1 |
|
|
*DECK PCHFE |
2 |
|
|
SUBROUTINE PCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR) |
3 |
|
|
C***BEGIN PROLOGUE PCHFE |
4 |
|
|
C***PURPOSE Evaluate a piecewise cubic Hermite function at an array of |
5 |
|
|
C points. May be used by itself for Hermite interpolation, |
6 |
|
|
C or as an evaluator for PCHIM or PCHIC. |
7 |
|
|
C***LIBRARY SLATEC (PCHIP) |
8 |
|
|
C***CATEGORY E3 |
9 |
|
|
C***TYPE SINGLE PRECISION (PCHFE-S, DPCHFE-D) |
10 |
|
|
C***KEYWORDS CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP, |
11 |
|
|
C PIECEWISE CUBIC EVALUATION |
12 |
|
|
C***AUTHOR Fritsch, F. N., (LLNL) |
13 |
|
|
C Lawrence Livermore National Laboratory |
14 |
|
|
C P.O. Box 808 (L-316) |
15 |
|
|
C Livermore, CA 94550 |
16 |
|
|
C FTS 532-4275, (510) 422-4275 |
17 |
|
|
C***DESCRIPTION |
18 |
|
|
C |
19 |
|
|
C PCHFE: Piecewise Cubic Hermite Function Evaluator |
20 |
|
|
C |
21 |
|
|
C Evaluates the cubic Hermite function defined by N, X, F, D at |
22 |
|
|
C the points XE(J), J=1(1)NE. |
23 |
|
|
C |
24 |
|
|
C To provide compatibility with PCHIM and PCHIC, includes an |
25 |
|
|
C increment between successive values of the F- and D-arrays. |
26 |
|
|
C |
27 |
|
|
C ---------------------------------------------------------------------- |
28 |
|
|
C |
29 |
|
|
C Calling sequence: |
30 |
|
|
C |
31 |
|
|
C PARAMETER (INCFD = ...) |
32 |
|
|
C INTEGER N, NE, IERR |
33 |
|
|
C REAL X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE) |
34 |
|
|
C LOGICAL SKIP |
35 |
|
|
C |
36 |
|
|
C CALL PCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR) |
37 |
|
|
C |
38 |
|
|
C Parameters: |
39 |
|
|
C |
40 |
|
|
C N -- (input) number of data points. (Error return if N.LT.2 .) |
41 |
|
|
C |
42 |
|
|
C X -- (input) real array of independent variable values. The |
43 |
|
|
C elements of X must be strictly increasing: |
44 |
|
|
C X(I-1) .LT. X(I), I = 2(1)N. |
45 |
|
|
C (Error return if not.) |
46 |
|
|
C |
47 |
|
|
C F -- (input) real array of function values. F(1+(I-1)*INCFD) is |
48 |
|
|
C the value corresponding to X(I). |
49 |
|
|
C |
50 |
|
|
C D -- (input) real array of derivative values. D(1+(I-1)*INCFD) is |
51 |
|
|
C the value corresponding to X(I). |
52 |
|
|
C |
53 |
|
|
C INCFD -- (input) increment between successive values in F and D. |
54 |
|
|
C (Error return if INCFD.LT.1 .) |
55 |
|
|
C |
56 |
|
|
C SKIP -- (input/output) logical variable which should be set to |
57 |
|
|
C .TRUE. if the user wishes to skip checks for validity of |
58 |
|
|
C preceding parameters, or to .FALSE. otherwise. |
59 |
|
|
C This will save time in case these checks have already |
60 |
|
|
C been performed (say, in PCHIM or PCHIC). |
61 |
|
|
C SKIP will be set to .TRUE. on normal return. |
62 |
|
|
C |
63 |
|
|
C NE -- (input) number of evaluation points. (Error return if |
64 |
|
|
C NE.LT.1 .) |
65 |
|
|
C |
66 |
|
|
C XE -- (input) real array of points at which the function is to be |
67 |
|
|
