
C | |
156 |
|
|
C V(i,j-1) |
157 |
|
|
C |
158 |
|
|
C U(i, 1) is defined at South Pole. |
159 |
|
|
C V(i, 1) is half grid north of the South Pole. |
160 |
|
|
C V(i,JMR) is half grid south of the North Pole. |
161 |
|
|
C |
162 |
|
|
C V must be defined at j=1 and j=JMR if IGD=1 |
163 |
|
|
C V at JNP need not be given. |
164 |
|
|
C |
165 |
|
|
C NDT: time step in seconds (need not be constant during the course of |
166 |
|
|
C the integration). Suggested value: 30 min. for 4x5, 15 min. for 2x2.5 |
167 |
|
|
C (Lat-Lon) resolution. Smaller values are recommanded if the model |
168 |
|
|
C has a well-resolved stratosphere. |
169 |
|
|
C |
170 |
|
|
C J1 defines the size of the polar cap: |
171 |
|
|
C South polar cap edge is located at -90 + (j1-1.5)*180/(JNP-1) deg. |
172 |
|
|
C North polar cap edge is located at 90 - (j1-1.5)*180/(JNP-1) deg. |
173 |
|
|
C There are currently only two choices (j1=2 or 3). |
174 |
|
|
C IMR must be an even integer if j1 = 2. Recommended value: J1=3. |
175 |
|
|
C |
176 |
|
|
C IORD, JORD, and KORD are integers controlling various options in E-W, N-S, |
177 |
|
|
C and vertical transport, respectively. Recommended values for positive |
178 |
|
|
C definite scalars: IORD=JORD=3, KORD=5. Use KORD=3 for non- |
179 |
|
|
C positive definite scalars or when linear correlation between constituents |
180 |
|
|
C is to be maintained. |
181 |
|
|
C |
182 |
|
|
C _ORD= |
183 |
|
|
C 1: 1st order upstream scheme (too diffusive, not a useful option; it |
184 |
|
|
C can be used for debugging purposes; this is THE only known "linear" |
185 |
|
|
C monotonic advection scheme.). |
186 |
|
|
C 2: 2nd order van Leer (full monotonicity constraint; |
187 |
|
|
C see Lin et al 1994, MWR) |
188 |
|
|
C 3: monotonic PPM* (slightly improved PPM of Collela & Woodward 1984) |
189 |
|
|
C 4: semi-monotonic PPM (same as 3, but overshoots are allowed) |
190 |
|
|
C 5: positive-definite PPM (constraint on the subgrid distribution is |
191 |
|
|
C only strong enough to prevent generation of negative values; |
192 |
|
|
C both overshoots & undershoots are possible). |
193 |
|
|
C 6: un-constrained PPM (nearly diffusion free; slightly faster but |
194 |
|
|
C positivity not quaranteed. Use this option only when the fields |
195 |
|
|
C and winds are very smooth). |
196 |
|
|
C |
197 |
|
|
C *PPM: Piece-wise Parabolic Method |
198 |
|
|
C |
199 |
|
|
C Note that KORD <=2 options are no longer supported. DO not use option 4 or 5. |
200 |
|
|
C for non-positive definite scalars (such as Ertel Potential Vorticity). |
201 |
|
|
C |
202 |
|
|
C The implicit numerical diffusion decreases as _ORD increases. |
203 |
|
|
C The last two options (ORDER=5, 6) should only be used when there is |
204 |
|
|
C significant explicit diffusion (such as a turbulence parameterization). You |
205 |
|
|
C might get dispersive results otherwise. |
206 |
|
|
C No filter of any kind is applied to the constituent fields here. |
207 |
|
|
C |
208 |
|
|
C AE: Radius of the sphere (meters). |
209 |
|
|
C Recommended value for the planet earth: 6.371E6 |
210 |
|
|
C |
211 |
|
|
C fill(logical): flag to do filling for negatives (see note below). |
212 |
|
|
C |
213 |
|
|
C Umax: Estimate (upper limit) of the maximum U-wind speed (m/s). |
214 |
|
|
C (220 m/s is a good value for troposphere model; 280 m/s otherwise) |
215 |
|
|
C |
216 |
|
|
C ============= |
217 |
|
|
C Output |
218 |
|
|
C ============= |
219 |
|
|
C |
220 |
|
|
C Q: mixing ratios at future time (t+NDT) (original values are over-written) |
221 |
|
|
C W(NLAY): large-scale vertical mass flux as diagnosed from the hydrostatic |
222 |
|
|
C relationship. W will have the same unit as PS1 and PS2 (eg, mb). |
223 |
|
|
C W must be divided by NDT to get the correct mass-flux unit. |
224 |
|
|
C The vertical Courant number C = W/delp_UPWIND, where delp_UPWIND |
225 |
|
|
C is the pressure thickness in the "upwind" direction. For example, |
226 |
|
|
C C(k) = W(k)/delp(k) if W(k) > 0; |
227 |
|
|
C C(k) = W(k)/delp(k+1) if W(k) < 0. |
228 |
|
|
C ( W > 0 is downward, ie, toward surface) |
229 |
|
|
C PS2: predicted PS at t+NDT (original values are over-written) |
230 |
|
|
C |
231 |
|
|
C ******************************************************************** |
232 |
|
|
C NOTES: |
233 |
|
|
C This forward-in-time upstream-biased transport scheme reduces to |
234 |
|
|
C the 2nd order center-in-time center-in-space mass continuity eqn. |
235 |
|
|
C if Q = 1 (constant fields will remain constant). This also ensures |
236 |
|
|
C that the computed vertical velocity to be identical to GEOS-1 GCM |
237 |
|
|
C for on-line transport. |
238 |
|
|
C |
239 |
|
|
C A larger polar cap is used if j1=3 (recommended for C-Grid winds or when |
240 |
|
|
C winds are noisy near poles). |
241 |
|
|
C |
242 |
|
|
C Flux-Form Semi-Lagrangian transport in the East-West direction is used |
243 |
|
|
C when and where Courant # is greater than one. |
244 |
|
|
C |
245 |
|
|
C The user needs to change the parameter Jmax or Kmax if the resolution |
246 |
|
|
C is greater than 0.5 deg in N-S or 150 layers in the vertical direction. |
247 |
|
|
C (this TransPort Core is otherwise resolution independent and can be used |
248 |
|
|
C as a library routine). |
249 |
|
|
C |
250 |
|
|
C PPM is 4th order accurate when grid spacing is uniform (x & y); 3rd |
251 |
|
|
C order accurate for non-uniform grid (vertical sigma coord.). |
252 |
|
|
C |
253 |
|
|
C Time step is limitted only by transport in the meridional direction. |
254 |
|
|
C (the FFSL scheme is not implemented in the meridional direction). |
255 |
|
|
C |
256 |
|
|
C Since only 1-D limiters are applied, negative values could |
257 |
|
|
C potentially be generated when large time step is used and when the |
258 |
|
|
C initial fields contain discontinuities. |
259 |
|
|
C This does not necessarily imply the integration is unstable. |
260 |
|
|
C These negatives are typically very small. A filling algorithm is |
261 |
|
|
C activated if the user set "fill" to be true. |
262 |
|
|
C |
263 |
|
|
C The van Leer scheme used here is nearly as accurate as the original PPM |
264 |
|
|
C due to the use of a 4th order accurate reference slope. The PPM imple- |
265 |
|
|
C mented here is an improvement over the original and is also based on |
266 |
|
|
C the 4th order reference slope. |
267 |
|
|
C |
268 |
|
|
C ****6***0*********0*********0*********0*********0*********0**********72 |
269 |
|
|
C |
270 |
|
|
C User modifiable parameters |
271 |
|
|
C |
272 |
|
|
integer,parameter :: Jmax = 361, kmax = 150 |
273 |
|
|
C |
274 |
|
|
C ****6***0*********0*********0*********0*********0*********0**********72 |
275 |
|
|
C |
276 |
|
|
C Input-Output arrays |
277 |
|
|
C |
278 |
|
|
|
279 |
|
|
real Q(IMR,JNP,NLAY,NC),PS1(IMR,JNP),PS2(IMR,JNP), |
280 |
|
|
& U(IMR,JNP,NLAY),V(IMR,JNP,NLAY),AP(NLAY+1), |
281 |
|
|
& BP(NLAY+1),W(IMR,JNP,NLAY),NDT,val(NLAY),Umax |
282 |
|
|
integer IGD,IORD,JORD,KORD,NC,IMR,JNP,j1,NLAY,AE |
283 |
|
|
integer IMRD2 |
284 |
|
|
real PT |
285 |
|
|
logical cross, fill, dum |
286 |
|
|
C |
287 |
|
|
C Local dynamic arrays |
288 |
|
|
C |
289 |
|
|
real CRX(IMR,JNP),CRY(IMR,JNP),xmass(IMR,JNP),ymass(IMR,JNP), |
290 |
|
|
& fx1(IMR+1),DPI(IMR,JNP,NLAY),delp1(IMR,JNP,NLAY), |
291 |
|
|
& WK1(IMR,JNP,NLAY),PU(IMR,JNP),PV(IMR,JNP),DC2(IMR,JNP), |
292 |
|
|
& delp2(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY,NC),VA(IMR,JNP), |
293 |
|
|
& UA(IMR,JNP),qtmp(-IMR:2*IMR) |
294 |
|
|
C |
295 |
|
|
C Local static arrays |
296 |
|
|
C |
297 |
|
|
real DTDX(Jmax), DTDX5(Jmax), acosp(Jmax), |
298 |
|
|
& cosp(Jmax), cose(Jmax), DAP(kmax),DBK(Kmax) |
299 |
|
|
data NDT0, NSTEP /0, 0/ |
300 |
|
|
data cross /.true./ |
301 |
|
|
REAL DTDY, DTDY5, RCAP |
302 |
|
|
INTEGER JS0, JN0, IML, JMR, IMJM |
303 |
|
|
SAVE DTDY, DTDY5, RCAP, JS0, JN0, IML, |
304 |
|
|
& DTDX, DTDX5, ACOSP, COSP, COSE, DAP,DBK |
305 |
|
|
C |
306 |
|
|
INTEGER NDT0, NSTEP, j2, k,j,i,ic,l,JS,JN,IMH |
307 |
|
|
INTEGER IU,IIU,JT,iad,jad,krd |
308 |
|
|
REAL r23,r3,PI,DL,DP,DT,CR1,MAXDT,ZTC,D5 |
309 |
|
|
REAL sum1,sum2,ru |
310 |
|
|
|
311 |
|
|
JMR = JNP -1 |
312 |
|
|
IMJM = IMR*JNP |
313 |
|
|
j2 = JNP - j1 + 1 |
