1 |
|
|
|
2 |
|
|
! $Id: aaam_bud.F90 2350 2015-08-25 11:40:19Z emillour $ |
3 |
|
|
|
4 |
|
288 |
SUBROUTINE aaam_bud(iam, nlon, nlev, rjour, rsec, rea, rg, ome, plat, plon, & |
5 |
|
288 |
phis, dragu, liftu, phyu, dragv, liftv, phyv, p, u, v, aam, torsfc) |
6 |
|
|
|
7 |
|
|
USE dimphy |
8 |
|
|
USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat, klon_glo |
9 |
|
|
IMPLICIT NONE |
10 |
|
|
! ====================================================================== |
11 |
|
|
! Auteur(s): F.Lott (LMD/CNRS) date: 20031020 |
12 |
|
|
! Object: Compute different terms of the axial AAAM Budget. |
13 |
|
|
! No outputs, every AAM quantities are written on the IAM |
14 |
|
|
! File. |
15 |
|
|
|
16 |
|
|
! Modif : I.Musat (LMD/CNRS) date : 20041020 |
17 |
|
|
! Outputs : axial components of wind AAM "aam" and total surface torque |
18 |
|
|
! "torsfc", |
19 |
|
|
! but no write in the iam file. |
20 |
|
|
|
21 |
|
|
! WARNING: Only valid for regular rectangular grids. |
22 |
|
|
! REMARK: CALL DANS PHYSIQ AFTER lift_noro: |
23 |
|
|
! CALL aaam_bud (27,klon,klev,rjourvrai,gmtime, |
24 |
|
|
! C ra,rg,romega, |
25 |
|
|
! C rlat,rlon,pphis, |
26 |
|
|
! C zustrdr,zustrli,zustrph, |
27 |
|
|
! C zvstrdr,zvstrli,zvstrph, |
28 |
|
|
! C paprs,u,v) |
29 |
|
|
|
30 |
|
|
! ====================================================================== |
31 |
|
|
! Explicit Arguments: |
32 |
|
|
! ================== |
33 |
|
|
! iam-----input-I-File number where AAMs and torques are written |
34 |
|
|
! It is a formatted file that has been opened |
35 |
|
|
! in physiq.F |
36 |
|
|
! nlon----input-I-Total number of horizontal points that get into physics |
37 |
|
|
! nlev----input-I-Number of vertical levels |
38 |
|
|
! rjour -R-Jour compte depuis le debut de la simu (run.def) |
39 |
|
|
! rsec -R-Seconde de la journee |
40 |
|
|
! rea -R-Earth radius |
41 |
|
|
! rg -R-gravity constant |
42 |
|
|
! ome -R-Earth rotation rate |
43 |
|
|
! plat ---input-R-Latitude en degres |
44 |
|
|
! plon ---input-R-Longitude en degres |
45 |
|
|
! phis ---input-R-Geopotential at the ground |
46 |
|
|
! dragu---input-R-orodrag stress (zonal) |
47 |
|
|
! liftu---input-R-orolift stress (zonal) |
48 |
|
|
! phyu----input-R-Stress total de la physique (zonal) |
49 |
|
|
! dragv---input-R-orodrag stress (Meridional) |
50 |
|
|
! liftv---input-R-orolift stress (Meridional) |
51 |
|
|
! phyv----input-R-Stress total de la physique (Meridional) |
52 |
|
|