C evaluated. |
68 |
|
|
C |
69 |
|
|
C NOTES: |
70 |
|
|
C 1. The evaluation will be most efficient if the elements |
71 |
|
|
C of XE are increasing relative to X; |
72 |
|
|
C that is, XE(J) .GE. X(I) |
73 |
|
|
C implies XE(K) .GE. X(I), all K.GE.J . |
74 |
|
|
C 2. If any of the XE are outside the interval [X(1),X(N)], |
75 |
|
|
C values are extrapolated from the nearest extreme cubic, |
76 |
|
|
C and a warning error is returned. |
77 |
|
|
C |
78 |
|
|
C FE -- (output) real array of values of the cubic Hermite function |
79 |
|
|
C defined by N, X, F, D at the points XE. |
80 |
|
|
C |
81 |
|
|
C IERR -- (output) error flag. |
82 |
|
|
C Normal return: |
83 |
|
|
C IERR = 0 (no errors). |
84 |
|
|
C Warning error: |
85 |
|
|
C IERR.GT.0 means that extrapolation was performed at |
86 |
|
|
C IERR points. |
87 |
|
|
C "Recoverable" errors: |
88 |
|
|
C IERR = -1 if N.LT.2 . |
89 |
|
|
C IERR = -2 if INCFD.LT.1 . |
90 |
|
|
C IERR = -3 if the X-array is not strictly increasing. |
91 |
|
|
C IERR = -4 if NE.LT.1 . |
92 |
|
|
C (The FE-array has not been changed in any of these cases.) |
93 |
|
|
C NOTE: The above errors are checked in the order listed, |
94 |
|
|
C and following arguments have **NOT** been validated. |
95 |
|
|
C |
96 |
|
|
C***REFERENCES (NONE) |
97 |
|
|
C***ROUTINES CALLED CHFEV, XERMSG |
98 |
|
|
C***REVISION HISTORY (YYMMDD) |
99 |
|
|
C 811020 DATE WRITTEN |
100 |
|
|
C 820803 Minor cosmetic changes for release 1. |
101 |
|
|
C 870707 Minor cosmetic changes to prologue. |
102 |
|
|
C 890531 Changed all specific intrinsics to generic. (WRB) |
103 |
|
|
C 890831 Modified array declarations. (WRB) |
104 |
|
|
C 890831 REVISION DATE from Version 3.2 |
105 |
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB) |
106 |
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) |
107 |
|
|
C***END PROLOGUE PCHFE |
108 |
|
|
C Programming notes: |
109 |
|
|
C |
110 |
|
|
C 1. To produce a double precision version, simply: |
111 |
|
|
C a. Change PCHFE to DPCHFE, and CHFEV to DCHFEV, wherever they |
112 |
|
|
C occur, |
113 |
|
|
C b. Change the real declaration to double precision, |
114 |
|
|
C |
115 |
|
|
C 2. Most of the coding between the call to CHFEV and the end of |
116 |
|
|
C the IR-loop could be eliminated if it were permissible to |
117 |
|
|
C assume that XE is ordered relative to X. |
118 |
|
|
C |
119 |
|
|
C 3. CHFEV does not assume that X1 is less than X2. thus, it would |
120 |
|
|
C be possible to write a version of PCHFE that assumes a strict- |
121 |
|
|
C ly decreasing X-array by simply running the IR-loop backwards |
122 |
|
|
C (and reversing the order of appropriate tests). |
123 |
|
|
C |
124 |
|
|
C 4. The present code has a minor bug, which I have decided is not |
125 |
|
|
C worth the effort that would be required to fix it. |
126 |
|
|
C If XE contains points in [X(N-1),X(N)], followed by points .LT. |
127 |
|
|
C X(N-1), followed by points .GT.X(N), the extrapolation points |