314 |
|
|
NSTEP = NSTEP + 1 |
315 |
|
|
C |
316 |
|
|
C *********** Initialization ********************** |
317 |
|
|
if(NSTEP.eq.1) then |
318 |
|
|
c |
319 |
|
|
write(6,*) '------------------------------------ ' |
320 |
|
|
write(6,*) 'NASA/GSFC Transport Core Version 4.5' |
321 |
|
|
write(6,*) '------------------------------------ ' |
322 |
|
|
c |
323 |
|
|
WRITE(6,*) 'IMR=',IMR,' JNP=',JNP,' NLAY=',NLAY,' j1=',j1 |
324 |
|
|
WRITE(6,*) 'NC=',NC,IORD,JORD,KORD,NDT |
325 |
|
|
C |
326 |
|
|
C controles sur les parametres |
327 |
|
|
if(NLAY.LT.6) then |
328 |
|
|
write(6,*) 'NLAY must be >= 6' |
329 |
|
|
stop |
330 |
|
|
endif |
331 |
|
|
if (JNP.LT.NLAY) then |
332 |
|
|
write(6,*) 'JNP must be >= NLAY' |
333 |
|
|
stop |
334 |
|
|
endif |
335 |
|
|
IMRD2=mod(IMR,2) |
336 |
|
|
if (j1.eq.2.and.IMRD2.NE.0) then |
337 |
|
|
write(6,*) 'if j1=2 IMR must be an even integer' |
338 |
|
|
stop |
339 |
|
|
endif |
340 |
|
|
|
341 |
|
|
C |
342 |
|
|
if(Jmax.lt.JNP .or. Kmax.lt.NLAY) then |
343 |
|
|
write(6,*) 'Jmax or Kmax is too small' |
344 |
|
|
stop |
345 |
|
|
endif |
346 |
|
|
C |
347 |
|
|
DO k=1,NLAY |
348 |
|
|
DAP(k) = (AP(k+1) - AP(k))*PT |
349 |
|
|
DBK(k) = BP(k+1) - BP(k) |
350 |
|
|
ENDDO |
351 |
|
|
C |
352 |
|
|
PI = 4. * ATAN(1.) |
353 |
|
|
DL = 2.*PI / REAL(IMR) |
354 |
|
|
DP = PI / REAL(JMR) |
355 |
|
|
C |
356 |
|
|
if(IGD.eq.0) then |
357 |
|
|
C Compute analytic cosine at cell edges |
358 |
|
|
call cosa(cosp,cose,JNP,PI,DP) |
359 |
|
|
else |
360 |
|
|
C Define cosine consistent with GEOS-GCM (using dycore2.0 or later) |
361 |
|
|
call cosc(cosp,cose,JNP,PI,DP) |
362 |
|
|
endif |
363 |
|
|
C |
364 |
|
|
do 15 J=2,JMR |
365 |
|
|
15 acosp(j) = 1. / cosp(j) |
366 |
|
|
C |
367 |
|
|
C Inverse of the Scaled polar cap area. |
368 |
|
|
C |
369 |
|
|
RCAP = DP / (IMR*(1.-COS((j1-1.5)*DP))) |
370 |
|
|
acosp(1) = RCAP |
371 |
|
|
acosp(JNP) = RCAP |
372 |
|
|
endif |
373 |
|
|
C |
374 |
|
|
if(NDT0 .ne. NDT) then |
375 |
|
|
DT = NDT |
376 |
|
|
NDT0 = NDT |
377 |
|
|
|
378 |
|
|
if(Umax .lt. 180.) then |
379 |
|
|
write(6,*) 'Umax may be too small!' |
380 |
|
|
endif |
381 |
|
|
CR1 = abs(Umax*DT)/(DL*AE) |
382 |
|
|
MaxDT = DP*AE / abs(Umax) + 0.5 |
383 |
|
|
write(6,*)'Largest time step for max(V)=',Umax,' is ',MaxDT |
384 |
|
|
if(MaxDT .lt. abs(NDT)) then |
385 |
|
|
write(6,*) 'Warning!!! NDT maybe too large!' |
386 |
|
|
endif |
387 |
|
|
C |
388 |
|
|
if(CR1.ge.0.95) then |
389 |
|
|
JS0 = 0 |
390 |
|
|
JN0 = 0 |
391 |
|
|
IML = IMR-2 |
392 |
|
|
ZTC = 0. |
393 |
|
|
else |
394 |
|
|
ZTC = acos(CR1) * (180./PI) |
395 |
|
|
C |
396 |
|
|
JS0 = REAL(JMR)*(90.-ZTC)/180. + 2 |
397 |
|
|
JS0 = max(JS0, J1+1) |
398 |
|
|
IML = min(6*JS0/(J1-1)+2, 4*IMR/5) |
399 |
|
|
JN0 = JNP-JS0+1 |
400 |
|
|
endif |
401 |
|
|
C |
402 |
|
|
C |
403 |
|
|
do J=2,JMR |
404 |
|
|
DTDX(j) = DT / ( DL*AE*COSP(J) ) |
405 |
|
|
|
406 |
|
|
c print*,'dtdx=',dtdx(j) |
407 |
|
|
DTDX5(j) = 0.5*DTDX(j) |
408 |
|
|
enddo |
409 |
|
|
C |
410 |
|
|
|
411 |
|
|
DTDY = DT /(AE*DP) |
412 |
|
|
c print*,'dtdy=',dtdy |
413 |
|
|
DTDY5 = 0.5*DTDY |
414 |
|
|
C |
415 |
|
|
c write(6,*) 'J1=',J1,' J2=', J2 |
416 |
|
|
endif |
417 |
|
|
C |
418 |
|
|
C *********** End Initialization ********************** |
419 |
|
|
C |
420 |
|
|
C delp = pressure thickness: the psudo-density in a hydrostatic system. |
421 |
|
|
do k=1,NLAY |
422 |
|
|
do j=1,JNP |
423 |
|
|
do i=1,IMR |
424 |
|
|
delp1(i,j,k)=DAP(k)+DBK(k)*PS1(i,j) |
425 |
|
|
delp2(i,j,k)=DAP(k)+DBK(k)*PS2(i,j) |
426 |
|
|
enddo |
427 |
|
|
enddo |
428 |
|
|
enddo |
429 |
|
|
|
430 |
|
|
C |
431 |
|
|
if(j1.ne.2) then |
432 |
|
|
DO 40 IC=1,NC |
433 |
|
|
DO 40 L=1,NLAY |
434 |
|
|
DO 40 I=1,IMR |
435 |
|
|
Q(I, 2,L,IC) = Q(I, 1,L,IC) |
436 |
|
|
40 Q(I,JMR,L,IC) = Q(I,JNP,L,IC) |
437 |
|
|
endif |
438 |
|
|
C |
439 |
|
|
C Compute "tracer density" |
440 |
|
|
DO 550 IC=1,NC |
441 |
|
|
DO 44 k=1,NLAY |
442 |
|
|
DO 44 j=1,JNP |
443 |
|
|
DO 44 i=1,IMR |
444 |
|
|
44 DQ(i,j,k,IC) = Q(i,j,k,IC)*delp1(i,j,k) |
445 |
|
|
550 continue |
446 |
|
|
C |
447 |
|
|
do 1500 k=1,NLAY |
448 |
|
|
C |
449 |
|
|
if(IGD.eq.0) then |
450 |
|
|
C Convert winds on A-Grid to Courant # on C-Grid. |
451 |
|
|
call A2C(U(1,1,k),V(1,1,k),IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5) |
452 |
|
|
else |
453 |
|
|
C Convert winds on C-grid to Courant # |
454 |
|
|
do 45 j=j1,j2 |
455 |
|
|
do 45 i=2,IMR |
456 |
|
|
45 CRX(i,J) = dtdx(j)*U(i-1,j,k) |
457 |
|
|
|
458 |
|
|
C |
459 |
|
|
do 50 j=j1,j2 |
460 |
|
|
50 CRX(1,J) = dtdx(j)*U(IMR,j,k) |
461 |
|
|
C |
462 |
|
|
do 55 i=1,IMR*JMR |
463 |
|
|
55 CRY(i,2) = DTDY*V(i,1,k) |
464 |
|
|
endif |
465 |
|
|
C |
466 |
|
|
C Determine JS and JN |
467 |
|
|
JS = j1 |
468 |
|
|
JN = j2 |
469 |
|
|
C |
470 |
|
|
do j=JS0,j1+1,-1 |
471 |
|
|
do i=1,IMR |
472 |
|
|
if(abs(CRX(i,j)).GT.1.) then |
473 |
|
|
JS = j |
474 |
|
|
go to 2222 |
475 |
|
|
endif |
476 |
|
|
enddo |
477 |
|
|
enddo |
478 |
|
|
C |
479 |
|
|
2222 continue |
480 |
|
|
do j=JN0,j2-1 |
481 |
|
|
do i=1,IMR |
482 |
|
|
if(abs(CRX(i,j)).GT.1.) then |
483 |
|
|
JN = j |
484 |
|
|
go to 2233 |
485 |
|
|
endif |
486 |
|
|
enddo |
487 |
|
|
enddo |
488 |
|
|
2233 continue |
489 |
|
|
C |
490 |
|
|
if(j1.ne.2) then ! Enlarged polar cap. |
491 |
|
|
do i=1,IMR |
492 |
|
|
DPI(i, 2,k) = 0. |
493 |
|
|
DPI(i,JMR,k) = 0. |
494 |
|
|
enddo |
495 |
|
|
endif |
496 |
|
|
C |
497 |
|
|
C ******* Compute horizontal mass fluxes ************ |
498 |
|
|
C |
499 |
|
|
C N-S component |
500 |
|
|
do j=j1,j2+1 |
501 |
|
|
D5 = 0.5 * COSE(j) |
502 |
|
|
do i=1,IMR |
503 |
|
|
ymass(i,j) = CRY(i,j)*D5*(delp2(i,j,k) + delp2(i,j-1,k)) |
504 |
|
|
enddo |
505 |
|
|
enddo |
506 |
|
|
C |
507 |
|
|
do 95 j=j1,j2 |
508 |
|
|
DO 95 i=1,IMR |
509 |
|
|
95 DPI(i,j,k) = (ymass(i,j) - ymass(i,j+1)) * acosp(j) |
510 |
|
|
C |
511 |
|
|
C Poles |
512 |
|
|
sum1 = ymass(IMR,j1 ) |
513 |
|
|
sum2 = ymass(IMR,J2+1) |
514 |
|
|
do i=1,IMR-1 |
515 |
|
|
sum1 = sum1 + ymass(i,j1 ) |
516 |
|
|
sum2 = sum2 + ymass(i,J2+1) |
517 |
|
|
enddo |
518 |
|
|
C |
519 |
|
|
sum1 = - sum1 * RCAP |
520 |
|
|
sum2 = sum2 * RCAP |
521 |
|
|
do i=1,IMR |
522 |
|
|
DPI(i, 1,k) = sum1 |
523 |
|
|
DPI(i,JNP,k) = sum2 |
524 |
|
|
enddo |
525 |
|
|
C |
526 |
|
|
C E-W component |
527 |
|
|
C |
528 |
|
|
do j=j1,j2 |
529 |
|
|
do i=2,IMR |
530 |
|
|
PU(i,j) = 0.5 * (delp2(i,j,k) + delp2(i-1,j,k)) |
531 |
|
|
enddo |
532 |
|
|
enddo |
533 |
|
|
C |
534 |
|
|
do j=j1,j2 |
535 |
|
|
PU(1,j) = 0.5 * (delp2(1,j,k) + delp2(IMR,j,k)) |
536 |
|
|
enddo |
537 |
|
|
C |
538 |
|
|
do 110 j=j1,j2 |
539 |
|
|
DO 110 i=1,IMR |
540 |
|
|
110 xmass(i,j) = PU(i,j)*CRX(i,j) |
541 |
|
|
C |
542 |
|
|
DO 120 j=j1,j2 |
543 |
|
|
DO 120 i=1,IMR-1 |
544 |
|
|
120 DPI(i,j,k) = DPI(i,j,k) + xmass(i,j) - xmass(i+1,j) |
545 |
|
|
C |
546 |
|
|
DO 130 j=j1,j2 |
547 |
|
|
130 DPI(IMR,j,k) = DPI(IMR,j,k) + xmass(IMR,j) - xmass(1,j) |
548 |
|
|
C |
549 |
|
|
DO j=j1,j2 |
550 |
|
|
do i=1,IMR-1 |
551 |
|
|
UA(i,j) = 0.5 * (CRX(i,j)+CRX(i+1,j)) |
552 |
|
|
enddo |
553 |
|
|
enddo |
554 |
|
|
C |
555 |
|
|
DO j=j1,j2 |
556 |
|
|
UA(imr,j) = 0.5 * (CRX(imr,j)+CRX(1,j)) |
557 |
|
|
enddo |
558 |
|
|
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
559 |
|
|
c Rajouts pour LMDZ.3.3 |
560 |
|
|
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
561 |
|
|
do i=1,IMR |
562 |
|
|
do j=1,JNP |
563 |
|
|
VA(i,j)=0. |
564 |
|
|
enddo |
565 |
|
|
enddo |
566 |
|
|
|
567 |
|
|
do i=1,imr*(JMR-1) |
568 |
|
|
VA(i,2) = 0.5*(CRY(i,2)+CRY(i,3)) |
569 |
|
|
enddo |
570 |
|
|
C |
571 |
|
|
if(j1.eq.2) then |
572 |
|
|
IMH = IMR/2 |
573 |
|
|
do i=1,IMH |
574 |
|
|
VA(i, 1) = 0.5*(CRY(i,2)-CRY(i+IMH,2)) |
575 |
|
|
VA(i+IMH, 1) = -VA(i,1) |
576 |
|
|
VA(i, JNP) = 0.5*(CRY(i,JNP)-CRY(i+IMH,JMR)) |
577 |
|
|
VA(i+IMH,JNP) = -VA(i,JNP) |
578 |
|
|
enddo |
579 |
|
|
VA(IMR,1)=VA(1,1) |
580 |
|
|
VA(IMR,JNP)=VA(1,JNP) |
581 |
|
|
endif |
582 |
|
|
C |
583 |
|
|
C ****6***0*********0*********0*********0*********0*********0**********72 |
584 |
|
|
do 1000 IC=1,NC |
585 |
|
|
C |
586 |
|
|
do i=1,IMJM |
587 |
|
|
wk1(i,1,1) = 0. |
588 |
|
|
wk1(i,1,2) = 0. |
589 |
|
|
enddo |
590 |
|
|
C |
591 |
|
|
