1 |
|
|
C |
2 |
|
|
C $Header$ |
3 |
|
|
C |
4 |
|
|
subroutine iniinterp_horiz (imo,jmo,imn,jmn ,kllm, |
5 |
|
|
& rlonuo,rlatvo,rlonun,rlatvn, |
6 |
|
|
& ktotal,iik,jjk,jk,ik,intersec,airen) |
7 |
|
|
|
8 |
|
|
implicit none |
9 |
|
|
|
10 |
|
|
|
11 |
|
|
|
12 |
|
|
c --------------------------------------------------------- |
13 |
|
|
c Prepare l' interpolation des variables d'une grille LMDZ |
14 |
|
|
c dans une autre grille LMDZ en conservant la quantite |
15 |
|
|
c totale pour les variables intensives (/m2) : ex : Pression au sol |
16 |
|
|
c |
17 |
|
|
c (Pour chaque case autour d'un point scalaire de la nouvelle |
18 |
|
|
c grille, on calcule la surface (en m2)en intersection avec chaque |
19 |
|
|
c case de l'ancienne grille , pour la future interpolation) |
20 |
|
|
c |
21 |
|
|
c on calcule aussi l' aire dans la nouvelle grille |
22 |
|
|
c |
23 |
|
|
c |
24 |
|
|
c Auteur: F.Forget 01/1995 |
25 |
|
|
c ------- |
26 |
|
|
c |
27 |
|
|
c --------------------------------------------------------- |
28 |
|
|
c Declarations: |
29 |
|
|
c ============== |
30 |
|
|
c |
31 |
|
|
c ARGUMENTS |
32 |
|
|
c """"""""" |
33 |
|
|
c INPUT |
34 |
|
|
integer imo, jmo ! dimensions ancienne grille |
35 |
|
|
integer imn,jmn ! dimensions nouvelle grille |
36 |
|
|
integer kllm ! taille du tableau des intersections |
37 |
|
|
real rlonuo(imo+1) ! Latitude et |
38 |
|
|
real rlatvo(jmo) ! longitude des |
39 |
|
|
real rlonun(imn+1) ! bord des |
40 |
|
|
real rlatvn(jmn) ! cases "scalaires" (input) |
41 |
|
|
|
42 |
|
|
c OUTPUT |
43 |
|
|
integer ktotal ! nombre totale d'intersections reperees |
44 |
|
|
integer iik(kllm), jjk(kllm),jk(kllm),ik(kllm) |
45 |
|
|
real intersec(kllm) ! surface des intersections (m2) |
46 |
|
|
real airen (imn+1,jmn+1) ! aire dans la nouvelle grille |
47 |
|
|
|
48 |
|
|
|
49 |
|
|
|
50 |
|
|
|
51 |
|
|
c Autres variables |
52 |
|
|
c """""""""""""""" |
53 |
|
|
integer i,j,ii,jj,k |
54 |
|
|
real a(imo+1),b(imo+1),c(jmo+1),d(jmo+1) |
55 |
|
|
real an(imn+1),bn(imn+1),cn(jmn+1),dn(jmn+1) |
56 |
|
|
real aa, bb,cc,dd |
57 |
|
|
real pi |
58 |
|
|
|
59 |
|
|
pi = 2.*ASIN( 1. ) |
60 |
|
|
|
61 |
|
|
|
62 |
|
|
|
63 |
|
|
c On repere les frontieres des cases : |
64 |
|
|
c =================================== |
65 |
|
|
c |
66 |
|
|
c Attention, on ruse avec des latitudes = 90 deg au pole. |
67 |
|
|
|
68 |
|
|
|
69 |
|
|
c ANcienne grile |
70 |
|
|
c """""""""""""" |
71 |
|
|
a(1) = - rlonuo(imo+1) |
72 |
|
|
b(1) = rlonuo(1) |
73 |
|
|
do i=2,imo+1 |
74 |
|
|
a(i) = rlonuo(i-1) |
75 |
|
|
b(i) = rlonuo(i) |
76 |
|
|
end do |
77 |
|
|
|
78 |
|
|
d(1) = pi/2 |
79 |
|
|
do j=1,jmo |
80 |
|
|
c(j) = rlatvo(j) |
81 |
|
|
d(j+1) = rlatvo(j) |
82 |
|
|
end do |
83 |
|
|
c(jmo+1) = -pi/2 |
84 |
|
|
|
85 |
|
|
|
86 |
|
|
c Nouvelle grille |
87 |
|
|
c """"""""""""""" |
88 |
|
|
an(1) = - rlonun(imn+1) |
89 |
|
|
bn(1) = rlonun(1) |
90 |
|
|
do i=2,imn+1 |
91 |
|