! p-------input-R-Pressure (Pa) at model half levels |
53 |
|
|
! u-------input-R-Horizontal wind (m/s) |
54 |
|
|
! v-------input-R-Meridional wind (m/s) |
55 |
|
|
! aam-----output-R-Axial Wind AAM (=raam(3)) |
56 |
|
|
! torsfc--output-R-Total surface torque (=tmou(3)+tsso(3)+tbls(3)) |
57 |
|
|
|
58 |
|
|
! Implicit Arguments: |
59 |
|
|
! =================== |
60 |
|
|
|
61 |
|
|
! nbp_lon--common-I: Number of longitude intervals |
62 |
|
|
! (nbp_lat-1)--common-I: Number of latitude intervals |
63 |
|
|
! klon-common-I: Number of points seen by the physics |
64 |
|
|
! nbp_lon*(nbp_lat-2)+2 for instance |
65 |
|
|
! klev-common-I: Number of vertical layers |
66 |
|
|
! ====================================================================== |
67 |
|
|
! Local Variables: |
68 |
|
|
! ================ |
69 |
|
|
! dlat-----R: Latitude increment (Radians) |
70 |
|
|
! dlon-----R: Longitude increment (Radians) |
71 |
|
|
! raam ---R: Wind AAM (3 Components, 1 & 2 Equatoriales; 3 Axiale) |
72 |
|
|
! oaam ---R: Mass AAM (3 Components, 1 & 2 Equatoriales; 3 Axiale) |
73 |
|
|
! tmou-----R: Resolved Mountain torque (3 components) |
74 |
|
|
! tsso-----R: Parameterised Moutain drag torque (3 components) |
75 |
|
|
! tbls-----R: Parameterised Boundary layer torque (3 components) |
76 |
|
|
|
77 |
|
|
! LOCAL ARRAY: |
78 |
|
|
! =========== |
79 |
|
|
! zs ---R: Topographic height |
80 |
|
|
! ps ---R: Surface Pressure |
81 |
|
|
! ub ---R: Barotropic wind zonal |
82 |
|
|
! vb ---R: Barotropic wind meridional |
83 |
|
|
! zlat ---R: Latitude in radians |
84 |
|
|
! zlon ---R: Longitude in radians |
85 |
|
|
! ====================================================================== |
86 |
|
|
|
87 |
|
|
! ARGUMENTS |
88 |
|
|
|
89 |
|
|
INTEGER iam, nlon, nlev |
90 |
|
|
REAL, INTENT (IN) :: rjour, rsec, rea, rg, ome |
91 |
|
|
REAL plat(nlon), plon(nlon), phis(nlon) |
92 |
|
|
REAL dragu(nlon), liftu(nlon), phyu(nlon) |
93 |
|
|
REAL dragv(nlon), liftv(nlon), phyv(nlon) |
94 |
|
|
REAL p(nlon, nlev+1), u(nlon, nlev), v(nlon, nlev) |
95 |
|
|
|
96 |
|
|
! Variables locales: |
97 |
|
|
|
98 |
|
|
INTEGER i, j, k, l |
99 |
|
|
REAL xpi, hadley, hadday |
100 |
|
|
REAL dlat, dlon |
101 |
|
|
REAL raam(3), oaam(3), tmou(3), tsso(3), tbls(3) |
102 |
|
|
INTEGER iax |
103 |
|
|
! IM ajout aam, torsfc |
104 |
|
|
! aam = composante axiale du Wind AAM raam |
105 |
|
|
! torsfc = composante axiale de (tmou+tsso+tbls) |
106 |
|
|
REAL aam, torsfc |
107 |
|
|
|
108 |
|
|
REAL zs(801, 401), ps(801, 401) |