C E-W advective cross term |
592 |
|
|
do 250 j=J1,J2 |
593 |
|
|
if(J.GT.JS .and. J.LT.JN) GO TO 250 |
594 |
|
|
C |
595 |
|
|
do i=1,IMR |
596 |
|
|
qtmp(i) = q(i,j,k,IC) |
597 |
|
|
enddo |
598 |
|
|
C |
599 |
|
|
do i=-IML,0 |
600 |
|
|
qtmp(i) = q(IMR+i,j,k,IC) |
601 |
|
|
qtmp(IMR+1-i) = q(1-i,j,k,IC) |
602 |
|
|
enddo |
603 |
|
|
C |
604 |
|
|
DO 230 i=1,IMR |
605 |
|
|
iu = UA(i,j) |
606 |
|
|
ru = UA(i,j) - iu |
607 |
|
|
iiu = i-iu |
608 |
|
|
if(UA(i,j).GE.0.) then |
609 |
|
|
wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu)) |
610 |
|
|
else |
611 |
|
|
wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1)) |
612 |
|
|
endif |
613 |
|
|
wk1(i,j,1) = wk1(i,j,1) - qtmp(i) |
614 |
|
|
230 continue |
615 |
|
|
250 continue |
616 |
|
|
C |
617 |
|
|
if(JN.ne.0) then |
618 |
|
|
do j=JS+1,JN-1 |
619 |
|
|
C |
620 |
|
|
do i=1,IMR |
621 |
|
|
qtmp(i) = q(i,j,k,IC) |
622 |
|
|
enddo |
623 |
|
|
C |
624 |
|
|
qtmp(0) = q(IMR,J,k,IC) |
625 |
|
|
qtmp(IMR+1) = q( 1,J,k,IC) |
626 |
|
|
C |
627 |
|
|
do i=1,imr |
628 |
|
|
iu = i - UA(i,j) |
629 |
|
|
wk1(i,j,1) = UA(i,j)*(qtmp(iu) - qtmp(iu+1)) |
630 |
|
|
enddo |
631 |
|
|
enddo |
632 |
|
|
endif |
633 |
|
|
C ****6***0*********0*********0*********0*********0*********0**********72 |
634 |
|
|
C Contribution from the N-S advection |
635 |
|
|
do i=1,imr*(j2-j1+1) |
636 |
|
|
JT = REAL(J1) - VA(i,j1) |
637 |
|
|
wk1(i,j1,2) = VA(i,j1) * (q(i,jt,k,IC) - q(i,jt+1,k,IC)) |
638 |
|
|
enddo |
639 |
|
|
C |
640 |
|
|
do i=1,IMJM |
641 |
|
|
wk1(i,1,1) = q(i,1,k,IC) + 0.5*wk1(i,1,1) |
642 |
|
|
wk1(i,1,2) = q(i,1,k,IC) + 0.5*wk1(i,1,2) |
643 |
|
|
enddo |
644 |
|
|
C |
645 |
|
|
if(cross) then |
646 |
|
|
C Add cross terms in the vertical direction. |
647 |
|
|
if(IORD .GE. 2) then |
648 |
|
|
iad = 2 |
649 |
|
|
else |
650 |
|
|
iad = 1 |
651 |
|
|
endif |
652 |
|
|
C |
653 |
|
|
if(JORD .GE. 2) then |
654 |
|
|
jad = 2 |
655 |
|
|
else |
656 |
|
|
jad = 1 |
657 |
|
|
endif |
658 |
|
|
call xadv(IMR,JNP,j1,j2,wk1(1,1,2),UA,JS,JN,IML,DC2,iad) |
659 |
|
|
call yadv(IMR,JNP,j1,j2,wk1(1,1,1),VA,PV,W,jad) |
660 |
|
|
do j=1,JNP |
661 |
|
|
do i=1,IMR |
662 |
|
|
q(i,j,k,IC) = q(i,j,k,IC) + DC2(i,j) + PV(i,j) |
663 |
|
|
enddo |
664 |
|
|
enddo |
665 |
|
|
endif |
666 |
|
|
C |
667 |
|
|
call xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ(1,1,k,IC),wk1(1,1,2) |
668 |
|
|
& ,CRX,fx1,xmass,IORD) |
669 |
|
|
|
670 |
|
|
call ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ(1,1,k,IC),wk1(1,1,1),CRY, |
671 |
|
|
& DC2,ymass,WK1(1,1,3),wk1(1,1,4),WK1(1,1,5),WK1(1,1,6),JORD) |
672 |
|
|
C |
673 |
|
|
1000 continue |
674 |
|
|
1500 continue |
675 |
|
|
C |
676 |
|
|
C ******* Compute vertical mass flux (same unit as PS) *********** |
677 |
|
|
C |
678 |
|
|
C 1st step: compute total column mass CONVERGENCE. |
679 |
|
|
C |
680 |
|
|
do 320 j=1,JNP |
681 |
|
|
do 320 i=1,IMR |
682 |
|
|
320 CRY(i,j) = DPI(i,j,1) |
683 |
|
|
C |
684 |
|
|
do 330 k=2,NLAY |
685 |
|
|
do 330 j=1,JNP |
686 |
|
|
do 330 i=1,IMR |
687 |
|
|
CRY(i,j) = CRY(i,j) + DPI(i,j,k) |
688 |
|
|
330 continue |
689 |
|
|
C |
690 |
|
|
do 360 j=1,JNP |
691 |
|
|
do 360 i=1,IMR |
692 |
|
|
C |
693 |
|
|
C 2nd step: compute PS2 (PS at n+1) using the hydrostatic assumption. |
694 |
|
|
C Changes (increases) to surface pressure = total column mass convergence |
695 |
|
|
C |
696 |
|
|
PS2(i,j) = PS1(i,j) + CRY(i,j) |
697 |
|
|
C |
698 |
|
|
C 3rd step: compute vertical mass flux from mass conservation principle. |
699 |
|
|
C |
700 |
|
|
W(i,j,1) = DPI(i,j,1) - DBK(1)*CRY(i,j) |
701 |
|
|
W(i,j,NLAY) = 0. |
702 |
|
|
360 continue |
703 |
|
|
C |
704 |
|
|
do 370 k=2,NLAY-1 |
705 |
|
|
do 370 j=1,JNP |
706 |
|
|
do 370 i=1,IMR |
707 |
|
|
W(i,j,k) = W(i,j,k-1) + DPI(i,j,k) - DBK(k)*CRY(i,j) |
708 |
|
|
370 continue |
709 |
|
|
C |
710 |
|
|
DO 380 k=1,NLAY |
711 |
|
|
DO 380 j=1,JNP |
712 |
|
|
DO 380 i=1,IMR |
713 |
|
|
delp2(i,j,k) = DAP(k) + DBK(k)*PS2(i,j) |
714 |
|
|
380 continue |
715 |
|
|
C |
716 |
|
|
KRD = max(3, KORD) |
717 |
|
|
do 4000 IC=1,NC |
718 |
|
|
C |
719 |
|
|
C****6***0*********0*********0*********0*********0*********0**********72 |
720 |
|
|
|
721 |
|
|
call FZPPM(IMR,JNP,NLAY,j1,DQ(1,1,1,IC),W,Q(1,1,1,IC),WK1,DPI, |
722 |
|
|
& DC2,CRX,CRY,PU,PV,xmass,ymass,delp1,KRD) |
723 |
|
|
C |
724 |
|
|
|
725 |
|
|
if(fill) call qckxyz(DQ(1,1,1,IC),DC2,IMR,JNP,NLAY,j1,j2, |
726 |
|
|
& cosp,acosp,.false.,IC,NSTEP) |
727 |
|
|
C |
728 |
|
|
C Recover tracer mixing ratio from "density" using predicted |
729 |
|
|
C "air density" (pressure thickness) at time-level n+1 |
730 |
|
|
C |
731 |
|
|
DO k=1,NLAY |
732 |
|
|
DO j=1,JNP |
733 |
|
|
DO i=1,IMR |
734 |
|
|
Q(i,j,k,IC) = DQ(i,j,k,IC) / delp2(i,j,k) |
735 |
|
|
c print*,'i=',i,'j=',j,'k=',k,'Q(i,j,k,IC)=',Q(i,j,k,IC) |
736 |
|
|
enddo |
737 |
|
|
enddo |
738 |
|
|
enddo |
739 |
|
|
C |
740 |
|
|
if(j1.ne.2) then |
741 |
|
|
DO 400 k=1,NLAY |
742 |
|
|
DO 400 I=1,IMR |
743 |
|
|
c j=1 c'est le p�le Sud, j=JNP c'est le p�le Nord |
744 |
|
|
Q(I, 2,k,IC) = Q(I, 1,k,IC) |
745 |
|
|
Q(I,JMR,k,IC) = Q(I,JNP,k,IC) |
746 |
|
|
400 CONTINUE |
747 |
|
|
endif |
748 |
|
|
4000 continue |
749 |
|
|
C |
750 |
|
|
if(j1.ne.2) then |
751 |
|
|
DO 5000 k=1,NLAY |
752 |
|
|
DO 5000 i=1,IMR |
753 |
|
|
W(i, 2,k) = W(i, 1,k) |
754 |
|
|
W(i,JMR,k) = W(i,JNP,k) |
755 |
|
|
5000 continue |
756 |
|
|
endif |
757 |
|
|
C |
758 |
|
|
RETURN |
759 |
|
|
END |
760 |
|
|
C |
761 |
|
|
C****6***0*********0*********0*********0*********0*********0**********72 |
762 |
|
|
subroutine FZPPM(IMR,JNP,NLAY,j1,DQ,WZ,P,DC,DQDT,AR,AL,A6, |
763 |
|
|
& flux,wk1,wk2,wz2,delp,KORD) |
764 |
|
|
implicit none |
765 |
|
|
integer,parameter :: kmax = 150 |
766 |
|
|
real,parameter :: R23 = 2./3., R3 = 1./3. |
767 |
|
|
integer IMR,JNP,NLAY,J1,KORD |
768 |
|
|
real WZ(IMR,JNP,NLAY),P(IMR,JNP,NLAY),DC(IMR,JNP,NLAY), |
769 |
|
|
& wk1(IMR,*),delp(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY), |
770 |
|
|
& DQDT(IMR,JNP,NLAY) |
771 |
|
|
C Assuming JNP >= NLAY |
772 |
|
|
real AR(IMR,*),AL(IMR,*),A6(IMR,*),flux(IMR,*),wk2(IMR,*), |
773 |
|
|
& wz2(IMR,*) |
774 |
|
|
integer JMR,IMJM,NLAYM1,LMT,K,I,J |
775 |
|
|
real c0,c1,c2,tmp,qmax,qmin,a,b,fct,a1,a2,cm,cp |
776 |
|
|
C |
777 |
|
|
JMR = JNP - 1 |
778 |
|
|
IMJM = IMR*JNP |
779 |
|
|
NLAYM1 = NLAY - 1 |
780 |
|
|
C |
781 |
|
|
LMT = KORD - 3 |
782 |
|
|
C |
783 |
|
|
C ****6***0*********0*********0*********0*********0*********0**********72 |
784 |
|
|
C Compute DC for PPM |
785 |
|
|
C ****6***0*********0*********0*********0*********0*********0**********72 |
786 |
|
|
C |
787 |
|
|
do 1000 k=1,NLAYM1 |
788 |
|
|
do 1000 i=1,IMJM |
789 |
|
|
DQDT(i,1,k) = P(i,1,k+1) - P(i,1,k) |
790 |
|
|
1000 continue |
791 |
|
|
C |
792 |
|
|
DO 1220 k=2,NLAYM1 |
793 |
|
|
DO 1220 I=1,IMJM |
794 |
|
|
c0 = delp(i,1,k) / (delp(i,1,k-1)+delp(i,1,k)+delp(i,1,k+1)) |
795 |
|
|
c1 = (delp(i,1,k-1)+0.5*delp(i,1,k))/(delp(i,1,k+1)+delp(i,1,k)) |
796 |
|
|
c2 = (delp(i,1,k+1)+0.5*delp(i,1,k))/(delp(i,1,k-1)+delp(i,1,k)) |
797 |
|
|
tmp = c0*(c1*DQDT(i,1,k) + c2*DQDT(i,1,k-1)) |
798 |
|
|
Qmax = max(P(i,1,k-1),P(i,1,k),P(i,1,k+1)) - P(i,1,k) |
799 |
|
|
Qmin = P(i,1,k) - min(P(i,1,k-1),P(i,1,k),P(i,1,k+1)) |
800 |
|
|
DC(i,1,k) = sign(min(abs(tmp),Qmax,Qmin), tmp) |
801 |
|
|
1220 CONTINUE |
802 |
|
|
|
803 |
|
|
C |
804 |
|
|
C ****6***0*********0*********0*********0*********0*********0**********72 |
805 |
|
|
C Loop over latitudes (to save memory) |
806 |
|
|
C ****6***0*********0*********0*********0*********0*********0**********72 |
807 |
|
|
C |
808 |
|
|
DO 2000 j=1,JNP |
809 |
|
|
if((j.eq.2 .or. j.eq.JMR) .and. j1.ne.2) goto 2000 |
810 |
|
|
C |
811 |
|
|
DO k=1,NLAY |
812 |
|
|
DO i=1,IMR |
813 |
|
|
wz2(i,k) = WZ(i,j,k) |
814 |
|
|
wk1(i,k) = P(i,j,k) |
815 |
|
|
wk2(i,k) = delp(i,j,k) |
816 |
|
|
flux(i,k) = DC(i,j,k) !this flux is actually the monotone slope |
817 |
|
|
enddo |
818 |
|
|
enddo |
819 |
|
|
C |
820 |
|
|
C****6***0*********0*********0*********0*********0*********0**********72 |
821 |
|
|
C Compute first guesses at cell interfaces |
822 |
|
|
C First guesses are required to be continuous. |
823 |
|
|
C ****6***0*********0*********0*********0*********0*********0**********72 |
