GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: misc/pchsp.F Lines: 0 111 0.0 %
Date: 2023-06-30 12:51:15 Branches: 0 80 0.0 %

Line Branch Exec Source
1
*DECK PCHSP
2
      SUBROUTINE PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
3
C***BEGIN PROLOGUE  PCHSP
4
C***PURPOSE  Set derivatives needed to determine the Hermite represen-
5
C            tation of the cubic spline interpolant to given data, with
6
C            specified boundary conditions.
7
C***LIBRARY   SLATEC (PCHIP)
8
C***CATEGORY  E1A
9
C***TYPE      SINGLE PRECISION (PCHSP-S, DPCHSP-D)
10
C***KEYWORDS  CUBIC HERMITE INTERPOLATION, PCHIP,
11
C             PIECEWISE CUBIC INTERPOLATION, SPLINE INTERPOLATION
12
C***AUTHOR  Fritsch, F. N., (LLNL)
13
C             Lawrence Livermore National Laboratory
14
C             P.O. Box 808  (L-316)
15
C             Livermore, CA  94550
16
C             FTS 532-4275, (510) 422-4275
17
C***DESCRIPTION
18
C
19
C          PCHSP:   Piecewise Cubic Hermite Spline
20
C
21
C     Computes the Hermite representation of the cubic spline inter-
22
C     polant to the data given in X and F satisfying the boundary
23
C     conditions specified by IC and VC.
24
C
25
C     To facilitate two-dimensional applications, includes an increment
26
C     between successive values of the F- and D-arrays.
27
C
28
C     The resulting piecewise cubic Hermite function may be evaluated
29
C     by PCHFE or PCHFD.
30
C
31
C     NOTE:  This is a modified version of C. de Boor's cubic spline
32
C            routine CUBSPL.
33
C
34
C ----------------------------------------------------------------------
35
C
36
C  Calling sequence:
37
C
38
C        PARAMETER  (INCFD = ...)
39
C        INTEGER  IC(2), N, NWK, IERR
40
C        REAL  VC(2), X(N), F(INCFD,N), D(INCFD,N), WK(NWK)
41
C
42
C        CALL  PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
43
C
44
C   Parameters:
45
C
46
C     IC -- (input) integer array of length 2 specifying desired
47
C           boundary conditions:
48
C           IC(1) = IBEG, desired condition at beginning of data.
49
C           IC(2) = IEND, desired condition at end of data.
50
C
51
C           IBEG = 0  to set D(1) so that the third derivative is con-
52
C              tinuous at X(2).  This is the "not a knot" condition
53
C              provided by de Boor's cubic spline routine CUBSPL.
54
C              < This is the default boundary condition. >
55
C           IBEG = 1  if first derivative at X(1) is given in VC(1).
56
C           IBEG = 2  if second derivative at X(1) is given in VC(1).
57
C           IBEG = 3  to use the 3-point difference formula for D(1).
58
C                     (Reverts to the default b.c. if N.LT.3 .)
59
C           IBEG = 4  to use the 4-point difference formula for D(1).
60
C                     (Reverts to the default b.c. if N.LT.4 .)
61
C          NOTES:
62
C           1. An error return is taken if IBEG is out of range.
63
C           2. For the "natural" boundary condition, use IBEG=2 and
64
C              VC(1)=0.
65
C
66
C           IEND may take on the same values as IBEG, but applied to
67
C           derivative at X(N).  In case IEND = 1 or 2, the value is
68
C           given in VC(2).
69
C
70
C          NOTES:
71
C           1. An error return is taken if IEND is out of range.
72
C           2. For the "natural" boundary condition, use IEND=2 and
73
C              VC(2)=0.
74
C
75
C     VC -- (input) real array of length 2 specifying desired boundary
76
C           values, as indicated above.
77
C           VC(1) need be set only if IC(1) = 1 or 2 .
78
C           VC(2) need be set only if IC(2) = 1 or 2 .
79
C
80
C     N -- (input) number of data points.  (Error return if N.LT.2 .)
81
C
82
C     X -- (input) real array of independent variable values.  The
83
C           elements of X must be strictly increasing:
84
C                X(I-1) .LT. X(I),  I = 2(1)N.