109 |
|
|
REAL ub(801, 401), vb(801, 401) |
110 |
|
|
REAL ssou(801, 401), ssov(801, 401) |
111 |
|
|
REAL blsu(801, 401), blsv(801, 401) |
112 |
|
|
REAL zlon(801), zlat(401) |
113 |
|
|
|
114 |
|
|
CHARACTER (LEN=20) :: modname = 'aaam_bud' |
115 |
|
|
CHARACTER (LEN=80) :: abort_message |
116 |
|
|
|
117 |
|
|
|
118 |
|
|
|
119 |
|
|
! PUT AAM QUANTITIES AT ZERO: |
120 |
|
|
|
121 |
✓✗✗✓
|
288 |
IF (nbp_lon+1>801 .OR. nbp_lat>401) THEN |
122 |
|
|
abort_message = 'Pb de dimension dans aaam_bud' |
123 |
|
|
CALL abort_physic(modname, abort_message, 1) |
124 |
|
|
END IF |
125 |
|
|
|
126 |
|
|
xpi = acos(-1.) |
127 |
|
|
hadley = 1.E18 |
128 |
|
|
hadday = 1.E18*24.*3600. |
129 |
✓✗ |
288 |
IF(klon_glo.EQ.1) THEN |
130 |
|
|
dlat = xpi |
131 |
|
|
ELSE |
132 |
|
288 |
dlat = xpi/real(nbp_lat-1) |
133 |
|
|
ENDIF |
134 |
|
288 |
dlon = 2.*xpi/real(nbp_lon) |
135 |
|
|
|
136 |
✓✓ |
1152 |
DO iax = 1, 3 |
137 |
|
864 |
oaam(iax) = 0. |
138 |
|
864 |
raam(iax) = 0. |
139 |
|
864 |
tmou(iax) = 0. |
140 |
|
864 |
tsso(iax) = 0. |
141 |
|
1152 |
tbls(iax) = 0. |
142 |
|
|
END DO |
143 |
|
|
|
144 |
|
|
! MOUNTAIN HEIGHT, PRESSURE AND BAROTROPIC WIND: |
145 |
|
|
|
146 |
|
|
! North pole values (j=1): |
147 |
|
|
|
148 |
|
|
l = 1 |
149 |
|
|
|
150 |
|
288 |
ub(1, 1) = 0. |
151 |
|
288 |
vb(1, 1) = 0. |
152 |
✓✓ |
11520 |
DO k = 1, nlev |
153 |
|
11232 |
ub(1, 1) = ub(1, 1) + u(l, k)*(p(l,k)-p(l,k+1))/rg |
154 |
|
11520 |
vb(1, 1) = vb(1, 1) + v(l, k)*(p(l,k)-p(l,k+1))/rg |
155 |
|
|
END DO |
156 |
|
|
|
157 |
|
288 |
zlat(1) = plat(l)*xpi/180. |
158 |
|
|
|
159 |
✓✓ |
9792 |
DO i = 1, nbp_lon + 1 |
160 |
|
|
|
161 |
|
9504 |
zs(i, 1) = phis(l)/rg |
162 |
|
9504 |
ps(i, 1) = p(l, 1) |
163 |
|
9504 |
ub(i, 1) = ub(1, 1) |
164 |
|
9504 |
vb(i, 1) = vb(1, 1) |
165 |
|
9504 |
ssou(i, 1) = dragu(l) + liftu(l) |
166 |
|
9504 |
ssov(i, 1) = dragv(l) + liftv(l) |
167 |
|
9504 |
blsu(i, 1) = phyu(l) - dragu(l) - liftu(l) |
168 |
|
9792 |
blsv(i, 1) = phyv(l) - dragv(l) - liftv(l) |
169 |
|
|
|
170 |
|
|
END DO |
171 |
|
|
|
172 |
|
|
|
173 |
✓✓ |
9216 |
DO j = 2, nbp_lat-1 |
174 |
|
|
|
175 |
|
|
! Values at Greenwich (Periodicity) |
176 |
|
|
|
177 |
|
8928 |
zs(nbp_lon+1, j) = phis(l+1)/rg |
178 |
|
8928 |
ps(nbp_lon+1, j) = p(l+1, 1) |
179 |
|
8928 |
ssou(nbp_lon+1, j) = dragu(l+1) + liftu(l+1) |
180 |
|
8928 |
ssov(nbp_lon+1, j) = dragv(l+1) + liftv(l+1) |
181 |
|
8928 |
blsu(nbp_lon+1, j) = phyu(l+1) - dragu(l+1) - liftu(l+1) |
182 |
|
