1 |
|
|
! |
2 |
|
|
! $Id $ |
3 |
|
|
! |
4 |
|
|
SUBROUTINE cltrac(dtime,coef,t,tr,flux,paprs,pplay,delp, & |
5 |
|
|
d_tr,d_tr_dry,flux_tr_dry) !jyg |
6 |
|
|
|
7 |
|
|
USE dimphy |
8 |
|
|
IMPLICIT NONE |
9 |
|
|
!====================================================================== |
10 |
|
|
! Auteur(s): O. Boucher (LOA/LMD) date: 19961127 |
11 |
|
|
! inspire de clvent |
12 |
|
|
! Objet: diffusion verticale de traceurs avec flux fixe a la surface |
13 |
|
|
! ou/et flux du type c-drag |
14 |
|
|
! |
15 |
|
|
! Arguments: |
16 |
|
|
!----------- |
17 |
|
|
! dtime.......input-R- intervalle du temps (en secondes) |
18 |
|
|
! coef........input-R- le coefficient d'echange (m**2/s) l>1 |
19 |
|
|
! t...........input-R- temperature (K) |
20 |
|
|
! tr..........input-R- la q. de traceurs |
21 |
|
|
! flux........input-R- le flux de traceurs a la surface |
22 |
|
|
! paprs.......input-R- pression a inter-couche (Pa) |
23 |
|
|
! pplay.......input-R- pression au milieu de couche (Pa) |
24 |
|
|
! delp........input-R- epaisseur de couche (Pa) |
25 |
|
|
! cdrag.......input-R- cdrag pour le flux de surface (non active) |
26 |
|
|
! tr0.........input-R- traceurs a la surface ou dans l'ocean (non active) |
27 |
|
|
! d_tr........output-R- le changement de tr |
28 |
|
|
! d_tr_dry....output-R- le changement de tr du au depot sec (1st layer) |
29 |
|
|
! flux_tr_dry.output-R- depot sec |
30 |
|
|
!!! flux_tr..output-R- flux de tr |
31 |
|
|
!====================================================================== |
32 |
|
|
include "YOMCST.h" |
33 |
|
|
! |
34 |
|
|
! Entree |
35 |
|
|
! |
36 |
|
|
REAL,INTENT(IN) :: dtime |
37 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: coef |
38 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: t, tr |
39 |
|
|
REAL,DIMENSION(klon),INTENT(IN) :: flux !(at/s/m2) |
40 |
|
|
REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs |
41 |
|
|
REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay, delp |
42 |
|
|
! |
43 |
|
|
! Sorties |
44 |
|
|
! |
45 |
|
|
REAL ,DIMENSION(klon,klev),INTENT(OUT) :: d_tr |
46 |
|
|
REAL ,DIMENSION(klon),INTENT(OUT) :: d_tr_dry !jyg |
47 |
|
|
REAL ,DIMENSION(klon),INTENT(OUT) :: flux_tr_dry !jyg |
48 |
|
|
! REAL ,DIMENSION(klon,klev),INTENT(OUT) :: flux_tr |
49 |
|
|
! |
50 |
|
|
! Local |
51 |
|
|
! |
52 |
|
|
INTEGER :: i, k |
53 |
|
|
REAL,DIMENSION(klon) :: cdrag, tr0 |
54 |
|
|
REAL,DIMENSION(klon,klev) :: zx_ctr |
55 |
|
|
REAL,DIMENSION(klon,klev) :: zx_dtr |
56 |
|
|
REAL,DIMENSION(klon) :: zx_buf |
57 |
|