85
C           (Error return if not.)
86
C
87
C     F -- (input) real array of dependent variable values to be inter-
88
C           polated.  F(1+(I-1)*INCFD) is value corresponding to X(I).
89
C
90
C     D -- (output) real array of derivative values at the data points.
91
C           These values will determine the cubic spline interpolant
92
C           with the requested boundary conditions.
93
C           The value corresponding to X(I) is stored in
94
C                D(1+(I-1)*INCFD),  I=1(1)N.
95
C           No other entries in D are changed.
96
C
97
C     INCFD -- (input) increment between successive values in F and D.
98
C           This argument is provided primarily for 2-D applications.
99
C           (Error return if  INCFD.LT.1 .)
100
C
101
C     WK -- (scratch) real array of working storage.
102
C
103
C     NWK -- (input) length of work array.
104
C           (Error return if NWK.LT.2*N .)
105
C
106
C     IERR -- (output) error flag.
107
C           Normal return:
108
C              IERR = 0  (no errors).
109
C           "Recoverable" errors:
110
C              IERR = -1  if N.LT.2 .
111
C              IERR = -2  if INCFD.LT.1 .
112
C              IERR = -3  if the X-array is not strictly increasing.
113
C              IERR = -4  if IBEG.LT.0 or IBEG.GT.4 .
114
C              IERR = -5  if IEND.LT.0 of IEND.GT.4 .
115
C              IERR = -6  if both of the above are true.
116
C              IERR = -7  if NWK is too small.
117
C               NOTE:  The above errors are checked in the order listed,
118
C                   and following arguments have **NOT** been validated.
119
C             (The D-array has not been changed in any of these cases.)
120
C              IERR = -8  in case of trouble solving the linear system
121
C                         for the interior derivative values.
122
C             (The D-array may have been changed in this case.)
123
C             (             Do **NOT** use it!                )
124
C
125
C***REFERENCES  Carl de Boor, A Practical Guide to Splines, Springer-
126
C                 Verlag, New York, 1978, pp. 53-59.
127
C***ROUTINES CALLED  PCHDF, XERMSG
128
C***REVISION HISTORY  (YYMMDD)
129
C   820503  DATE WRITTEN
130
C   820804  Converted to SLATEC library version.
131
C   870707  Minor cosmetic changes to prologue.
132
C   890411  Added SAVE statements (Vers. 3.2).
133
C   890703  Corrected category record.  (WRB)
134
C   890831  Modified array declarations.  (WRB)
135
C   890831  REVISION DATE from Version 3.2
136
C   891214  Prologue converted to Version 4.0 format.  (BAB)
137
C   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
138
C   920429  Revised format and order of references.  (WRB,FNF)
139
C***END PROLOGUE  PCHSP
140
C  Programming notes:
141
C
142
C     To produce a double precision version, simply:
143
C        a. Change PCHSP to DPCHSP wherever it occurs,
144
C        b. Change the real declarations to double precision, and
145
C        c. Change the constants ZERO, HALF, ... to double precision.
146
C
147
C  DECLARE ARGUMENTS.
148
C
149
      INTEGER  IC(2), N, INCFD, NWK, IERR
150
      REAL  VC(2), X(*), F(INCFD,*), D(INCFD,*), WK(2,*)
151
C
152
C  DECLARE LOCAL VARIABLES.
153
C
154
      INTEGER  IBEG, IEND, INDEX, J, NM1
155
      REAL  G, HALF, ONE, STEMP(3), THREE, TWO, XTEMP(4), ZERO
156
      SAVE ZERO, HALF, ONE, TWO, THREE
157
      REAL  PCHDF
158
C
159
      DATA  ZERO /0./,  HALF /0.5/,  ONE /1./,  TWO /2./,  THREE /3./
160
C
161
C  VALIDITY-CHECK ARGUMENTS.