8928 |
blsv(nbp_lon+1, j) = phyv(l+1) - dragv(l+1) - liftv(l+1) |
183 |
|
|
zlon(nbp_lon+1) = -plon(l+1)*xpi/180. |
184 |
|
8928 |
zlat(j) = plat(l+1)*xpi/180. |
185 |
|
|
|
186 |
|
8928 |
ub(nbp_lon+1, j) = 0. |
187 |
|
8928 |
vb(nbp_lon+1, j) = 0. |
188 |
✓✓ |
357120 |
DO k = 1, nlev |
189 |
|
348192 |
ub(nbp_lon+1, j) = ub(nbp_lon+1, j) + u(l+1, k)*(p(l+1,k)-p(l+1,k+1))/rg |
190 |
|
357120 |
vb(nbp_lon+1, j) = vb(nbp_lon+1, j) + v(l+1, k)*(p(l+1,k)-p(l+1,k+1))/rg |
191 |
|
|
END DO |
192 |
|
|
|
193 |
|
|
|
194 |
✓✓ |
294912 |
DO i = 1, nbp_lon |
195 |
|
|
|
196 |
|
285696 |
l = l + 1 |
197 |
|
285696 |
zs(i, j) = phis(l)/rg |
198 |
|
285696 |
ps(i, j) = p(l, 1) |
199 |
|
285696 |
ssou(i, j) = dragu(l) + liftu(l) |
200 |
|
285696 |
ssov(i, j) = dragv(l) + liftv(l) |
201 |
|
285696 |
blsu(i, j) = phyu(l) - dragu(l) - liftu(l) |
202 |
|
285696 |
blsv(i, j) = phyv(l) - dragv(l) - liftv(l) |
203 |
|
|
zlon(i) = plon(l)*xpi/180. |
204 |
|
|
|
205 |
|
285696 |
ub(i, j) = 0. |
206 |
|
285696 |
vb(i, j) = 0. |
207 |
✓✓ |
11436768 |
DO k = 1, nlev |
208 |
|
11142144 |
ub(i, j) = ub(i, j) + u(l, k)*(p(l,k)-p(l,k+1))/rg |
209 |
|
11427840 |
vb(i, j) = vb(i, j) + v(l, k)*(p(l,k)-p(l,k+1))/rg |
210 |
|
|
END DO |
211 |
|
|
|
212 |
|
|
END DO |
213 |
|
|
|
214 |
|
|
END DO |
215 |
|
|
|
216 |
|
|
|
217 |
|
|
! South Pole |
218 |
|
|
|
219 |
✓✗ |
288 |
IF (nbp_lat-1>1) THEN |
220 |
|
288 |
l = l + 1 |
221 |
|
288 |
ub(1, nbp_lat) = 0. |
222 |
|
288 |
vb(1, nbp_lat) = 0. |
223 |
✓✓ |
11520 |
DO k = 1, nlev |
224 |
|
11232 |
ub(1, nbp_lat) = ub(1, nbp_lat) + u(l, k)*(p(l,k)-p(l,k+1))/rg |
225 |
|
11520 |
vb(1, nbp_lat) = vb(1, nbp_lat) + v(l, k)*(p(l,k)-p(l,k+1))/rg |
226 |
|
|
END DO |
227 |
|
288 |
zlat(nbp_lat) = plat(l)*xpi/180. |
228 |
|
|
|
229 |
✓✓ |
9792 |
DO i = 1, nbp_lon + 1 |
230 |
|
9504 |
zs(i, nbp_lat) = phis(l)/rg |
231 |
|
9504 |
ps(i, nbp_lat) = p(l, 1) |
232 |
|
9504 |
ssou(i, nbp_lat) = dragu(l) + liftu(l) |
233 |
|
9504 |
ssov(i, nbp_lat) = dragv(l) + liftv(l) |
234 |
|
9504 |
blsu(i, nbp_lat) = phyu(l) - dragu(l) - liftu(l) |
235 |
|
9504 |
blsv(i, nbp_lat) = phyv(l) - dragv(l) - liftv(l) |
236 |
|
9504 |
ub(i, nbp_lat) = ub(1, nbp_lat) |
237 |
|
9792 |
vb(i, nbp_lat) = vb(1, nbp_lat) |
238 |
|
|
END DO |
239 |
|
|
END IF |
240 |
|
|
|
241 |
|
|
|
242 |
|
|
! MOMENT ANGULAIRE |
243 |
|
|
|
244 |
✓✓ |
9504 |
DO j = 1, nbp_lat-1 |
245 |
✓✓ |
304416 |
DO i = 1, nbp_lon |
246 |
|
|
|
247 |
|
|
raam(1) = raam(1) - rea**3*dlon*dlat*0.5*(cos(zlon(i))*sin(zlat(j))*cos & |
