1 |
|
|
module PCHFE_95_m |
2 |
|
|
|
3 |
|
|
implicit none |
4 |
|
|
|
5 |
|
|
contains |
6 |
|
|
|
7 |
|
|
SUBROUTINE PCHFE_95(X, F, D, SKIP, XE, FE, IERR) |
8 |
|
|
|
9 |
|
|
! PURPOSE Evaluate a piecewise cubic Hermite function at an array of |
10 |
|
|
! points. May be used by itself for Hermite interpolation, |
11 |
|
|
! or as an evaluator for PCHIM or PCHIC. |
12 |
|
|
! CATEGORY E3 |
13 |
|
|
! KEYWORDS CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP, |
14 |
|
|
! PIECEWISE CUBIC EVALUATION |
15 |
|
|
|
16 |
|
|
! PCHFE: Piecewise Cubic Hermite Function Evaluator |
17 |
|
|
! Evaluates the cubic Hermite function defined by X, F, D at |
18 |
|
|
! the points XE. |
19 |
|
|
|
20 |
|
|
use assert_eq_m, only: assert_eq |
21 |
|
|
|
22 |
|
|
REAL, intent(in):: X(:) ! real array of independent variable values |
23 |
|
|
! The elements of X must be strictly increasing. |
24 |
|
|
|
25 |
|
|
REAL, intent(in):: F(:) ! real array of function values |
26 |
|
|
! F(I) is the value corresponding to X(I). |
27 |
|
|
|
28 |
|
|
REAL, intent(in):: D(:) ! real array of derivative values |
29 |
|
|
! D(I) is the value corresponding to X(I). |
30 |
|
|
|
31 |
|
|
LOGICAL, intent(inout):: SKIP |
32 |
|
|
! request to skip checks for validity of "x" |
33 |
|
|
! If "skip" is false then "pchfe" will check that size(x) >= 2 and |
34 |
|
|
! "x" is in strictly ascending order. |
35 |
|
|
! Setting "skip" to true will save time in case these checks have |
36 |
|
|
! already been performed (say, in "PCHIM" or "PCHIC"). |
37 |
|
|
! "SKIP" will be set to TRUE on normal return. |
38 |
|
|
|
39 |
|
|
real, intent(in):: XE(:) ! points at which the function is to be evaluated |
40 |
|
|
! NOTES: |
41 |
|
|
! 1. The evaluation will be most efficient if the elements of XE |
42 |
|
|
! are increasing relative to X. |
43 |
|
|
! That is, XE(J) .GE. X(I) |
44 |
|
|
! implies XE(K) .GE. X(I), all K.GE.J |
45 |
|
|
! 2. If any of the XE are outside the interval [X(1),X(N)], values |
46 |
|
|
! are extrapolated from the nearest extreme cubic, and a warning |
47 |
|
|
! error is returned. |
48 |
|
|
|
49 |
|
|
real, intent(out):: FE(:) ! values of the cubic Hermite function |
50 |
|
|
! defined by X, F, D at the points XE |
51 |
|
|
|
52 |
|
|
integer, intent(out):: IERR ! error flag |
53 |
|
|
! Normal return: |
54 |
|
|
! IERR = 0 no error |
55 |
|
|
! Warning error: |
56 |
|
|
! IERR > 0 means that extrapolation was performed at IERR points |
57 |
|
|
! "Recoverable" errors: |
58 |
|
|
! IERR = -1 if N < 2 |
59 |
|
|
! IERR = -3 if the X-array is not strictly increasing |
60 |
|
|
! IERR = -4 if NE < 1 |
61 |
|
|
! NOTE: The above errors are checked in the order listed, and |
62 |
|
|
! following arguments have **NOT** been validated. |
63 |
|
|
|
64 |
|
|
! Variables local to the procedure: |
65 |
|
|
|
66 |
|
|
INTEGER N, NE |
67 |
|
|
|
68 |
|
|
!--------------------------------------- |
69 |
|
|
|
70 |
|
|
n = assert_eq(size(x), size(f), size(d), "PCHFE_95 n") |
71 |
|
|
ne = assert_eq(size(xe), size(fe), "PCHFE_95 ne") |
72 |
|
|
call PCHFE(N, X, F, D, 1, SKIP, NE, XE, FE, IERR) |
73 |
|
|
|
74 |
|
|
end SUBROUTINE PCHFE_95 |
75 |
|
|
|
76 |
|
|
end module PCHFE_95_m |