|
an(i) = rlonun(i-1) |
92 |
|
|
bn(i) = rlonun(i) |
93 |
|
|
end do |
94 |
|
|
|
95 |
|
|
dn(1) = pi/2 |
96 |
|
|
do j=1,jmn |
97 |
|
|
cn(j) = rlatvn(j) |
98 |
|
|
dn(j+1) = rlatvn(j) |
99 |
|
|
end do |
100 |
|
|
cn(jmn+1) = -pi/2 |
101 |
|
|
|
102 |
|
|
c Calcul de la surface des cases scalaires de la nouvelle grille |
103 |
|
|
c ============================================================== |
104 |
|
|
do ii=1,imn + 1 |
105 |
|
|
do jj = 1,jmn+1 |
106 |
|
|
airen(ii,jj) = (bn(ii)-an(ii))*(sin(dn(jj))-sin(cn(jj))) |
107 |
|
|
end do |
108 |
|
|
end do |
109 |
|
|
|
110 |
|
|
c Calcul de la surface des intersections |
111 |
|
|
c ====================================== |
112 |
|
|
|
113 |
|
|
c boucle sur la nouvelle grille |
114 |
|
|
c """""""""""""""""""""""""""" |
115 |
|
|
ktotal = 0 |
116 |
|
|
do jj = 1,jmn+1 |
117 |
|
|
do j=1, jmo+1 |
118 |
|
|
if((cn(jj).lt.d(j)).and.(dn(jj).gt.c(j)))then |
119 |
|
|
do ii=1,imn + 1 |
120 |
|
|
do i=1, imo +1 |
121 |
|
|
if ( ((an(ii).lt.b(i)).and.(bn(ii).gt.a(i))) |
122 |
|
|
& .or. ((an(ii).lt.b(i)-2*pi).and.(bn(ii).gt.a(i)-2*pi) |
123 |
|
|
& .and.(b(i)-2*pi.lt.-pi) ) |
124 |
|
|
& .or. ((an(ii).lt.b(i)+2*pi).and.(bn(ii).gt.a(i)+2*pi) |
125 |
|
|
& .and.(a(i)+2*pi.gt.pi) ) |
126 |
|
|
& )then |
127 |
|
|
ktotal = ktotal +1 |
128 |
|
|
iik(ktotal) =ii |
129 |
|
|
jjk(ktotal) =jj |
130 |
|
|
ik(ktotal) =i |
131 |
|
|
jk(ktotal) =j |
132 |
|
|
|
133 |
|
|
dd = min(d(j), dn(jj)) |
134 |
|
|
cc = cn(jj) |
135 |
|
|
if (cc.lt. c(j))cc=c(j) |
136 |
|
|
if((an(ii).lt.b(i)-2*pi).and. |
137 |
|
|
& (bn(ii).gt.a(i)-2*pi)) then |
138 |
|
|
bb = min(b(i)-2*pi,bn(ii)) |
139 |
|
|
aa = an(ii) |
140 |
|
|
if (aa.lt.a(i)-2*pi) aa=a(i)-2*pi |
141 |
|
|
else if((an(ii).lt.b(i)+2*pi).and. |
142 |
|
|
& (bn(ii).gt.a(i)+2*pi)) then |
143 |
|
|
bb = min(b(i)+2*pi,bn(ii)) |
144 |
|
|
aa = an(ii) |
145 |
|
|
if (aa.lt.a(i)+2*pi) aa=a(i)+2*pi |
146 |
|
|
else |
147 |
|
|
bb = min(b(i),bn(ii)) |
148 |
|
|
aa = an(ii) |
149 |
|
|
if (aa.lt.a(i)) aa=a(i) |
150 |
|
|
end if |
151 |
|
|
intersec(ktotal)=(bb-aa)*(sin(dd)-sin(cc)) |
152 |
|
|
end if |
153 |
|
|
end do |
154 |
|
|
end do |
155 |
|
|
end if |
156 |
|
|
end do |
157 |
|
|
end do |
158 |
|
|
|
159 |
|
|
|
160 |
|
|
|
161 |
|
|
c TEST INFO |
162 |
|
|
c DO k=1,ktotal |
163 |
|
|
c ii = iik(k) |
164 |
|
|
c jj = jjk(k) |
165 |
|
|
c i = ik(k) |
166 |
|
|
c j = jk(k) |
167 |
|
|
c if ((ii.eq.10).and.(jj.eq.10).and.(i.eq.10).and.(j.eq.10))then |
168 |
|
|
c if (jj.eq.2.and.(ii.eq.1))then |
169 |
|
|
c write(*,*) '**************** jj=',jj,'ii=',ii |
170 |
|
|
c write(*,*) 'i,j =',i,j |
171 |
|
|
c write(*,*) 'an,bn,cn,dn', an(ii), bn(ii), cn(jj),dn(jj) |
172 |
|
|
c write(*,*) 'a,b,c,d', a(i), b(i), c(j),d(j) |
173 |
|
|
c write(*,*) 'intersec(k)',intersec(k) |
174 |
|
|
c write(*,*) 'airen(ii,jj)=',airen(ii,jj) |
175 |
|
|
c end if |
176 |
|
|
c END DO |
177 |
|
|
|
178 |
|
|
return |
179 |
|
|
end |