248 |
|
|
(zlat(j))*ub(i,j)+cos(zlon(i))*sin(zlat(j+1))*cos(zlat(j+ & |
249 |
|
|
1))*ub(i,j+1)) + rea**3*dlon*dlat*0.5*(sin(zlon(i))*cos(zlat(j))*vb(i & |
250 |
|
294912 |
,j)+sin(zlon(i))*cos(zlat(j+1))*vb(i,j+1)) |
251 |
|
|
|
252 |
|
|
oaam(1) = oaam(1) - ome*rea**4*dlon*dlat/rg*0.5*(cos(zlon(i))*cos(zlat( & |
253 |
|
|
j))**2*sin(zlat(j))*ps(i,j)+cos(zlon(i))*cos(zlat(j+ & |
254 |
|
294912 |
1))**2*sin(zlat(j+1))*ps(i,j+1)) |
255 |
|
|
|
256 |
|
|
raam(2) = raam(2) - rea**3*dlon*dlat*0.5*(sin(zlon(i))*sin(zlat(j))*cos & |
257 |
|
|
(zlat(j))*ub(i,j)+sin(zlon(i))*sin(zlat(j+1))*cos(zlat(j+ & |
258 |
|
|
1))*ub(i,j+1)) - rea**3*dlon*dlat*0.5*(cos(zlon(i))*cos(zlat(j))*vb(i & |
259 |
|
|
,j)+cos(zlon(i))*cos(zlat(j+1))*vb(i,j+1)) |
260 |
|
|
|
261 |
|
|
oaam(2) = oaam(2) - ome*rea**4*dlon*dlat/rg*0.5*(sin(zlon(i))*cos(zlat( & |
262 |
|
|
j))**2*sin(zlat(j))*ps(i,j)+sin(zlon(i))*cos(zlat(j+ & |
263 |
|
|
1))**2*sin(zlat(j+1))*ps(i,j+1)) |
264 |
|
|
|
265 |
|
|
raam(3) = raam(3) + rea**3*dlon*dlat*0.5*(cos(zlat(j))**2*ub(i,j)+cos( & |
266 |
|
294912 |
zlat(j+1))**2*ub(i,j+1)) |
267 |
|
|
|
268 |
|
|
oaam(3) = oaam(3) + ome*rea**4*dlon*dlat/rg*0.5*(cos(zlat(j))**3*ps(i,j & |
269 |
|
9216 |
)+cos(zlat(j+1))**3*ps(i,j+1)) |
270 |
|
|
|
271 |
|
|
END DO |
272 |
|
|
END DO |
273 |
|
|
|
274 |
|
|
|
275 |
|
|
! COUPLE DES MONTAGNES: |
276 |
|
|
|
277 |
|
|
|
278 |
|
|
DO j = 1, nbp_lat-1 |
279 |
|
288 |
DO i = 1, nbp_lon |
280 |
|
|
tmou(1) = tmou(1) - rea**2*dlon*0.5*sin(zlon(i))*(zs(i,j)-zs(i,j+1))*( & |
281 |
|
|
cos(zlat(j+1))*ps(i,j+1)+cos(zlat(j))*ps(i,j)) |
282 |
|
|
tmou(2) = tmou(2) + rea**2*dlon*0.5*cos(zlon(i))*(zs(i,j)-zs(i,j+1))*( & |
283 |
|
|
cos(zlat(j+1))*ps(i,j+1)+cos(zlat(j))*ps(i,j)) |
284 |
|
|
END DO |
285 |
|
|
END DO |
286 |
|
|
|
287 |
✓✓ |
9216 |
DO j = 2, nbp_lat-1 |
288 |
✓✓ |
294912 |
DO i = 1, nbp_lon |
289 |
|
|
tmou(1) = tmou(1) + rea**2*dlat*0.5*sin(zlat(j))*(zs(i+1,j)-zs(i,j))*( & |
290 |
|
285696 |
cos(zlon(i+1))*ps(i+1,j)+cos(zlon(i))*ps(i,j)) |
291 |
|
|
tmou(2) = tmou(2) + rea**2*dlat*0.5*sin(zlat(j))*(zs(i+1,j)-zs(i,j))*( & |
292 |
|
|
sin(zlon(i+1))*ps(i+1,j)+sin(zlon(i))*ps(i,j)) |
293 |
|
|
tmou(3) = tmou(3) - rea**2*dlat*0.5*cos(zlat(j))*(zs(i+1,j)-zs(i,j))*( & |
294 |
|
294624 |
ps(i+1,j)+ps(i,j)) |
295 |
|
|
END DO |
296 |
|
|
END DO |
297 |
|
|
|
298 |
|
|
|
299 |
|
|
! COUPLES DES DIFFERENTES FRICTION AU SOL: |
300 |
|
|
|
301 |
|
|
l = 1 |
302 |
✓✓ |
9216 |
DO j = 2, nbp_lat-1 |