162
C
163
C***FIRST EXECUTABLE STATEMENT  PCHSP
164
      IF ( N.LT.2 )  GO TO 5001
165
      IF ( INCFD.LT.1 )  GO TO 5002
166
      DO 1  J = 2, N
167
         IF ( X(J).LE.X(J-1) )  GO TO 5003
168
    1 CONTINUE
169
C
170
      IBEG = IC(1)
171
      IEND = IC(2)
172
      IERR = 0
173
      IF ( (IBEG.LT.0).OR.(IBEG.GT.4) )  IERR = IERR - 1
174
      IF ( (IEND.LT.0).OR.(IEND.GT.4) )  IERR = IERR - 2
175
      IF ( IERR.LT.0 )  GO TO 5004
176
C
177
C  FUNCTION DEFINITION IS OK -- GO ON.
178
C
179
      IF ( NWK .LT. 2*N )  GO TO 5007
180
C
181
C  COMPUTE FIRST DIFFERENCES OF X SEQUENCE AND STORE IN WK(1,.). ALSO,
182
C  COMPUTE FIRST DIVIDED DIFFERENCE OF DATA AND STORE IN WK(2,.).
183
      DO 5  J=2,N
184
         WK(1,J) = X(J) - X(J-1)
185
         WK(2,J) = (F(1,J) - F(1,J-1))/WK(1,J)
186
    5 CONTINUE
187
C
188
C  SET TO DEFAULT BOUNDARY CONDITIONS IF N IS TOO SMALL.
189
C
190
      IF ( IBEG.GT.N )  IBEG = 0
191
      IF ( IEND.GT.N )  IEND = 0
192
C
193
C  SET UP FOR BOUNDARY CONDITIONS.
194
C
195
      IF ( (IBEG.EQ.1).OR.(IBEG.EQ.2) )  THEN
196
         D(1,1) = VC(1)
197
      ELSE IF (IBEG .GT. 2)  THEN
198
C        PICK UP FIRST IBEG POINTS, IN REVERSE ORDER.
199
         DO 10  J = 1, IBEG
200
            INDEX = IBEG-J+1
201
C           INDEX RUNS FROM IBEG DOWN TO 1.
202
            XTEMP(J) = X(INDEX)
203
            IF (J .LT. IBEG)  STEMP(J) = WK(2,INDEX)
204
   10    CONTINUE
205
C                 --------------------------------
206
         D(1,1) = PCHDF (IBEG, XTEMP, STEMP, IERR)
207
C                 --------------------------------
208
         IF (IERR .NE. 0)  GO TO 5009
209
         IBEG = 1
210
      ENDIF
211
C
212
      IF ( (IEND.EQ.1).OR.(IEND.EQ.2) )  THEN
213
         D(1,N) = VC(2)
214
      ELSE IF (IEND .GT. 2)  THEN
215
C        PICK UP LAST IEND POINTS.
216
         DO 15  J = 1, IEND
217
            INDEX = N-IEND+J
218
C           INDEX RUNS FROM N+1-IEND UP TO N.
219
            XTEMP(J) = X(INDEX)
220
            IF (J .LT. IEND)  STEMP(J) = WK(2,INDEX+1)
221
   15    CONTINUE
222
C                 --------------------------------
223
         D(1,N) = PCHDF (IEND, XTEMP, STEMP, IERR)
224
C                 --------------------------------
225
         IF (IERR .NE. 0)  GO TO 5009
226
         IEND = 1
227
      ENDIF
228
C
229
C --------------------( BEGIN CODING FROM CUBSPL )--------------------
230
C
231
C  **** A TRIDIAGONAL LINEAR SYSTEM FOR THE UNKNOWN SLOPES S(J) OF
232
C  F  AT X(J), J=1,...,N, IS GENERATED AND THEN SOLVED BY GAUSS ELIM-
233
C  INATION, WITH S(J) ENDING UP IN D(1,J), ALL J.
234
C     WK(1,.) AND WK(2,.) ARE USED FOR TEMPORARY STORAGE.
235
C
236
C  CONSTRUCT FIRST EQUATION FROM FIRST BOUNDARY CONDITION, OF THE FORM
237
C             WK(2,1)*S(1) + WK(1,1)*S(2) = D(1,1)
238
C
239
      IF (IBEG .EQ. 0)  THEN
240
         IF (N .EQ. 2)  THEN
241
C           NO CONDITION AT LEFT END AND N = 2.