824 |
|
|
C |
825 |
|
|
C three-cell parabolic subgrid distribution at model top |
826 |
|
|
C two-cell parabolic with zero gradient subgrid distribution |
827 |
|
|
C at the surface. |
828 |
|
|
C |
829 |
|
|
C First guess top edge value |
830 |
|
|
DO 10 i=1,IMR |
831 |
|
|
C three-cell PPM |
832 |
|
|
C Compute a,b, and c of q = aP**2 + bP + c using cell averages and delp |
833 |
|
|
a = 3.*( DQDT(i,j,2) - DQDT(i,j,1)*(wk2(i,2)+wk2(i,3))/ |
834 |
|
|
& (wk2(i,1)+wk2(i,2)) ) / |
835 |
|
|
& ( (wk2(i,2)+wk2(i,3))*(wk2(i,1)+wk2(i,2)+wk2(i,3)) ) |
836 |
|
|
b = 2.*DQDT(i,j,1)/(wk2(i,1)+wk2(i,2)) - |
837 |
|
|
& R23*a*(2.*wk2(i,1)+wk2(i,2)) |
838 |
|
|
AL(i,1) = wk1(i,1) - wk2(i,1)*(R3*a*wk2(i,1) + 0.5*b) |
839 |
|
|
AL(i,2) = wk2(i,1)*(a*wk2(i,1) + b) + AL(i,1) |
840 |
|
|
C |
841 |
|
|
C Check if change sign |
842 |
|
|
if(wk1(i,1)*AL(i,1).le.0.) then |
843 |
|
|
AL(i,1) = 0. |
844 |
|
|
flux(i,1) = 0. |
845 |
|
|
else |
846 |
|
|
flux(i,1) = wk1(i,1) - AL(i,1) |
847 |
|
|
endif |
848 |
|
|
10 continue |
849 |
|
|
C |
850 |
|
|
C Bottom |
851 |
|
|
DO 15 i=1,IMR |
852 |
|
|
C 2-cell PPM with zero gradient right at the surface |
853 |
|
|
C |
854 |
|
|
fct = DQDT(i,j,NLAYM1)*wk2(i,NLAY)**2 / |
855 |
|
|
& ( (wk2(i,NLAY)+wk2(i,NLAYM1))*(2.*wk2(i,NLAY)+wk2(i,NLAYM1))) |
856 |
|
|
AR(i,NLAY) = wk1(i,NLAY) + fct |
857 |
|
|
AL(i,NLAY) = wk1(i,NLAY) - (fct+fct) |
858 |
|
|
if(wk1(i,NLAY)*AR(i,NLAY).le.0.) AR(i,NLAY) = 0. |
859 |
|
|
flux(i,NLAY) = AR(i,NLAY) - wk1(i,NLAY) |
860 |
|
|
15 continue |
861 |
|
|
|
862 |
|
|
C |
863 |
|
|
C****6***0*********0*********0*********0*********0*********0**********72 |
864 |
|
|
C 4th order interpolation in the interior. |
865 |
|
|
C****6***0*********0*********0*********0*********0*********0**********72 |
866 |
|
|
C |
867 |
|
|
DO 14 k=3,NLAYM1 |
868 |
|
|
DO 12 i=1,IMR |
869 |
|
|
c1 = DQDT(i,j,k-1)*wk2(i,k-1) / (wk2(i,k-1)+wk2(i,k)) |
870 |
|
|
c2 = 2. / (wk2(i,k-2)+wk2(i,k-1)+wk2(i,k)+wk2(i,k+1)) |
871 |
|
|
A1 = (wk2(i,k-2)+wk2(i,k-1)) / (2.*wk2(i,k-1)+wk2(i,k)) |
872 |
|
|
A2 = (wk2(i,k )+wk2(i,k+1)) / (2.*wk2(i,k)+wk2(i,k-1)) |
873 |
|
|
AL(i,k) = wk1(i,k-1) + c1 + c2 * |
874 |
|
|
& ( wk2(i,k )*(c1*(A1 - A2)+A2*flux(i,k-1)) - |
875 |
|
|
& wk2(i,k-1)*A1*flux(i,k) ) |
876 |
|
|
C print *,'AL1',i,k, AL(i,k) |
877 |
|
|
12 CONTINUE |
878 |
|
|
14 continue |
879 |
|
|
C |
880 |
|
|
do 20 i=1,IMR*NLAYM1 |
881 |
|
|
AR(i,1) = AL(i,2) |
882 |
|
|
C print *,'AR1',i,AR(i,1) |
883 |
|
|
20 continue |
884 |
|
|
C |
885 |
|
|
do 30 i=1,IMR*NLAY |
886 |
|
|
A6(i,1) = 3.*(wk1(i,1)+wk1(i,1) - (AL(i,1)+AR(i,1))) |
887 |
|
|
C print *,'A61',i,A6(i,1) |
888 |
|
|
30 continue |
889 |
|
|
C |
890 |
|
|
C****6***0*********0*********0*********0*********0*********0**********72 |
891 |
|
|
C Top & Bot always monotonic |
892 |
|
|
call lmtppm(flux(1,1),A6(1,1),AR(1,1),AL(1,1),wk1(1,1),IMR,0) |
893 |
|
|
call lmtppm(flux(1,NLAY),A6(1,NLAY),AR(1,NLAY),AL(1,NLAY), |
894 |
|
|
& wk1(1,NLAY),IMR,0) |
895 |
|
|
C |
896 |
|
|
C Interior depending on KORD |
897 |
|
|
if(LMT.LE.2) |
898 |
|
|
& call lmtppm(flux(1,2),A6(1,2),AR(1,2),AL(1,2),wk1(1,2), |
899 |
|
|
& IMR*(NLAY-2),LMT) |
900 |
|
|
C |
901 |
|
|
C****6***0*********0*********0*********0*********0*********0**********72 |
902 |
|
|
C |
903 |
|
|
DO 140 i=1,IMR*NLAYM1 |
904 |
|
|
IF(wz2(i,1).GT.0.) then |
905 |
|
|
CM = wz2(i,1) / wk2(i,1) |
906 |
|
|
flux(i,2) = AR(i,1)+0.5*CM*(AL(i,1)-AR(i,1)+A6(i,1)*(1.-R23*CM)) |
907 |
|
|
else |
908 |
|
|
C print *,'test2-0',i,j,wz2(i,1),wk2(i,2) |
909 |
|
|
CP= wz2(i,1) / wk2(i,2) |
910 |
|
|
C print *,'testCP',CP |
911 |
|
|
flux(i,2) = AL(i,2)+0.5*CP*(AL(i,2)-AR(i,2)-A6(i,2)*(1.+R23*CP)) |
912 |
|
|
C print *,'test2',i, AL(i,2),AR(i,2),A6(i,2),R23 |
913 |
|
|
endif |
914 |
|
|
140 continue |
915 |
|
|
C |
916 |
|
|
DO 250 i=1,IMR*NLAYM1 |
917 |
|
|
flux(i,2) = wz2(i,1) * flux(i,2) |
918 |
|
|
250 continue |
919 |
|
|
C |
920 |
|
|
do 350 i=1,IMR |
921 |
|
|
DQ(i,j, 1) = DQ(i,j, 1) - flux(i, 2) |
922 |
|
|
DQ(i,j,NLAY) = DQ(i,j,NLAY) + flux(i,NLAY) |
923 |
|
|
350 continue |
924 |
|
|
C |
925 |
|
|
do 360 k=2,NLAYM1 |
926 |
|
|
do 360 i=1,IMR |
927 |
|
|
360 DQ(i,j,k) = DQ(i,j,k) + flux(i,k) - flux(i,k+1) |
928 |
|
|
2000 continue |
929 |
|
|
return |
930 |
|
|
end |
931 |
|
|
C |
932 |
|
|
subroutine xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ,Q,UC, |
933 |
|
|
& fx1,xmass,IORD) |
934 |
|
|
implicit none |
935 |
|
|
integer IMR,JNP,IML,j1,j2,JN,JS,IORD |
936 |
|
|
real PU,DQ,Q,UC,fx1,xmass |
937 |
|
|
real dc,qtmp |
938 |
|
|
integer ISAVE(IMR) |
939 |
|
|
dimension UC(IMR,*),DC(-IML:IMR+IML+1),xmass(IMR,JNP) |
940 |
|
|
& ,fx1(IMR+1),DQ(IMR,JNP),qtmp(-IML:IMR+1+IML) |
941 |
|
|
dimension PU(IMR,JNP),Q(IMR,JNP) |
942 |
|
|
integer jvan,j1vl,j2vl,j,i,iu,itmp,ist,imp |
943 |
|
|
real rut |
944 |
|
|
C |
945 |
|
|
IMP = IMR + 1 |
946 |
|
|
C |
947 |
|
|
C van Leer at high latitudes |
948 |
|
|
jvan = max(1,JNP/18) |
949 |
|
|
j1vl = j1+jvan |
950 |
|
|
j2vl = j2-jvan |
951 |
|
|
C |
952 |
|
|
do 1310 j=j1,j2 |
953 |
|
|
C |
954 |
|
|
do i=1,IMR |
955 |
|
|
qtmp(i) = q(i,j) |
956 |
|
|
enddo |
957 |
|
|
C |
958 |
|
|
if(j.ge.JN .or. j.le.JS) goto 2222 |
959 |
|
|
C ************* Eulerian ********** |
960 |
|
|
C |
961 |
|
|
qtmp(0) = q(IMR,J) |
962 |
|
|
qtmp(-1) = q(IMR-1,J) |
963 |
|
|
qtmp(IMP) = q(1,J) |
964 |
|
|
qtmp(IMP+1) = q(2,J) |
965 |
|
|
C |
966 |
|
|
IF(IORD.eq.1 .or. j.eq.j1. or. j.eq.j2) THEN |
967 |
|
|
DO 1406 i=1,IMR |
968 |
|
|
iu = REAL(i) - uc(i,j) |
969 |
|
|
1406 fx1(i) = qtmp(iu) |
970 |
|
|
ELSE |
971 |
|
|
call xmist(IMR,IML,Qtmp,DC) |
972 |
|
|
DC(0) = DC(IMR) |
973 |
|
|
C |
974 |
|
|
if(IORD.eq.2 .or. j.le.j1vl .or. j.ge.j2vl) then |
975 |
|
|
DO 1408 i=1,IMR |
976 |
|
|
iu = REAL(i) - uc(i,j) |
977 |
|
|
1408 fx1(i) = qtmp(iu) + DC(iu)*(sign(1.,uc(i,j))-uc(i,j)) |
978 |
|
|
else |
979 |
|
|
call fxppm(IMR,IML,UC(1,j),Qtmp,DC,fx1,IORD) |
980 |
|
|
endif |
981 |
|
|
C |
982 |
|
|
ENDIF |
983 |
|
|
C |
984 |
|
|
DO 1506 i=1,IMR |
985 |
|
|
1506 fx1(i) = fx1(i)*xmass(i,j) |
986 |
|
|
C |
987 |
|
|
goto 1309 |
988 |
|
|
C |
989 |
|
|
C ***** Conservative (flux-form) Semi-Lagrangian transport ***** |
990 |
|
|
C |
991 |
|
|
2222 continue |
992 |
|
|
C |
993 |
|
|
do i=-IML,0 |
994 |
|
|
qtmp(i) = q(IMR+i,j) |
995 |
|
|
qtmp(IMP-i) = q(1-i,j) |
996 |
|
|
enddo |
997 |
|
|
C |
998 |
|
|
IF(IORD.eq.1 .or. j.eq.j1. or. j.eq.j2) THEN |
999 |
|
|
DO 1306 i=1,IMR |
1000 |
|
|
itmp = INT(uc(i,j)) |
1001 |
|
|
ISAVE(i) = i - itmp |
1002 |
|
|
iu = i - uc(i,j) |
1003 |
|
|
1306 fx1(i) = (uc(i,j) - itmp)*qtmp(iu) |
1004 |
|
|
ELSE |
1005 |
|
|
call xmist(IMR,IML,Qtmp,DC) |
1006 |
|
|
C |
1007 |
|
|
do i=-IML,0 |
1008 |
|
|
DC(i) = DC(IMR+i) |
1009 |
|
|
DC(IMP-i) = DC(1-i) |
1010 |
|
|
enddo |
1011 |
|
|
C |
1012 |
|
|
DO 1307 i=1,IMR |
1013 |
|
|
itmp = INT(uc(i,j)) |
1014 |
|
|
rut = uc(i,j) - itmp |
1015 |
|
|
ISAVE(i) = i - itmp |
1016 |
|
|
iu = i - uc(i,j) |
1017 |
|
|
1307 fx1(i) = rut*(qtmp(iu) + DC(iu)*(sign(1.,rut) - rut)) |
1018 |
|
|
ENDIF |
1019 |
|
|
C |
1020 |
|
|
do 1308 i=1,IMR |
1021 |
|
|
IF(uc(i,j).GT.1.) then |
1022 |
|
|
CDIR$ NOVECTOR |
1023 |
|
|
do ist = ISAVE(i),i-1 |
1024 |
|
|
fx1(i) = fx1(i) + qtmp(ist) |
1025 |
|
|
enddo |
1026 |
|
|
elseIF(uc(i,j).LT.-1.) then |
1027 |
|
|
do ist = i,ISAVE(i)-1 |
1028 |
|
|
fx1(i) = fx1(i) - qtmp(ist) |
1029 |
|
|
enddo |
1030 |
|
|
CDIR$ VECTOR |
1031 |
|
|
endif |
1032 |
|
|
1308 continue |
1033 |
|
|
do i=1,IMR |
1034 |
|
|
fx1(i) = PU(i,j)*fx1(i) |
1035 |
|
|
enddo |
1036 |
|
|
C |
1037 |
|
|
C *************************************** |
1038 |
|
|
C |
1039 |
|
|
1309 fx1(IMP) = fx1(1) |
1040 |
|
|
DO 1215 i=1,IMR |
1041 |
|
|
1215 DQ(i,j) = DQ(i,j) + fx1(i)-fx1(i+1) |
1042 |
|
|
C |
1043 |
|
|
C *************************************** |
1044 |
|
|
C |
1045 |
|
|
1310 continue |
1046 |
|
|
return |
1047 |
|
|
end |
1048 |
|
|
C |
1049 |
|
|
subroutine fxppm(IMR,IML,UT,P,DC,flux,IORD) |
1050 |
|
|
implicit none |
1051 |
|
|
integer IMR,IML,IORD |
1052 |
|
|
real UT,P,DC,flux |
1053 |
|
|
real,parameter :: R3 = 1./3., R23 = 2./3. |
1054 |
|
|
DIMENSION UT(*),flux(*),P(-IML:IMR+IML+1),DC(-IML:IMR+IML+1) |
1055 |
|
|
REAL :: AR(0:IMR),AL(0:IMR),A6(0:IMR) |