303 |
✓✓ |
294912 |
DO i = 1, nbp_lon |
304 |
|
|
l = l + 1 |
305 |
|
|
tsso(1) = tsso(1) - rea**3*cos(zlat(j))*dlon*dlat*ssou(i, j)*sin(zlat(j & |
306 |
|
|
))*cos(zlon(i)) + rea**3*cos(zlat(j))*dlon*dlat*ssov(i, j)*sin(zlon(i & |
307 |
|
285696 |
)) |
308 |
|
|
|
309 |
|
|
tsso(2) = tsso(2) - rea**3*cos(zlat(j))*dlon*dlat*ssou(i, j)*sin(zlat(j & |
310 |
|
|
))*sin(zlon(i)) - rea**3*cos(zlat(j))*dlon*dlat*ssov(i, j)*cos(zlon(i & |
311 |
|
|
)) |
312 |
|
|
|
313 |
|
|
tsso(3) = tsso(3) + rea**3*cos(zlat(j))*dlon*dlat*ssou(i, j)*cos(zlat(j & |
314 |
|
285696 |
)) |
315 |
|
|
|
316 |
|
|
tbls(1) = tbls(1) - rea**3*cos(zlat(j))*dlon*dlat*blsu(i, j)*sin(zlat(j & |
317 |
|
|
))*cos(zlon(i)) + rea**3*cos(zlat(j))*dlon*dlat*blsv(i, j)*sin(zlon(i & |
318 |
|
285696 |
)) |
319 |
|
|
|
320 |
|
|
tbls(2) = tbls(2) - rea**3*cos(zlat(j))*dlon*dlat*blsu(i, j)*sin(zlat(j & |
321 |
|
|
))*sin(zlon(i)) - rea**3*cos(zlat(j))*dlon*dlat*blsv(i, j)*cos(zlon(i & |
322 |
|
|
)) |
323 |
|
|
|
324 |
|
|
tbls(3) = tbls(3) + rea**3*cos(zlat(j))*dlon*dlat*blsu(i, j)*cos(zlat(j & |
325 |
|
294624 |
)) |
326 |
|
|
|
327 |
|
|
END DO |
328 |
|
|
END DO |
329 |
|
|
|
330 |
|
|
|
331 |
|
|
! write(*,*) 'AAM',rsec, |
332 |
|
|
! write(*,*) 'AAM',rjour+rsec/86400., |
333 |
|
|
! c raam(3)/hadday,oaam(3)/hadday, |
334 |
|
|
! c tmou(3)/hadley,tsso(3)/hadley,tbls(3)/hadley |
335 |
|
|
|
336 |
|
|
! write(iam,100)rjour+rsec/86400., |
337 |
|
|
! c raam(1)/hadday,oaam(1)/hadday, |
338 |
|
|
! c tmou(1)/hadley,tsso(1)/hadley,tbls(1)/hadley, |
339 |
|
|
! c raam(2)/hadday,oaam(2)/hadday, |
340 |
|
|
! c tmou(2)/hadley,tsso(2)/hadley,tbls(2)/hadley, |
341 |
|
|
! c raam(3)/hadday,oaam(3)/hadday, |
342 |
|
|
! c tmou(3)/hadley,tsso(3)/hadley,tbls(3)/hadley |
343 |
|
|
100 FORMAT (F12.5, 15(1X,F12.5)) |
344 |
|
|
|
345 |
|
|
! write(iam+1,*)((zs(i,j),i=1,nbp_lon),j=1,nbp_lat) |
346 |
|
|
! write(iam+1,*)((ps(i,j),i=1,nbp_lon),j=1,nbp_lat) |
347 |
|
|
! write(iam+1,*)((ub(i,j),i=1,nbp_lon),j=1,nbp_lat) |
348 |
|
|
! write(iam+1,*)((vb(i,j),i=1,nbp_lon),j=1,nbp_lat) |
349 |
|
|
! write(iam+1,*)((ssou(i,j),i=1,nbp_lon),j=1,nbp_lat) |
350 |
|
|
! write(iam+1,*)((ssov(i,j),i=1,nbp_lon),j=1,nbp_lat) |
351 |
|
|
! write(iam+1,*)((blsu(i,j),i=1,nbp_lon),j=1,nbp_lat) |
352 |
|
|
! write(iam+1,*)((blsv(i,j),i=1,nbp_lon),j=1,nbp_lat) |
353 |
|
|
|
354 |
|
288 |
aam = raam(3) |
355 |
|
288 |
torsfc = tmou(3) + tsso(3) + tbls(3) |
356 |
|
|
|
357 |
|
288 |
RETURN |
358 |
|
|
END SUBROUTINE aaam_bud |