128 |
|
|
C will be counted (at least) twice in the total returned in IERR. |
129 |
|
|
C |
130 |
|
|
C DECLARE ARGUMENTS. |
131 |
|
|
C |
132 |
|
|
INTEGER N, INCFD, NE, IERR |
133 |
|
|
REAL X(*), F(INCFD,*), D(INCFD,*), XE(*), FE(*) |
134 |
|
|
LOGICAL SKIP |
135 |
|
|
C |
136 |
|
|
C DECLARE LOCAL VARIABLES. |
137 |
|
|
C |
138 |
|
|
INTEGER I, IERC, IR, J, JFIRST, NEXT(2), NJ |
139 |
|
|
C |
140 |
|
|
C VALIDITY-CHECK ARGUMENTS. |
141 |
|
|
C |
142 |
|
|
C***FIRST EXECUTABLE STATEMENT PCHFE |
143 |
|
|
IF (SKIP) GO TO 5 |
144 |
|
|
C |
145 |
|
|
IF ( N.LT.2 ) GO TO 5001 |
146 |
|
|
IF ( INCFD.LT.1 ) GO TO 5002 |
147 |
|
|
DO 1 I = 2, N |
148 |
|
|
IF ( X(I).LE.X(I-1) ) GO TO 5003 |
149 |
|
|
1 CONTINUE |
150 |
|
|
C |
151 |
|
|
C FUNCTION DEFINITION IS OK, GO ON. |
152 |
|
|
C |
153 |
|
|
5 CONTINUE |
154 |
|
|
IF ( NE.LT.1 ) GO TO 5004 |
155 |
|
|
IERR = 0 |
156 |
|
|
SKIP = .TRUE. |
157 |
|
|
C |
158 |
|
|
C LOOP OVER INTERVALS. ( INTERVAL INDEX IS IL = IR-1 . ) |
159 |
|
|
C ( INTERVAL IS X(IL).LE.X.LT.X(IR) . ) |
160 |
|
|
JFIRST = 1 |
161 |
|
|
IR = 2 |
162 |
|
|
10 CONTINUE |
163 |
|
|
C |
164 |
|
|
C SKIP OUT OF LOOP IF HAVE PROCESSED ALL EVALUATION POINTS. |
165 |
|
|
C |
166 |
|
|
IF (JFIRST .GT. NE) GO TO 5000 |
167 |
|
|
C |
168 |
|
|
C LOCATE ALL POINTS IN INTERVAL. |
169 |
|
|
C |
170 |
|
|
DO 20 J = JFIRST, NE |
171 |
|
|
IF (XE(J) .GE. X(IR)) GO TO 30 |
172 |
|
|
20 CONTINUE |
173 |
|
|
J = NE + 1 |
174 |
|
|
GO TO 40 |
175 |
|
|
C |
176 |
|
|
C HAVE LOCATED FIRST POINT BEYOND INTERVAL. |
177 |
|
|
C |
178 |
|
|
30 CONTINUE |
179 |
|
|
IF (IR .EQ. N) J = NE + 1 |
180 |
|
|
C |
181 |
|
|
40 CONTINUE |
182 |
|
|
NJ = J - JFIRST |
183 |
|
|
C |
184 |
|
|
C SKIP EVALUATION IF NO POINTS IN INTERVAL. |
185 |
|
|
C |
186 |
|
|
IF (NJ .EQ. 0) GO TO 50 |
187 |
|
|
C |
188 |
|
|
C EVALUATE CUBIC AT XE(I), I = JFIRST (1) J-1 . |
189 |
|
|
C |
190 |
|
|
C ---------------------------------------------------------------- |
191 |
|
|
CALL CHFEV (X(IR-1),X(IR), F(1,IR-1),F(1,IR), D(1,IR-1),D(1,IR), |
192 |
|
|
* NJ, XE(JFIRST), FE(JFIRST), NEXT, IERC) |
193 |
|
|
C ---------------------------------------------------------------- |
194 |
|
|
IF (IERC .LT. 0) GO TO 5005 |
195 |
|
|
C |
196 |
|
|
IF (NEXT(2) .EQ. 0) GO TO 42 |
197 |
|
|
C IF (NEXT(2) .GT. 0) THEN |
198 |
|
|
C IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(2) TO THE |
199 |
|
|
C RIGHT OF X(IR). |
200 |
|
|
C |
201 |
|
|
IF (IR .LT. N) GO TO 41 |
202 |
|
|
C IF (IR .EQ. N) THEN |
203 |
|
|
C THESE ARE ACTUALLY EXTRAPOLATION POINTS. |
204 |
|
|
IERR = IERR + NEXT(2) |
205 |
|
|
GO TO 42 |
206 |
|
|
41 CONTINUE |
207 |
|
|
C ELSE |
208 |
|
|
C WE SHOULD NEVER HAVE GOTTEN HERE. |
209 |
|
|
GO TO 5005 |
210 |
|
|
C ENDIF |
211 |
|
|
C ENDIF |
212 |
|
|
42 CONTINUE |
213 |
|
|
C |
214 |
|
|
IF (NEXT(1) .EQ. 0) GO TO 49 |
215 |
|
|
C IF (NEXT(1) .GT. 0) THEN |
216 |
|
|
C IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(1) TO THE |