1056 |
|
|
integer LMT,IMP,JLVL,i |
1057 |
|
|
c logical first |
1058 |
|
|
c data first /.true./ |
1059 |
|
|
c SAVE LMT |
1060 |
|
|
c if(first) then |
1061 |
|
|
C |
1062 |
|
|
C correction calcul de LMT a chaque passage pour pouvoir choisir |
1063 |
|
|
c plusieurs schemas PPM pour differents traceurs |
1064 |
|
|
c IF (IORD.LE.0) then |
1065 |
|
|
c if(IMR.GE.144) then |
1066 |
|
|
c LMT = 0 |
1067 |
|
|
c elseif(IMR.GE.72) then |
1068 |
|
|
c LMT = 1 |
1069 |
|
|
c else |
1070 |
|
|
c LMT = 2 |
1071 |
|
|
c endif |
1072 |
|
|
c else |
1073 |
|
|
c LMT = IORD - 3 |
1074 |
|
|
c endif |
1075 |
|
|
C |
1076 |
|
|
LMT = IORD - 3 |
1077 |
|
|
c write(6,*) 'PPM option in E-W direction = ', LMT |
1078 |
|
|
c first = .false. |
1079 |
|
|
C endif |
1080 |
|
|
C |
1081 |
|
|
DO 10 i=1,IMR |
1082 |
|
|
10 AL(i) = 0.5*(p(i-1)+p(i)) + (DC(i-1) - DC(i))*R3 |
1083 |
|
|
C |
1084 |
|
|
do 20 i=1,IMR-1 |
1085 |
|
|
20 AR(i) = AL(i+1) |
1086 |
|
|
AR(IMR) = AL(1) |
1087 |
|
|
C |
1088 |
|
|
do 30 i=1,IMR |
1089 |
|
|
30 A6(i) = 3.*(p(i)+p(i) - (AL(i)+AR(i))) |
1090 |
|
|
C |
1091 |
|
|
if(LMT.LE.2) call lmtppm(DC(1),A6(1),AR(1),AL(1),P(1),IMR,LMT) |
1092 |
|
|
C |
1093 |
|
|
AL(0) = AL(IMR) |
1094 |
|
|
AR(0) = AR(IMR) |
1095 |
|
|
A6(0) = A6(IMR) |
1096 |
|
|
C |
1097 |
|
|
DO i=1,IMR |
1098 |
|
|
IF(UT(i).GT.0.) then |
1099 |
|
|
flux(i) = AR(i-1) + 0.5*UT(i)*(AL(i-1) - AR(i-1) + |
1100 |
|
|
& A6(i-1)*(1.-R23*UT(i)) ) |
1101 |
|
|
else |
1102 |
|
|
flux(i) = AL(i) - 0.5*UT(i)*(AR(i) - AL(i) + |
1103 |
|
|
& A6(i)*(1.+R23*UT(i))) |
1104 |
|
|
endif |
1105 |
|
|
enddo |
1106 |
|
|
return |
1107 |
|
|
end |
1108 |
|
|
C |
1109 |
|
|
subroutine xmist(IMR,IML,P,DC) |
1110 |
|
|
implicit none |
1111 |
|
|
integer IMR,IML |
1112 |
|
|
real,parameter :: R24 = 1./24. |
1113 |
|
|
real :: P(-IML:IMR+1+IML),DC(-IML:IMR+1+IML) |
1114 |
|
|
integer :: i |
1115 |
|
|
real :: tmp,pmax,pmin |
1116 |
|
|
C |
1117 |
|
|
do 10 i=1,IMR |
1118 |
|
|
tmp = R24*(8.*(p(i+1) - p(i-1)) + p(i-2) - p(i+2)) |
1119 |
|
|
Pmax = max(P(i-1), p(i), p(i+1)) - p(i) |
1120 |
|
|
Pmin = p(i) - min(P(i-1), p(i), p(i+1)) |
1121 |
|
|
10 DC(i) = sign(min(abs(tmp),Pmax,Pmin), tmp) |
1122 |
|
|
return |
1123 |
|
|
end |
1124 |
|
|
C |
1125 |
|
|
subroutine ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ,P,VC,DC2 |
1126 |
|
|
& ,ymass,fx,A6,AR,AL,JORD) |
1127 |
|
|
implicit none |
1128 |
|
|
integer :: IMR,JNP,j1,j2,JORD |
1129 |
|
|
real :: acosp,RCAP,DQ,P,VC,DC2,ymass,fx,A6,AR,AL |
1130 |
|
|
dimension P(IMR,JNP),VC(IMR,JNP),ymass(IMR,JNP) |
1131 |
|
|
& ,DC2(IMR,JNP),DQ(IMR,JNP),acosp(JNP) |
1132 |
|
|
C Work array |
1133 |
|
|
DIMENSION fx(IMR,JNP),AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP) |
1134 |
|
|
integer :: JMR,len,i,jt,j |
1135 |
|
|
real :: sum1,sum2 |
1136 |
|
|
C |
1137 |
|
|
JMR = JNP - 1 |
1138 |
|
|
len = IMR*(J2-J1+2) |
1139 |
|
|
C |
1140 |
|
|
if(JORD.eq.1) then |
1141 |
|
|
DO 1000 i=1,len |
1142 |
|
|
JT = REAL(J1) - VC(i,J1) |
1143 |
|
|
1000 fx(i,j1) = p(i,JT) |
1144 |
|
|
else |
1145 |
|
|
|
1146 |
|
|
call ymist(IMR,JNP,j1,P,DC2,4) |
1147 |
|
|
C |
1148 |
|
|
if(JORD.LE.0 .or. JORD.GE.3) then |
1149 |
|
|
|
1150 |
|
|
call fyppm(VC,P,DC2,fx,IMR,JNP,j1,j2,A6,AR,AL,JORD) |
1151 |
|
|
|
1152 |
|
|
else |
1153 |
|
|
DO 1200 i=1,len |
1154 |
|
|
JT = REAL(J1) - VC(i,J1) |
1155 |
|
|
1200 fx(i,j1) = p(i,JT) + (sign(1.,VC(i,j1))-VC(i,j1))*DC2(i,JT) |
1156 |
|
|
endif |
1157 |
|
|
endif |
1158 |
|
|
C |
1159 |
|
|
DO 1300 i=1,len |
1160 |
|
|
1300 fx(i,j1) = fx(i,j1)*ymass(i,j1) |
1161 |
|
|
C |
1162 |
|
|
DO 1400 j=j1,j2 |
1163 |
|
|
DO 1400 i=1,IMR |
1164 |
|
|
1400 DQ(i,j) = DQ(i,j) + (fx(i,j) - fx(i,j+1)) * acosp(j) |
1165 |
|
|
C |
1166 |
|
|
C Poles |
1167 |
|
|
sum1 = fx(IMR,j1 ) |
1168 |
|
|
sum2 = fx(IMR,J2+1) |
1169 |
|
|
do i=1,IMR-1 |
1170 |
|
|
sum1 = sum1 + fx(i,j1 ) |
1171 |
|
|
sum2 = sum2 + fx(i,J2+1) |
1172 |
|
|
enddo |
1173 |
|
|
C |
1174 |
|
|
sum1 = DQ(1, 1) - sum1 * RCAP |
1175 |
|
|
sum2 = DQ(1,JNP) + sum2 * RCAP |
1176 |
|
|
do i=1,IMR |
1177 |
|
|
DQ(i, 1) = sum1 |
1178 |
|
|
DQ(i,JNP) = sum2 |
1179 |
|
|
enddo |
1180 |
|
|
C |
1181 |
|
|
if(j1.ne.2) then |
1182 |
|
|
do i=1,IMR |
1183 |
|
|
DQ(i, 2) = sum1 |
1184 |
|
|
DQ(i,JMR) = sum2 |
1185 |
|
|
enddo |
1186 |
|
|
endif |
1187 |
|
|
C |
1188 |
|
|
return |
1189 |
|
|
end |
1190 |
|
|
C |
1191 |
|
|
subroutine ymist(IMR,JNP,j1,P,DC,ID) |
1192 |
|
|
implicit none |
1193 |
|
|
integer :: IMR,JNP,j1,ID |
1194 |
|
|
real,parameter :: R24 = 1./24. |
1195 |
|
|
real :: P(IMR,JNP),DC(IMR,JNP) |
1196 |
|
|
integer :: iimh,jmr,ijm3,imh,i |
1197 |
|
|
real :: pmax,pmin,tmp |
1198 |
|
|
C |
1199 |
|
|
IMH = IMR / 2 |
1200 |
|
|
JMR = JNP - 1 |
1201 |
|
|
IJM3 = IMR*(JMR-3) |
1202 |
|
|
C |
1203 |
|
|
IF(ID.EQ.2) THEN |
1204 |
|
|
do 10 i=1,IMR*(JMR-1) |
1205 |
|
|
tmp = 0.25*(p(i,3) - p(i,1)) |
1206 |
|
|
Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
1207 |
|
|
Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
1208 |
|
|
DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
1209 |
|
|
10 CONTINUE |
1210 |
|
|
ELSE |
1211 |
|
|
do 12 i=1,IMH |
1212 |
|
|
C J=2 |
1213 |
|
|
tmp = (8.*(p(i,3) - p(i,1)) + p(i+IMH,2) - p(i,4))*R24 |
1214 |
|
|
Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
1215 |
|
|
Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
1216 |
|
|
DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
1217 |
|
|
C J=JMR |
1218 |
|
|
tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i+IMH,JMR))*R24 |
1219 |
|
|
Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR) |
1220 |
|
|
Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP)) |
1221 |
|
|
DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
1222 |
|
|
12 CONTINUE |
1223 |
|
|
do 14 i=IMH+1,IMR |
1224 |
|
|
C J=2 |
1225 |
|
|
tmp = (8.*(p(i,3) - p(i,1)) + p(i-IMH,2) - p(i,4))*R24 |
1226 |
|
|
Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
1227 |
|
|
Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
1228 |
|
|
DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
1229 |
|
|
C J=JMR |
1230 |
|
|
tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i-IMH,JMR))*R24 |
1231 |
|
|
Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR) |
1232 |
|
|
Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP)) |
1233 |
|
|
DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
1234 |
|
|
14 CONTINUE |
1235 |
|
|
C |
1236 |
|
|
do 15 i=1,IJM3 |
1237 |
|
|
tmp = (8.*(p(i,4) - p(i,2)) + p(i,1) - p(i,5))*R24 |
1238 |
|
|
Pmax = max(p(i,2),p(i,3),p(i,4)) - p(i,3) |
1239 |
|
|
Pmin = p(i,3) - min(p(i,2),p(i,3),p(i,4)) |
1240 |
|
|
DC(i,3) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
1241 |
|
|
15 CONTINUE |
1242 |
|
|
ENDIF |
1243 |
|
|
C |
1244 |
|
|
if(j1.ne.2) then |
1245 |
|
|
do i=1,IMR |
1246 |
|
|
DC(i,1) = 0. |
1247 |
|
|
DC(i,JNP) = 0. |
1248 |
|
|
enddo |
1249 |
|
|
else |
1250 |
|
|
C Determine slopes in polar caps for scalars! |
1251 |
|
|
C |
1252 |
|
|
do 13 i=1,IMH |
1253 |
|
|
C South |
1254 |
|
|
tmp = 0.25*(p(i,2) - p(i+imh,2)) |
1255 |
|
|
Pmax = max(p(i,2),p(i,1), p(i+imh,2)) - p(i,1) |
1256 |
|
|
Pmin = p(i,1) - min(p(i,2),p(i,1), p(i+imh,2)) |
1257 |
|
|
DC(i,1)=sign(min(abs(tmp),Pmax,Pmin),tmp) |
1258 |
|
|
C North. |
1259 |
|
|
tmp = 0.25*(p(i+imh,JMR) - p(i,JMR)) |
1260 |
|
|
Pmax = max(p(i+imh,JMR),p(i,jnp), p(i,JMR)) - p(i,JNP) |
1261 |
|
|
Pmin = p(i,JNP) - min(p(i+imh,JMR),p(i,jnp), p(i,JMR)) |
1262 |
|
|
DC(i,JNP) = sign(min(abs(tmp),Pmax,pmin),tmp) |
1263 |
|
|
13 continue |
1264 |
|
|
C |
1265 |
|
|
do 25 i=imh+1,IMR |
1266 |
|
|
DC(i, 1) = - DC(i-imh, 1) |
1267 |
|
|
DC(i,JNP) = - DC(i-imh,JNP) |
1268 |
|
|
25 continue |
1269 |
|
|
endif |
1270 |
|
|
return |
1271 |
|
|
end |
1272 |
|
|
C |
1273 |
|
|
subroutine fyppm(VC,P,DC,flux,IMR,JNP,j1,j2,A6,AR,AL,JORD) |
1274 |
|
|
implicit none |
1275 |
|
|
integer IMR,JNP,j1,j2,JORD |
1276 |
|
|
real,parameter :: R3 = 1./3., R23 = 2./3. |
1277 |
|
|
real VC(IMR,*),flux(IMR,*),P(IMR,*),DC(IMR,*) |
1278 |
|
|
C Local work arrays. |
1279 |
|
|
real AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP) |
1280 |
|
|
integer LMT,i |
1281 |
|
|
integer IMH,JMR,j11,IMJM1,len |
1282 |
|
|
c logical first |