242
            WK(2,1) = ONE
243
            WK(1,1) = ONE
244
            D(1,1) = TWO*WK(2,2)
245
         ELSE
246
C           NOT-A-KNOT CONDITION AT LEFT END AND N .GT. 2.
247
            WK(2,1) = WK(1,3)
248
            WK(1,1) = WK(1,2) + WK(1,3)
249
            D(1,1) =((WK(1,2) + TWO*WK(1,1))*WK(2,2)*WK(1,3)
250
     *                        + WK(1,2)**2*WK(2,3)) / WK(1,1)
251
         ENDIF
252
      ELSE IF (IBEG .EQ. 1)  THEN
253
C        SLOPE PRESCRIBED AT LEFT END.
254
         WK(2,1) = ONE
255
         WK(1,1) = ZERO
256
      ELSE
257
C        SECOND DERIVATIVE PRESCRIBED AT LEFT END.
258
         WK(2,1) = TWO
259
         WK(1,1) = ONE
260
         D(1,1) = THREE*WK(2,2) - HALF*WK(1,2)*D(1,1)
261
      ENDIF
262
C
263
C  IF THERE ARE INTERIOR KNOTS, GENERATE THE CORRESPONDING EQUATIONS AND
264
C  CARRY OUT THE FORWARD PASS OF GAUSS ELIMINATION, AFTER WHICH THE J-TH
265
C  EQUATION READS    WK(2,J)*S(J) + WK(1,J)*S(J+1) = D(1,J).
266
C
267
      NM1 = N-1
268
      IF (NM1 .GT. 1)  THEN
269
         DO 20 J=2,NM1
270
            IF (WK(2,J-1) .EQ. ZERO)  GO TO 5008
271
            G = -WK(1,J+1)/WK(2,J-1)
272
            D(1,J) = G*D(1,J-1)
273
     *                  + THREE*(WK(1,J)*WK(2,J+1) + WK(1,J+1)*WK(2,J))
274
            WK(2,J) = G*WK(1,J-1) + TWO*(WK(1,J) + WK(1,J+1))
275
   20    CONTINUE
276
      ENDIF
277
C
278
C  CONSTRUCT LAST EQUATION FROM SECOND BOUNDARY CONDITION, OF THE FORM
279
C           (-G*WK(2,N-1))*S(N-1) + WK(2,N)*S(N) = D(1,N)
280
C
281
C     IF SLOPE IS PRESCRIBED AT RIGHT END, ONE CAN GO DIRECTLY TO BACK-
282
C     SUBSTITUTION, SINCE ARRAYS HAPPEN TO BE SET UP JUST RIGHT FOR IT
283
C     AT THIS POINT.
284
      IF (IEND .EQ. 1)  GO TO 30
285
C
286
      IF (IEND .EQ. 0)  THEN
287
         IF (N.EQ.2 .AND. IBEG.EQ.0)  THEN
288
C           NOT-A-KNOT AT RIGHT ENDPOINT AND AT LEFT ENDPOINT AND N = 2.
289
            D(1,2) = WK(2,2)
290
            GO TO 30
291
         ELSE IF ((N.EQ.2) .OR. (N.EQ.3 .AND. IBEG.EQ.0))  THEN
292
C           EITHER (N=3 AND NOT-A-KNOT ALSO AT LEFT) OR (N=2 AND *NOT*
293
C           NOT-A-KNOT AT LEFT END POINT).
294
            D(1,N) = TWO*WK(2,N)
295
            WK(2,N) = ONE
296
            IF (WK(2,N-1) .EQ. ZERO)  GO TO 5008
297
            G = -ONE/WK(2,N-1)
298
         ELSE
299
C           NOT-A-KNOT AND N .GE. 3, AND EITHER N.GT.3 OR  ALSO NOT-A-
300
C           KNOT AT LEFT END POINT.
301
            G = WK(1,N-1) + WK(1,N)
302
C           DO NOT NEED TO CHECK FOLLOWING DENOMINATORS (X-DIFFERENCES).