217 |
|
|
C LEFT OF X(IR-1). |
218 |
|
|
C |
219 |
|
|
IF (IR .GT. 2) GO TO 43 |
220 |
|
|
C IF (IR .EQ. 2) THEN |
221 |
|
|
C THESE ARE ACTUALLY EXTRAPOLATION POINTS. |
222 |
|
|
IERR = IERR + NEXT(1) |
223 |
|
|
GO TO 49 |
224 |
|
|
43 CONTINUE |
225 |
|
|
C ELSE |
226 |
|
|
C XE IS NOT ORDERED RELATIVE TO X, SO MUST ADJUST |
227 |
|
|
C EVALUATION INTERVAL. |
228 |
|
|
C |
229 |
|
|
C FIRST, LOCATE FIRST POINT TO LEFT OF X(IR-1). |
230 |
|
|
DO 44 I = JFIRST, J-1 |
231 |
|
|
IF (XE(I) .LT. X(IR-1)) GO TO 45 |
232 |
|
|
44 CONTINUE |
233 |
|
|
C NOTE-- CANNOT DROP THROUGH HERE UNLESS THERE IS AN ERROR |
234 |
|
|
C IN CHFEV. |
235 |
|
|
GO TO 5005 |
236 |
|
|
C |
237 |
|
|
45 CONTINUE |
238 |
|
|
C RESET J. (THIS WILL BE THE NEW JFIRST.) |
239 |
|
|
J = I |
240 |
|
|
C |
241 |
|
|
C NOW FIND OUT HOW FAR TO BACK UP IN THE X-ARRAY. |
242 |
|
|
DO 46 I = 1, IR-1 |
243 |
|
|
IF (XE(J) .LT. X(I)) GO TO 47 |
244 |
|
|
46 CONTINUE |
245 |
|
|
C NB-- CAN NEVER DROP THROUGH HERE, SINCE XE(J).LT.X(IR-1). |
246 |
|
|
C |
247 |
|
|
47 CONTINUE |
248 |
|
|
C AT THIS POINT, EITHER XE(J) .LT. X(1) |
249 |
|
|
C OR X(I-1) .LE. XE(J) .LT. X(I) . |
250 |
|
|
C RESET IR, RECOGNIZING THAT IT WILL BE INCREMENTED BEFORE |
251 |
|
|
C CYCLING. |
252 |
|
|
IR = MAX(1, I-1) |
253 |
|
|
C ENDIF |
254 |
|
|
C ENDIF |
255 |
|
|
49 CONTINUE |
256 |
|
|
C |
257 |
|
|
JFIRST = J |
258 |
|
|
C |
259 |
|
|
C END OF IR-LOOP. |
260 |
|
|
C |
261 |
|
|
50 CONTINUE |
262 |
|
|
IR = IR + 1 |
263 |
|
|
IF (IR .LE. N) GO TO 10 |
264 |
|
|
C |
265 |
|
|
C NORMAL RETURN. |
266 |
|
|
C |
267 |
|
|
5000 CONTINUE |
268 |
|
|
RETURN |
269 |
|
|
C |
270 |
|
|
C ERROR RETURNS. |
271 |
|
|
C |
272 |
|
|
5001 CONTINUE |
273 |
|
|
C N.LT.2 RETURN. |
274 |
|
|
IERR = -1 |
275 |
|
|
CALL XERMSG ('SLATEC', 'PCHFE', |
276 |
|
|
+ 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1) |
277 |
|
|
RETURN |
278 |
|
|
C |
279 |
|
|
5002 CONTINUE |
280 |
|
|
C INCFD.LT.1 RETURN. |
281 |
|
|
IERR = -2 |
282 |
|
|
CALL XERMSG ('SLATEC', 'PCHFE', 'INCREMENT LESS THAN ONE', IERR, |
283 |
|
|
+ 1) |
284 |
|
|
RETURN |
285 |
|
|
C |
286 |
|
|
5003 CONTINUE |
287 |
|
|
C X-ARRAY NOT STRICTLY INCREASING. |
288 |
|
|
IERR = -3 |
289 |
|
|
CALL XERMSG ('SLATEC', 'PCHFE', 'X-ARRAY NOT STRICTLY INCREASING' |
290 |
|
|
+ , IERR, 1) |
291 |
|
|
RETURN |
292 |
|
|
C |
293 |
|
|
5004 CONTINUE |
294 |
|
|
C NE.LT.1 RETURN. |
295 |
|
|
IERR = -4 |
296 |
|
|
CALL XERMSG ('SLATEC', 'PCHFE', |
297 |
|
|
+ 'NUMBER OF EVALUATION POINTS LESS THAN ONE', IERR, 1) |
298 |
|
|
RETURN |
299 |
|
|
C |
300 |
|
|
5005 CONTINUE |
301 |
|
|
C ERROR RETURN FROM CHFEV. |
302 |
|
|
C *** THIS CASE SHOULD NEVER OCCUR *** |
303 |
|
|
IERR = -5 |
304 |
|
|
CALL XERMSG ('SLATEC', 'PCHFE', |
305 |
|
|
+ 'ERROR RETURN FROM CHFEV -- FATAL', IERR, 2) |
306 |
|
|
RETURN |
307 |
|
|
C------------- LAST LINE OF PCHFE FOLLOWS ------------------------------ |
308 |
|
|
END |