1283 |
|
|
C data first /.true./ |
1284 |
|
|
C SAVE LMT |
1285 |
|
|
C |
1286 |
|
|
IMH = IMR / 2 |
1287 |
|
|
JMR = JNP - 1 |
1288 |
|
|
j11 = j1-1 |
1289 |
|
|
IMJM1 = IMR*(J2-J1+2) |
1290 |
|
|
len = IMR*(J2-J1+3) |
1291 |
|
|
C if(first) then |
1292 |
|
|
C IF(JORD.LE.0) then |
1293 |
|
|
C if(JMR.GE.90) then |
1294 |
|
|
C LMT = 0 |
1295 |
|
|
C elseif(JMR.GE.45) then |
1296 |
|
|
C LMT = 1 |
1297 |
|
|
C else |
1298 |
|
|
C LMT = 2 |
1299 |
|
|
C endif |
1300 |
|
|
C else |
1301 |
|
|
C LMT = JORD - 3 |
1302 |
|
|
C endif |
1303 |
|
|
C |
1304 |
|
|
C first = .false. |
1305 |
|
|
C endif |
1306 |
|
|
C |
1307 |
|
|
c modifs pour pouvoir choisir plusieurs schemas PPM |
1308 |
|
|
LMT = JORD - 3 |
1309 |
|
|
C |
1310 |
|
|
DO 10 i=1,IMR*JMR |
1311 |
|
|
AL(i,2) = 0.5*(p(i,1)+p(i,2)) + (DC(i,1) - DC(i,2))*R3 |
1312 |
|
|
AR(i,1) = AL(i,2) |
1313 |
|
|
10 CONTINUE |
1314 |
|
|
C |
1315 |
|
|
CPoles: |
1316 |
|
|
C |
1317 |
|
|
DO i=1,IMH |
1318 |
|
|
AL(i,1) = AL(i+IMH,2) |
1319 |
|
|
AL(i+IMH,1) = AL(i,2) |
1320 |
|
|
C |
1321 |
|
|
AR(i,JNP) = AR(i+IMH,JMR) |
1322 |
|
|
AR(i+IMH,JNP) = AR(i,JMR) |
1323 |
|
|
ENDDO |
1324 |
|
|
|
1325 |
|
|
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
1326 |
|
|
c Rajout pour LMDZ.3.3 |
1327 |
|
|
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
1328 |
|
|
AR(IMR,1)=AL(1,1) |
1329 |
|
|
AR(IMR,JNP)=AL(1,JNP) |
1330 |
|
|
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
1331 |
|
|
|
1332 |
|
|
|
1333 |
|
|
do 30 i=1,len |
1334 |
|
|
30 A6(i,j11) = 3.*(p(i,j11)+p(i,j11) - (AL(i,j11)+AR(i,j11))) |
1335 |
|
|
C |
1336 |
|
|
if(LMT.le.2) call lmtppm(DC(1,j11),A6(1,j11),AR(1,j11) |
1337 |
|
|
& ,AL(1,j11),P(1,j11),len,LMT) |
1338 |
|
|
C |
1339 |
|
|
|
1340 |
|
|
DO 140 i=1,IMJM1 |
1341 |
|
|
IF(VC(i,j1).GT.0.) then |
1342 |
|
|
flux(i,j1) = AR(i,j11) + 0.5*VC(i,j1)*(AL(i,j11) - AR(i,j11) + |
1343 |
|
|
& A6(i,j11)*(1.-R23*VC(i,j1)) ) |
1344 |
|
|
else |
1345 |
|
|
flux(i,j1) = AL(i,j1) - 0.5*VC(i,j1)*(AR(i,j1) - AL(i,j1) + |
1346 |
|
|
& A6(i,j1)*(1.+R23*VC(i,j1))) |
1347 |
|
|
endif |
1348 |
|
|
140 continue |
1349 |
|
|
return |
1350 |
|
|
end |
1351 |
|
|
C |
1352 |
|
|
subroutine yadv(IMR,JNP,j1,j2,p,VA,ady,wk,IAD) |
1353 |
|
|
implicit none |
1354 |
|
|
integer IMR,JNP,j1,j2,IAD |
1355 |
|
|
REAL p(IMR,JNP),ady(IMR,JNP),VA(IMR,JNP) |
1356 |
|
|
REAL WK(IMR,-1:JNP+2) |
1357 |
|
|
INTEGER JMR,IMH,i,j,jp |
1358 |
|
|
REAL rv,a1,b1,sum1,sum2 |
1359 |
|
|
C |
1360 |
|
|
JMR = JNP-1 |
1361 |
|
|
IMH = IMR/2 |
1362 |
|
|
do j=1,JNP |
1363 |
|
|
do i=1,IMR |
1364 |
|
|
wk(i,j) = p(i,j) |
1365 |
|
|
enddo |
1366 |
|
|
enddo |
1367 |
|
|
C Poles: |
1368 |
|
|
do i=1,IMH |
1369 |
|
|
wk(i, -1) = p(i+IMH,3) |
1370 |
|
|
wk(i+IMH,-1) = p(i,3) |
1371 |
|
|
wk(i, 0) = p(i+IMH,2) |
1372 |
|
|
wk(i+IMH,0) = p(i,2) |
1373 |
|
|
wk(i,JNP+1) = p(i+IMH,JMR) |
1374 |
|
|
wk(i+IMH,JNP+1) = p(i,JMR) |
1375 |
|
|
wk(i,JNP+2) = p(i+IMH,JNP-2) |
1376 |
|
|
wk(i+IMH,JNP+2) = p(i,JNP-2) |
1377 |
|
|
enddo |
1378 |
|
|
c write(*,*) 'toto 1' |
1379 |
|
|
C -------------------------------- |
1380 |
|
|
IF(IAD.eq.2) then |
1381 |
|
|
do j=j1-1,j2+1 |
1382 |
|
|
do i=1,IMR |
1383 |
|
|
c write(*,*) 'avt NINT','i=',i,'j=',j |
1384 |
|
|
JP = NINT(VA(i,j)) |
1385 |
|
|
rv = JP - VA(i,j) |
1386 |
|
|
c write(*,*) 'VA=',VA(i,j), 'JP1=',JP,'rv=',rv |
1387 |
|
|
JP = j - JP |
1388 |
|
|
c write(*,*) 'JP2=',JP |
1389 |
|
|
a1 = 0.5*(wk(i,jp+1)+wk(i,jp-1)) - wk(i,jp) |
1390 |
|
|
b1 = 0.5*(wk(i,jp+1)-wk(i,jp-1)) |
1391 |
|
|
c write(*,*) 'a1=',a1,'b1=',b1 |
1392 |
|
|
ady(i,j) = wk(i,jp) + rv*(a1*rv + b1) - wk(i,j) |
1393 |
|
|
enddo |
1394 |
|
|
enddo |
1395 |
|
|
c write(*,*) 'toto 2' |
1396 |
|
|
C |
1397 |
|
|
ELSEIF(IAD.eq.1) then |
1398 |
|
|
do j=j1-1,j2+1 |
1399 |
|
|
do i=1,imr |
1400 |
|
|
JP = REAL(j)-VA(i,j) |
1401 |
|
|
ady(i,j) = VA(i,j)*(wk(i,jp)-wk(i,jp+1)) |
1402 |
|
|
enddo |
1403 |
|
|
enddo |
1404 |
|
|
ENDIF |
1405 |
|
|
C |
1406 |
|
|
if(j1.ne.2) then |
1407 |
|
|
sum1 = 0. |
1408 |
|
|
sum2 = 0. |
1409 |
|
|
do i=1,imr |
1410 |
|
|
sum1 = sum1 + ady(i,2) |
1411 |
|
|
sum2 = sum2 + ady(i,JMR) |
1412 |
|
|
enddo |
1413 |
|
|
sum1 = sum1 / IMR |
1414 |
|
|
sum2 = sum2 / IMR |
1415 |
|
|
C |
1416 |
|
|
do i=1,imr |
1417 |
|
|
ady(i, 2) = sum1 |
1418 |
|
|
ady(i,JMR) = sum2 |
1419 |
|
|
ady(i, 1) = sum1 |
1420 |
|
|
ady(i,JNP) = sum2 |
1421 |
|
|
enddo |
1422 |
|
|
else |
1423 |
|
|
C Poles: |
1424 |
|
|
sum1 = 0. |
1425 |
|
|
sum2 = 0. |
1426 |
|
|
do i=1,imr |
1427 |
|
|
sum1 = sum1 + ady(i,1) |
1428 |
|
|
sum2 = sum2 + ady(i,JNP) |
1429 |
|
|
enddo |
1430 |
|
|
sum1 = sum1 / IMR |
1431 |
|
|
sum2 = sum2 / IMR |
1432 |
|
|
C |
1433 |
|
|
do i=1,imr |
1434 |
|
|
ady(i, 1) = sum1 |
1435 |
|
|
ady(i,JNP) = sum2 |
1436 |
|
|
enddo |
1437 |
|
|
endif |
1438 |
|
|
C |
1439 |
|
|
return |
1440 |
|
|
end |
1441 |
|
|
C |
1442 |
|
|
subroutine xadv(IMR,JNP,j1,j2,p,UA,JS,JN,IML,adx,IAD) |
1443 |
|
|
implicit none |
1444 |
|
|
INTEGER IMR,JNP,j1,j2,JS,JN,IML,IAD |
1445 |
|
|
REAL p(IMR,JNP),adx(IMR,JNP),qtmp(-IMR:IMR+IMR),UA(IMR,JNP) |
1446 |
|
|
INTEGER JMR,j,i,ip,iu,iiu |
1447 |
|
|
REAL ru,a1,b1 |
1448 |
|
|
C |
1449 |
|
|
JMR = JNP-1 |
1450 |
|
|
do 1309 j=j1,j2 |
1451 |
|
|
if(J.GT.JS .and. J.LT.JN) GO TO 1309 |
1452 |
|
|
C |
1453 |
|
|
do i=1,IMR |
1454 |
|
|
qtmp(i) = p(i,j) |
1455 |
|
|
enddo |
1456 |
|
|
C |
1457 |
|
|
do i=-IML,0 |
1458 |
|
|
qtmp(i) = p(IMR+i,j) |
1459 |
|
|
qtmp(IMR+1-i) = p(1-i,j) |
1460 |
|
|
enddo |
1461 |
|
|
C |
1462 |
|
|
IF(IAD.eq.2) THEN |
1463 |
|
|
DO i=1,IMR |
1464 |
|
|
IP = NINT(UA(i,j)) |
1465 |
|
|
ru = IP - UA(i,j) |
1466 |
|
|
IP = i - IP |
1467 |
|
|
a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip) |
1468 |
|
|
b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1)) |
1469 |
|
|
adx(i,j) = qtmp(ip) + ru*(a1*ru + b1) |
1470 |
|
|
enddo |
1471 |
|
|
ELSEIF(IAD.eq.1) then |
1472 |
|
|
DO i=1,IMR |
1473 |
|
|
iu = UA(i,j) |
1474 |
|
|
ru = UA(i,j) - iu |
1475 |
|
|
iiu = i-iu |
1476 |
|
|
if(UA(i,j).GE.0.) then |
1477 |
|
|
adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu)) |
1478 |
|
|
else |
1479 |
|
|
adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1)) |
1480 |
|
|
endif |
1481 |
|
|
enddo |
1482 |
|
|
ENDIF |
1483 |
|
|
C |
1484 |
|
|
do i=1,IMR |
1485 |
|
|
adx(i,j) = adx(i,j) - p(i,j) |
1486 |
|
|
enddo |
1487 |
|
|
1309 continue |
1488 |
|
|
C |
1489 |
|
|
C Eulerian upwind |
1490 |
|
|
C |
1491 |
|
|
do j=JS+1,JN-1 |
1492 |
|
|
C |
1493 |
|
|
do i=1,IMR |
1494 |
|
|
qtmp(i) = p(i,j) |
1495 |
|
|
enddo |
1496 |
|
|
C |
1497 |
|
|
qtmp(0) = p(IMR,J) |
1498 |
|
|
qtmp(IMR+1) = p(1,J) |
1499 |
|
|
C |
1500 |
|
|
IF(IAD.eq.2) THEN |
1501 |
|
|
qtmp(-1) = p(IMR-1,J) |
1502 |
|
|
qtmp(IMR+2) = p(2,J) |
1503 |
|
|
do i=1,imr |
1504 |
|
|
IP = NINT(UA(i,j)) |
1505 |
|
|
ru = IP - UA(i,j) |
1506 |
|
|
IP = i - IP |
1507 |
|
|
a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip) |
1508 |
|
|
b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1)) |
1509 |
|
|
adx(i,j) = qtmp(ip)- p(i,j) + ru*(a1*ru + b1) |
1510 |
|
|
enddo |
1511 |
|
|
ELSEIF(IAD.eq.1) then |
1512 |
|
|
C 1st order |
1513 |
|
|
DO i=1,IMR |
1514 |
|
|
IP = i - UA(i,j) |
1515 |
|
|
adx(i,j) = UA(i,j)*(qtmp(ip)-qtmp(ip+1)) |
1516 |
|
|
enddo |
1517 |
|
|
ENDIF |
1518 |
|
|
enddo |
1519 |
|
|
C |
1520 |
|
|
if(j1.ne.2) then |
1521 |
|
|
do i=1,IMR |
1522 |
|
|
adx(i, 2) = 0. |
1523 |
|
|
adx(i,JMR) = 0. |
1524 |
|
|
enddo |
1525 |
|
|
endif |
1526 |
|
|
C set cross term due to x-adv at the poles to zero. |
1527 |
|
|
do i=1,IMR |
1528 |
|
|
adx(i, 1) = 0. |
1529 |
|
|
adx(i,JNP) = 0. |
1530 |
|
|
enddo |
1531 |
|
|
return |
1532 |
|
|
end |
1533 |
|
|
C |
1534 |
|
|
subroutine lmtppm(DC,A6,AR,AL,P,IM,LMT) |
1535 |
|
|
implicit none |
1536 |
|
|
C |
1537 |
|
|
C A6 = CURVATURE OF THE TEST PARABOLA |
1538 |
|
|
C AR = RIGHT EDGE VALUE OF THE TEST PARABOLA |
1539 |
|
|
C AL = LEFT EDGE VALUE OF THE TEST PARABOLA |
1540 |
|
|
C DC = 0.5 * MISMATCH |
1541 |
|
|
C P = CELL-AVERAGED VALUE |
1542 |
|
|
C IM = VECTOR LENGTH |
1543 |
|
|
C |
1544 |
|
|
C OPTIONS: |
1545 |
|
|
C |
1546 |
|
|
C LMT = 0: FULL MONOTONICITY |
1547 |
|
|
C LMT = 1: SEMI-MONOTONIC CONSTRAINT (NO UNDERSHOOTS) |