303
            D(1,N) = ((WK(1,N)+TWO*G)*WK(2,N)*WK(1,N-1)
304
     *                  + WK(1,N)**2*(F(1,N-1)-F(1,N-2))/WK(1,N-1))/G
305
            IF (WK(2,N-1) .EQ. ZERO)  GO TO 5008
306
            G = -G/WK(2,N-1)
307
            WK(2,N) = WK(1,N-1)
308
         ENDIF
309
      ELSE
310
C        SECOND DERIVATIVE PRESCRIBED AT RIGHT ENDPOINT.
311
         D(1,N) = THREE*WK(2,N) + HALF*WK(1,N)*D(1,N)
312
         WK(2,N) = TWO
313
         IF (WK(2,N-1) .EQ. ZERO)  GO TO 5008
314
         G = -ONE/WK(2,N-1)
315
      ENDIF
316
C
317
C  COMPLETE FORWARD PASS OF GAUSS ELIMINATION.
318
C
319
      WK(2,N) = G*WK(1,N-1) + WK(2,N)
320
      IF (WK(2,N) .EQ. ZERO)   GO TO 5008
321
      D(1,N) = (G*D(1,N-1) + D(1,N))/WK(2,N)
322
C
323
C  CARRY OUT BACK SUBSTITUTION
324
C
325
   30 CONTINUE
326
      DO 40 J=NM1,1,-1
327
         IF (WK(2,J) .EQ. ZERO)  GO TO 5008
328
         D(1,J) = (D(1,J) - WK(1,J)*D(1,J+1))/WK(2,J)
329
   40 CONTINUE
330
C --------------------(  END  CODING FROM CUBSPL )--------------------
331
C
332
C  NORMAL RETURN.
333
C
334
      RETURN
335
C
336
C  ERROR RETURNS.
337
C
338
 5001 CONTINUE
339
C     N.LT.2 RETURN.
340
      IERR = -1
341
      CALL XERMSG ('SLATEC', 'PCHSP',
342
     +   'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
343
      RETURN
344
C
345
 5002 CONTINUE
346
C     INCFD.LT.1 RETURN.
347
      IERR = -2
348
      CALL XERMSG ('SLATEC', 'PCHSP', 'INCREMENT LESS THAN ONE', IERR,
349
     +   1)
350
      RETURN
351
C
352
 5003 CONTINUE
353
C     X-ARRAY NOT STRICTLY INCREASING.
354
      IERR = -3
355
      CALL XERMSG ('SLATEC', 'PCHSP', 'X-ARRAY NOT STRICTLY INCREASING'
356
     +   , IERR, 1)
357
      RETURN
358
C
359
 5004 CONTINUE
360
C     IC OUT OF RANGE RETURN.
361
      IERR = IERR - 3
362
      CALL XERMSG ('SLATEC', 'PCHSP', 'IC OUT OF RANGE', IERR, 1)
363
      RETURN
364
C
365
 5007 CONTINUE
366
C     NWK TOO SMALL RETURN.
367
      IERR = -7
368
      CALL XERMSG ('SLATEC', 'PCHSP', 'WORK ARRAY TOO SMALL', IERR, 1)
369
      RETURN
370
C
371
 5008 CONTINUE
372
C     SINGULAR SYSTEM.
373
C   *** THEORETICALLY, THIS CAN ONLY OCCUR IF SUCCESSIVE X-VALUES   ***
374
C   *** ARE EQUAL, WHICH SHOULD ALREADY HAVE BEEN CAUGHT (IERR=-3). ***
375
      IERR = -8
376
      CALL XERMSG ('SLATEC', 'PCHSP', 'SINGULAR LINEAR SYSTEM', IERR,
377
     +   1)
378
      RETURN
379
C
380
 5009 CONTINUE
381
C     ERROR RETURN FROM PCHDF.
382
C   *** THIS CASE SHOULD NEVER OCCUR ***
383
      IERR = -9
384
      CALL XERMSG ('SLATEC', 'PCHSP', 'ERROR RETURN FROM PCHDF', IERR,
385
     +   1)
386
      RETURN
387
C------------- LAST LINE OF PCHSP FOLLOWS ------------------------------
388
      END