1548 |
|
|
C LMT = 2: POSITIVE-DEFINITE CONSTRAINT |
1549 |
|
|
C |
1550 |
|
|
real,parameter :: R12 = 1./12. |
1551 |
|
|
real :: A6(IM),AR(IM),AL(IM),P(IM),DC(IM) |
1552 |
|
|
integer :: IM,LMT |
1553 |
|
|
INTEGER i |
1554 |
|
|
REAL da1,da2,a6da,fmin |
1555 |
|
|
C |
1556 |
|
|
if(LMT.eq.0) then |
1557 |
|
|
C Full constraint |
1558 |
|
|
do 100 i=1,IM |
1559 |
|
|
if(DC(i).eq.0.) then |
1560 |
|
|
AR(i) = p(i) |
1561 |
|
|
AL(i) = p(i) |
1562 |
|
|
A6(i) = 0. |
1563 |
|
|
else |
1564 |
|
|
da1 = AR(i) - AL(i) |
1565 |
|
|
da2 = da1**2 |
1566 |
|
|
A6DA = A6(i)*da1 |
1567 |
|
|
if(A6DA .lt. -da2) then |
1568 |
|
|
A6(i) = 3.*(AL(i)-p(i)) |
1569 |
|
|
AR(i) = AL(i) - A6(i) |
1570 |
|
|
elseif(A6DA .gt. da2) then |
1571 |
|
|
A6(i) = 3.*(AR(i)-p(i)) |
1572 |
|
|
AL(i) = AR(i) - A6(i) |
1573 |
|
|
endif |
1574 |
|
|
endif |
1575 |
|
|
100 continue |
1576 |
|
|
elseif(LMT.eq.1) then |
1577 |
|
|
C Semi-monotonic constraint |
1578 |
|
|
do 150 i=1,IM |
1579 |
|
|
if(abs(AR(i)-AL(i)) .GE. -A6(i)) go to 150 |
1580 |
|
|
if(p(i).lt.AR(i) .and. p(i).lt.AL(i)) then |
1581 |
|
|
AR(i) = p(i) |
1582 |
|
|
AL(i) = p(i) |
1583 |
|
|
A6(i) = 0. |
1584 |
|
|
elseif(AR(i) .gt. AL(i)) then |
1585 |
|
|
A6(i) = 3.*(AL(i)-p(i)) |
1586 |
|
|
AR(i) = AL(i) - A6(i) |
1587 |
|
|
else |
1588 |
|
|
A6(i) = 3.*(AR(i)-p(i)) |
1589 |
|
|
AL(i) = AR(i) - A6(i) |
1590 |
|
|
endif |
1591 |
|
|
150 continue |
1592 |
|
|
elseif(LMT.eq.2) then |
1593 |
|
|
do 250 i=1,IM |
1594 |
|
|
if(abs(AR(i)-AL(i)) .GE. -A6(i)) go to 250 |
1595 |
|
|
fmin = p(i) + 0.25*(AR(i)-AL(i))**2/A6(i) + A6(i)*R12 |
1596 |
|
|
if(fmin.ge.0.) go to 250 |
1597 |
|
|
if(p(i).lt.AR(i) .and. p(i).lt.AL(i)) then |
1598 |
|
|
AR(i) = p(i) |
1599 |
|
|
AL(i) = p(i) |
1600 |
|
|
A6(i) = 0. |
1601 |
|
|
elseif(AR(i) .gt. AL(i)) then |
1602 |
|
|
A6(i) = 3.*(AL(i)-p(i)) |
1603 |
|
|
AR(i) = AL(i) - A6(i) |
1604 |
|
|
else |
1605 |
|
|
A6(i) = 3.*(AR(i)-p(i)) |
1606 |
|
|
AL(i) = AR(i) - A6(i) |
1607 |
|
|
endif |
1608 |
|
|
250 continue |
1609 |
|
|
endif |
1610 |
|
|
return |
1611 |
|
|
end |
1612 |
|
|
C |
1613 |
|
|
subroutine A2C(U,V,IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5) |
1614 |
|
|
implicit none |
1615 |
|
|
integer IMR,JMR,j1,j2 |
1616 |
|
|
real :: U(IMR,*),V(IMR,*),CRX(IMR,*),CRY(IMR,*),DTDX5(*),DTDY5 |
1617 |
|
|
integer i,j |
1618 |
|
|
C |
1619 |
|
|
do 35 j=j1,j2 |
1620 |
|
|
do 35 i=2,IMR |
1621 |
|
|
35 CRX(i,J) = dtdx5(j)*(U(i,j)+U(i-1,j)) |
1622 |
|
|
C |
1623 |
|
|
do 45 j=j1,j2 |
1624 |
|
|
45 CRX(1,J) = dtdx5(j)*(U(1,j)+U(IMR,j)) |
1625 |
|
|
C |
1626 |
|
|
do 55 i=1,IMR*JMR |
1627 |
|
|
55 CRY(i,2) = DTDY5*(V(i,2)+V(i,1)) |
1628 |
|
|
return |
1629 |
|
|
end |
1630 |
|
|
C |
1631 |
|
|
subroutine cosa(cosp,cose,JNP,PI,DP) |
1632 |
|
|
implicit none |
1633 |
|
|
integer JNP |
1634 |
|
|
real :: cosp(*),cose(*),PI,DP |
1635 |
|
|
integer JMR,j,jeq |
1636 |
|
|
real ph5 |
1637 |
|
|
JMR = JNP-1 |
1638 |
|
|
do 55 j=2,JNP |
1639 |
|
|
ph5 = -0.5*PI + (REAL(J-1)-0.5)*DP |
1640 |
|
|
55 cose(j) = cos(ph5) |
1641 |
|
|
C |
1642 |
|
|
JEQ = (JNP+1) / 2 |
1643 |
|
|
if(JMR .eq. 2*(JMR/2) ) then |
1644 |
|
|
do j=JNP, JEQ+1, -1 |
1645 |
|
|
cose(j) = cose(JNP+2-j) |
1646 |
|
|
enddo |
1647 |
|
|
else |
1648 |
|
|
C cell edge at equator. |
1649 |
|
|
cose(JEQ+1) = 1. |
1650 |
|
|
do j=JNP, JEQ+2, -1 |
1651 |
|
|
cose(j) = cose(JNP+2-j) |
1652 |
|
|
enddo |
1653 |
|
|
endif |
1654 |
|
|
C |
1655 |
|
|
do 66 j=2,JMR |
1656 |
|
|
66 cosp(j) = 0.5*(cose(j)+cose(j+1)) |
1657 |
|
|
cosp(1) = 0. |
1658 |
|
|
cosp(JNP) = 0. |
1659 |
|
|
return |
1660 |
|
|
end |
1661 |
|
|
C |
1662 |
|
|
subroutine cosc(cosp,cose,JNP,PI,DP) |
1663 |
|
|
implicit none |
1664 |
|
|
integer JNP |
1665 |
|
|
real :: cosp(*),cose(*),PI,DP |
1666 |
|
|
real phi |
1667 |
|
|
integer j |
1668 |
|
|
C |
1669 |
|
|
phi = -0.5*PI |
1670 |
|
|
do 55 j=2,JNP-1 |
1671 |
|
|
phi = phi + DP |
1672 |
|
|
55 cosp(j) = cos(phi) |
1673 |
|
|
cosp( 1) = 0. |
1674 |
|
|
cosp(JNP) = 0. |
1675 |
|
|
C |
1676 |
|
|
do 66 j=2,JNP |
1677 |
|
|
cose(j) = 0.5*(cosp(j)+cosp(j-1)) |
1678 |
|
|
66 CONTINUE |
1679 |
|
|
C |
1680 |
|
|
do 77 j=2,JNP-1 |
1681 |
|
|
cosp(j) = 0.5*(cose(j)+cose(j+1)) |
1682 |
|
|
77 CONTINUE |
1683 |
|
|
return |
1684 |
|
|
end |
1685 |
|
|
C |
1686 |
|
|
SUBROUTINE qckxyz (Q,qtmp,IMR,JNP,NLAY,j1,j2,cosp,acosp, |
1687 |
|
|
& cross,IC,NSTEP) |
1688 |
|
|
C |
1689 |
|
|
real,parameter :: tiny = 1.E-60 |
1690 |
|
|
INTEGER :: IMR,JNP,NLAY,j1,j2,IC,NSTEP |
1691 |
|
|
REAL :: Q(IMR,JNP,NLAY),qtmp(IMR,JNP),cosp(*),acosp(*) |
1692 |
|
|
logical cross |
1693 |
|
|
INTEGER :: NLAYM1,len,ip,L,icr,ipy,ipx,i |
1694 |
|
|
real :: qup,qly,dup,sum |
1695 |
|
|
C |
1696 |
|
|
NLAYM1 = NLAY-1 |
1697 |
|
|
len = IMR*(j2-j1+1) |
1698 |
|
|
ip = 0 |
1699 |
|
|
C |
1700 |
|
|
C Top layer |
1701 |
|
|
L = 1 |
1702 |
|
|
icr = 1 |
1703 |
|
|
call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
1704 |
|
|
if(ipy.eq.0) goto 50 |
1705 |
|
|
call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
1706 |
|
|
if(ipx.eq.0) goto 50 |
1707 |
|
|
C |
1708 |
|
|
if(cross) then |
1709 |
|
|
call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
1710 |
|
|
endif |
1711 |
|
|
if(icr.eq.0) goto 50 |
1712 |
|
|
C |
1713 |
|
|
C Vertical filling... |
1714 |
|
|
do i=1,len |
1715 |
|
|
IF( Q(i,j1,1).LT.0.) THEN |
1716 |
|
|
ip = ip + 1 |
1717 |
|
|
Q(i,j1,2) = Q(i,j1,2) + Q(i,j1,1) |
1718 |
|
|
Q(i,j1,1) = 0. |
1719 |
|
|
endif |
1720 |
|
|
enddo |
1721 |
|
|
C |
1722 |
|
|
50 continue |
1723 |
|
|
DO 225 L = 2,NLAYM1 |
1724 |
|
|
icr = 1 |
1725 |
|
|
C |
1726 |
|
|
call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
1727 |
|
|
if(ipy.eq.0) goto 225 |
1728 |
|
|
call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
1729 |
|
|
if(ipx.eq.0) go to 225 |
1730 |
|
|
if(cross) then |
1731 |
|
|
call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
1732 |
|
|
endif |
1733 |
|
|
if(icr.eq.0) goto 225 |
1734 |
|
|
C |
1735 |
|
|
do i=1,len |
1736 |
|
|
IF( Q(I,j1,L).LT.0.) THEN |
1737 |
|
|
C |
1738 |
|
|
ip = ip + 1 |
1739 |
|
|
C From above |
1740 |
|
|
qup = Q(I,j1,L-1) |
1741 |
|
|
qly = -Q(I,j1,L) |
1742 |
|
|
dup = min(qly,qup) |
1743 |
|
|
Q(I,j1,L-1) = qup - dup |
1744 |
|
|
Q(I,j1,L ) = dup-qly |
1745 |
|
|
C Below |
1746 |
|
|
Q(I,j1,L+1) = Q(I,j1,L+1) + Q(I,j1,L) |
1747 |
|
|
Q(I,j1,L) = 0. |
1748 |
|
|
ENDIF |
1749 |
|
|
ENDDO |
1750 |
|
|
225 CONTINUE |
1751 |
|
|
C |
1752 |
|
|
C BOTTOM LAYER |
1753 |
|
|
sum = 0. |
1754 |
|
|
L = NLAY |
1755 |
|
|
C |
1756 |
|
|
call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
1757 |
|
|
if(ipy.eq.0) goto 911 |
1758 |
|
|
call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
1759 |
|
|
if(ipx.eq.0) goto 911 |
1760 |
|
|
C |
1761 |
|
|
call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
1762 |
|
|
if(icr.eq.0) goto 911 |
1763 |
|
|
C |
1764 |
|
|
DO I=1,len |
1765 |
|
|
IF( Q(I,j1,L).LT.0.) THEN |
1766 |
|
|
ip = ip + 1 |
1767 |
|
|
c |
1768 |
|
|
C From above |
1769 |
|
|
C |
1770 |
|
|
qup = Q(I,j1,NLAYM1) |
1771 |
|
|
qly = -Q(I,j1,L) |
1772 |
|
|
dup = min(qly,qup) |
1773 |
|
|
Q(I,j1,NLAYM1) = qup - dup |
1774 |
|
|
C From "below" the surface. |
1775 |
|
|
sum = sum + qly-dup |
1776 |
|
|
Q(I,j1,L) = 0. |
1777 |
|
|
ENDIF |
1778 |
|
|
ENDDO |
1779 |
|
|
C |
1780 |
|
|
911 continue |
1781 |
|
|
C |
1782 |
|
|
if(ip.gt.IMR) then |
1783 |
|
|
write(6,*) 'IC=',IC,' STEP=',NSTEP, |
1784 |
|
|
& ' Vertical filling pts=',ip |
1785 |
|
|
endif |
1786 |
|
|
C |
1787 |
|
|
if(sum.gt.1.e-25) then |
1788 |
|
|
write(6,*) IC,NSTEP,' Mass source from the ground=',sum |
1789 |
|
|
endif |
1790 |
|
|
RETURN |
1791 |
|
|
END |
1792 |
|
|
C |
1793 |
|
|
subroutine filcr(q,IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
1794 |
|
|
implicit none |
1795 |
|
|
integer :: IMR,JNP,j1,j2,icr |
1796 |
|
|
real :: q(IMR,*),cosp(*),acosp(*),tiny |
1797 |
|
|
integer :: i,j |
1798 |
|
|
real :: dq,dn,d0,d1,ds,d2 |
1799 |
|
|
icr = 0 |
1800 |
|
|
do 65 j=j1+1,j2-1 |
1801 |
|
|
DO 50 i=1,IMR-1 |
1802 |
|
|
IF(q(i,j).LT.0.) THEN |
1803 |
|
|
icr = 1 |
1804 |
|
|
dq = - q(i,j)*cosp(j) |
1805 |
|
|
C N-E |
1806 |
|
|
dn = q(i+1,j+1)*cosp(j+1) |
1807 |
|
|
d0 = max(0.,dn) |
1808 |
|
|
d1 = min(dq,d0) |
1809 |
|
|
q(i+1,j+1) = (dn - d1)*acosp(j+1) |
1810 |
|
|
dq = dq - d1 |
1811 |
|
|
C S-E |
1812 |
|
|
ds = q(i+1,j-1)*cosp(j-1) |
1813 |
|
|
d0 = max(0.,ds) |
1814 |
|
|
d2 = min(dq,d0) |
1815 |
|
|
q(i+1,j-1) = (ds - d2)*acosp(j-1) |
1816 |
|
|
q(i,j) = (d2 - dq)*acosp(j) + tiny |
1817 |
|
|
endif |
1818 |
|
|
50 continue |
1819 |
|
|
if(icr.eq.0 .and. q(IMR,j).ge.0.) goto 65 |
1820 |
|
|
DO 55 i=2,IMR |
1821 |
|
|
IF(q(i,j).LT.0.) THEN |
1822 |
|
|
icr = 1 |
1823 |
|
|
dq = - q(i,j)*cosp(j) |
1824 |
|
|
C N-W |
1825 |
|
|
dn = q(i-1,j+1)*cosp(j+1) |
1826 |
|
|
d0 = max(0.,dn) |
1827 |
|
|
d1 = min(dq,d0) |
1828 |
|
|
q(i-1,j+1) = (dn - d1)*acosp(j+1) |
1829 |
|
|
dq = dq - d1 |
1830 |
|
|
C S-W |
1831 |
|
|
ds = q(i-1,j-1)*cosp(j-1) |
1832 |
|
|
d0 = max(0.,ds) |
1833 |
|
|
d2 = min(dq,d0) |
1834 |
|
|
q(i-1,j-1) = (ds - d2)*acosp(j-1) |
1835 |
|
|
q(i,j) = (d2 - dq)*acosp(j) + tiny |
1836 |
|
|
endif |
1837 |
|
|
55 continue |
1838 |
|
|
C ***************************************** |
1839 |
|
|
C i=1 |
1840 |
|
|
i=1 |
1841 |
|
|
IF(q(i,j).LT.0.) THEN |
1842 |
|
|
icr = 1 |
1843 |
|
|
dq = - q(i,j)*cosp(j) |
1844 |
|
|
C N-W |
1845 |
|
|
dn = q(IMR,j+1)*cosp(j+1) |
1846 |
|
|
d0 = max(0.,dn) |
1847 |
|
|
d1 = min(dq,d0) |
1848 |
|
|
q(IMR,j+1) = (dn - d1)*acosp(j+1) |
1849 |
|
|
dq = dq - d1 |
1850 |
|
|
C S-W |
1851 |
|
|
ds = q(IMR,j-1)*cosp(j-1) |
1852 |
|
|
d0 = max(0.,ds) |
1853 |
|
|
d2 = min(dq,d0) |
1854 |
|
|
q(IMR,j-1) = (ds - d2)*acosp(j-1) |
1855 |
|
|
q(i,j) = (d2 - dq)*acosp(j) + tiny |
1856 |
|
|
endif |
1857 |
|
|
C ***************************************** |
1858 |
|
|
C i=IMR |
1859 |
|
|
i=IMR |
1860 |
|
|
IF(q(i,j).LT.0.) THEN |
1861 |
|
|
icr = 1 |
1862 |
|
|
dq = - q(i,j)*cosp(j) |
1863 |
|
|
C N-E |
1864 |
|
|
dn = q(1,j+1)*cosp(j+1) |
1865 |
|
|
d0 = max(0.,dn) |
1866 |
|
|
d1 = min(dq,d0) |
1867 |
|
|
q(1,j+1) = (dn - d1)*acosp(j+1) |
1868 |
|
|
dq = dq - d1 |
1869 |
|
|
C S-E |
1870 |
|
|
ds = q(1,j-1)*cosp(j-1) |
1871 |
|
|
d0 = max(0.,ds) |
1872 |
|
|
d2 = min(dq,d0) |
1873 |
|
|
q(1,j-1) = (ds - d2)*acosp(j-1) |
1874 |
|
|
q(i,j) = (d2 - dq)*acosp(j) + tiny |
1875 |
|
|
endif |
1876 |
|
|
C ***************************************** |
1877 |
|
|
65 continue |
1878 |
|
|
C |
1879 |
|
|
do i=1,IMR |
1880 |
|
|
if(q(i,j1).lt.0. .or. q(i,j2).lt.0.) then |
1881 |
|
|
icr = 1 |
1882 |
|
|
goto 80 |
1883 |
|
|
endif |
1884 |
|
|
enddo |
1885 |
|
|
C |
1886 |
|
|
80 continue |
1887 |
|
|
C |
1888 |
|
|
if(q(1,1).lt.0. .or. q(1,jnp).lt.0.) then |
1889 |
|
|
icr = 1 |
1890 |
|
|
endif |
1891 |
|
|
C |
1892 |
|
|
return |
1893 |
|
|
end |
1894 |
|
|
C |
1895 |
|
|
subroutine filns(q,IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
1896 |
|
|
implicit none |
1897 |
|
|
integer :: IMR,JNP,j1,j2,ipy |
1898 |
|
|
real :: q(IMR,*),cosp(*),acosp(*),tiny |
1899 |
|
|
real :: DP,CAP1,dq,dn,d0,d1,ds,d2 |
1900 |
|
|
INTEGER :: i,j |
1901 |
|
|
c logical first |
1902 |
|
|
c data first /.true./ |
1903 |
|
|
c save cap1 |
1904 |
|
|
C |
1905 |
|
|
c if(first) then |
1906 |
|
|
DP = 4.*ATAN(1.)/REAL(JNP-1) |
1907 |
|
|
CAP1 = IMR*(1.-COS((j1-1.5)*DP))/DP |
1908 |
|
|
c first = .false. |
1909 |
|
|
c endif |
1910 |
|
|
C |
1911 |
|
|
ipy = 0 |
1912 |
|
|
do 55 j=j1+1,j2-1 |
1913 |
|
|
DO 55 i=1,IMR |
1914 |
|
|
IF(q(i,j).LT.0.) THEN |
1915 |
|
|
ipy = 1 |
1916 |
|
|
dq = - q(i,j)*cosp(j) |
1917 |
|
|
C North |
1918 |
|
|
dn = q(i,j+1)*cosp(j+1) |
1919 |
|
|
d0 = max(0.,dn) |
1920 |
|
|
d1 = min(dq,d0) |
1921 |
|
|
q(i,j+1) = (dn - d1)*acosp(j+1) |
1922 |
|
|
dq = dq - d1 |
1923 |
|
|
C South |
1924 |
|
|
ds = q(i,j-1)*cosp(j-1) |
1925 |
|
|
d0 = max(0.,ds) |
1926 |
|
|
d2 = min(dq,d0) |
1927 |
|
|
q(i,j-1) = (ds - d2)*acosp(j-1) |
1928 |
|
|
q(i,j) = (d2 - dq)*acosp(j) + tiny |
1929 |
|
|
endif |
1930 |
|
|
55 continue |
1931 |
|
|
C |
1932 |
|
|
do i=1,imr |
1933 |
|
|
IF(q(i,j1).LT.0.) THEN |
1934 |
|
|
ipy = 1 |
1935 |
|
|
dq = - q(i,j1)*cosp(j1) |
1936 |
|
|
C North |
1937 |
|
|
dn = q(i,j1+1)*cosp(j1+1) |
1938 |
|
|
d0 = max(0.,dn) |
1939 |
|
|
d1 = min(dq,d0) |
1940 |
|
|
q(i,j1+1) = (dn - d1)*acosp(j1+1) |
1941 |
|
|
q(i,j1) = (d1 - dq)*acosp(j1) + tiny |
1942 |
|
|
endif |
1943 |
|
|
enddo |
1944 |
|
|
C |
1945 |
|
|
j = j2 |
1946 |
|
|
do i=1,imr |
1947 |
|
|
IF(q(i,j).LT.0.) THEN |
1948 |
|
|
ipy = 1 |
1949 |
|
|
dq = - q(i,j)*cosp(j) |
1950 |
|
|
C South |
1951 |
|
|
ds = q(i,j-1)*cosp(j-1) |
1952 |
|
|
d0 = max(0.,ds) |
1953 |
|
|
d2 = min(dq,d0) |
1954 |
|
|
q(i,j-1) = (ds - d2)*acosp(j-1) |
1955 |
|
|
q(i,j) = (d2 - dq)*acosp(j) + tiny |
1956 |
|
|
endif |
1957 |
|
|
enddo |
1958 |
|
|
C |
1959 |
|
|
C Check Poles. |
1960 |
|
|
if(q(1,1).lt.0.) then |
1961 |
|
|
dq = q(1,1)*cap1/REAL(IMR)*acosp(j1) |
1962 |
|
|
do i=1,imr |
1963 |
|
|
q(i,1) = 0. |
1964 |
|
|
q(i,j1) = q(i,j1) + dq |
1965 |
|
|
if(q(i,j1).lt.0.) ipy = 1 |
1966 |
|
|
enddo |
1967 |
|
|
endif |
1968 |
|
|
C |
1969 |
|
|
if(q(1,JNP).lt.0.) then |
1970 |
|
|
dq = q(1,JNP)*cap1/REAL(IMR)*acosp(j2) |
1971 |
|
|
do i=1,imr |
1972 |
|
|
q(i,JNP) = 0. |
1973 |
|
|
q(i,j2) = q(i,j2) + dq |
1974 |
|
|
if(q(i,j2).lt.0.) ipy = 1 |
1975 |
|
|
enddo |
1976 |
|
|
endif |
1977 |
|
|
C |
1978 |
|
|
return |
1979 |
|
|
end |
1980 |
|
|
C |
1981 |
|
|
subroutine filew(q,qtmp,IMR,JNP,j1,j2,ipx,tiny) |
1982 |
|
|
implicit none |
1983 |
|
|
integer :: IMR,JNP,j1,j2,ipx |
1984 |
|
|
real :: q(IMR,*),qtmp(JNP,IMR),tiny |
1985 |
|
|
integer :: i,j |
1986 |
|
|
real :: d0,d1,d2 |
1987 |
|
|
C |
1988 |
|
|
ipx = 0 |
1989 |
|
|
C Copy & swap direction for vectorization. |
1990 |
|
|
do 25 i=1,imr |
1991 |
|
|
do 25 j=j1,j2 |
1992 |
|
|
25 qtmp(j,i) = q(i,j) |
1993 |
|
|
C |
1994 |
|
|
do 55 i=2,imr-1 |
1995 |
|
|
do 55 j=j1,j2 |
1996 |
|
|
if(qtmp(j,i).lt.0.) then |
1997 |
|
|
ipx = 1 |
1998 |
|
|
c west |
1999 |
|
|
d0 = max(0.,qtmp(j,i-1)) |
2000 |
|
|
d1 = min(-qtmp(j,i),d0) |
2001 |
|
|
qtmp(j,i-1) = qtmp(j,i-1) - d1 |
2002 |
|
|
qtmp(j,i) = qtmp(j,i) + d1 |
2003 |
|
|
c east |
2004 |
|
|
d0 = max(0.,qtmp(j,i+1)) |
2005 |
|
|
d2 = min(-qtmp(j,i),d0) |
2006 |
|
|
qtmp(j,i+1) = qtmp(j,i+1) - d2 |
2007 |
|
|
qtmp(j,i) = qtmp(j,i) + d2 + tiny |
2008 |
|
|
endif |
2009 |
|
|
55 continue |
2010 |
|
|
c |
2011 |
|
|
i=1 |
2012 |
|
|
do 65 j=j1,j2 |
2013 |
|
|
if(qtmp(j,i).lt.0.) then |
2014 |
|
|
ipx = 1 |
2015 |
|
|
c west |
2016 |
|
|
d0 = max(0.,qtmp(j,imr)) |
2017 |
|
|
d1 = min(-qtmp(j,i),d0) |
2018 |
|
|
qtmp(j,imr) = qtmp(j,imr) - d1 |
2019 |
|
|
qtmp(j,i) = qtmp(j,i) + d1 |
2020 |
|
|
c east |
2021 |
|
|
d0 = max(0.,qtmp(j,i+1)) |
2022 |
|
|
d2 = min(-qtmp(j,i),d0) |
2023 |
|
|
qtmp(j,i+1) = qtmp(j,i+1) - d2 |
2024 |
|
|
c |
2025 |
|
|
qtmp(j,i) = qtmp(j,i) + d2 + tiny |
2026 |
|
|
endif |
2027 |
|
|
65 continue |
2028 |
|
|
i=IMR |
2029 |
|
|
do 75 j=j1,j2 |
2030 |
|
|
if(qtmp(j,i).lt.0.) then |
2031 |
|
|
ipx = 1 |
2032 |
|
|
c west |
2033 |
|
|
d0 = max(0.,qtmp(j,i-1)) |
2034 |
|
|
d1 = min(-qtmp(j,i),d0) |
2035 |
|
|
qtmp(j,i-1) = qtmp(j,i-1) - d1 |
2036 |
|
|
qtmp(j,i) = qtmp(j,i) + d1 |
2037 |
|
|
c east |
2038 |
|
|
d0 = max(0.,qtmp(j,1)) |
2039 |
|
|
d2 = min(-qtmp(j,i),d0) |
2040 |
|
|
qtmp(j,1) = qtmp(j,1) - d2 |
2041 |
|
|
c |
2042 |
|
|
qtmp(j,i) = qtmp(j,i) + d2 + tiny |
2043 |
|
|
endif |
2044 |
|
|
75 continue |
2045 |
|
|
C |
2046 |
|
|
if(ipx.ne.0) then |
2047 |
|
|
do 85 j=j1,j2 |
2048 |
|
|
do 85 i=1,imr |
2049 |
|
|
85 q(i,j) = qtmp(j,i) |
2050 |
|
|
else |
2051 |
|
|
C |
2052 |
|
|
C Poles. |
2053 |
|
|
if(q(1,1).lt.0. or. q(1,JNP).lt.0.) ipx = 1 |
2054 |
|
|
endif |
2055 |
|
|
return |
2056 |
|
|
end |
2057 |
|
|
C |
2058 |
|
|
subroutine zflip(q,im,km,nc) |
2059 |
|
|
implicit none |
2060 |
|
|
C This routine flip the array q (in the vertical). |
2061 |
|
|
integer :: im,km,nc |
2062 |
|
|
real q(im,km,nc) |
2063 |
|
|
C local dynamic array |
2064 |
|
|
real qtmp(im,km) |
2065 |
|
|
integer IC,k,i |
2066 |
|
|
C |
2067 |
|
|
do 4000 IC = 1, nc |
2068 |
|
|
C |
2069 |
|
|
do 1000 k=1,km |
2070 |
|
|
do 1000 i=1,im |
2071 |
|
|
qtmp(i,k) = q(i,km+1-k,IC) |
2072 |
|
|
1000 continue |
2073 |
|
|
C |
2074 |
|
|
do 2000 i=1,im*km |
2075 |
|
|
2000 q(i,1,IC) = qtmp(i,1) |
2076 |
|
|
4000 continue |
2077 |
|
|
return |
2078 |
|
|
end |