|
REAL,DIMENSION(klon,klev) :: zx_coef |
58 |
|
|
REAL,DIMENSION(klon,klev) :: local_tr |
59 |
|
|
REAL,DIMENSION(klon) :: zx_alf1,zx_alf2,zx_flux |
60 |
|
|
|
61 |
|
|
!====================================================================== |
62 |
|
|
|
63 |
|
|
DO k = 1, klev |
64 |
|
|
DO i = 1, klon |
65 |
|
|
local_tr(i,k) = tr(i,k) |
66 |
|
|
ENDDO |
67 |
|
|
ENDDO |
68 |
|
|
|
69 |
|
|
!====================================================================== |
70 |
|
|
|
71 |
|
|
DO i = 1, klon |
72 |
|
|
zx_alf1(i) = (paprs(i,1)-pplay(i,2))/(pplay(i,1)-pplay(i,2)) |
73 |
|
|
zx_alf2(i) = 1.0 - zx_alf1(i) |
74 |
|
|
flux_tr_dry(i) = -flux(i)*dtime !jyg |
75 |
|
|
zx_flux(i) = flux_tr_dry(i)*RG !jyg |
76 |
|
|
!! zx_flux(i) = -flux(i)*dtime*RG !jyg |
77 |
|
|
! Pour le moment le flux est prescrit cdrag et zx_coef(1) vaut 0 |
78 |
|
|
cdrag(i) = 0.0 |
79 |
|
|
tr0(i) = 0.0 |
80 |
|
|
zx_coef(i,1) = cdrag(i)*dtime*RG |
81 |
|
|
zx_ctr(i,1)=0. |
82 |
|
|
zx_dtr(i,1)=0. |
83 |
|
|
ENDDO |
84 |
|
|
|
85 |
|
|
!====================================================================== |
86 |
|
|
|
87 |
|
|
DO k = 2, klev |
88 |
|
|
DO i = 1, klon |
89 |
|
|
zx_coef(i,k) = coef(i,k)*RG/(pplay(i,k-1)-pplay(i,k)) & |
90 |
|
|
*(paprs(i,k)*2/(t(i,k)+t(i,k-1))/RD)**2 |
91 |
|
|
zx_coef(i,k) = zx_coef(i,k)*dtime*RG |
92 |
|
|
ENDDO |
93 |
|
|
ENDDO |
94 |
|
|
|
95 |
|
|
!====================================================================== |
96 |
|
|
|
97 |
|
|
DO i = 1, klon |
98 |
|
|
zx_buf(i) = delp(i,1) + zx_coef(i,1)*zx_alf1(i) + zx_coef(i,2) |
99 |
|
|
! |
100 |
|
|
zx_ctr(i,2) = (local_tr(i,1)*delp(i,1)+ & |
101 |
|
|
zx_coef(i,1)*tr0(i)-zx_flux(i))/zx_buf(i) |
102 |
|
|
! |
103 |
|
|
zx_dtr(i,2) = (zx_coef(i,2)-zx_alf2(i)*zx_coef(i,1)) / & |
104 |
|
|
zx_buf(i) |
105 |
|
|
d_tr_dry(i) = -zx_flux(i)/zx_buf(i) !jyg |
106 |
|
|
ENDDO |
107 |
|
|
|
108 |
|
|
DO k = 3, klev |
109 |
|
|
DO i = 1, klon |
110 |
|
|
zx_buf(i) = delp(i,k-1) + zx_coef(i,k) & |
111 |
|
|
+ zx_coef(i,k-1)*(1.-zx_dtr(i,k-1)) |
112 |
|
|
zx_ctr(i,k) = (local_tr(i,k-1)*delp(i,k-1) & |
113 |
|
|
+zx_coef(i,k-1)*zx_ctr(i,k-1) )/zx_buf(i) |
114 |
|
|
zx_dtr(i,k) = zx_coef(i,k)/zx_buf(i) |
115 |
|
|
ENDDO |
116 |
|
|
ENDDO |
117 |
|
|
|
118 |
|
|
DO i = 1, klon |
119 |
|
|
local_tr(i,klev) = ( local_tr(i,klev)*delp(i,klev) & |
120 |
|
|
+zx_coef(i,klev)*zx_ctr(i,klev) ) & |
121 |
|
|
/ ( delp(i,klev) + zx_coef(i,klev) & |
122 |
|
|
-zx_coef(i,klev)*zx_dtr(i,klev) ) |
123 |
|
|
ENDDO |
124 |
|
|
|
125 |
|
|
DO k = klev-1, 1, -1 |
126 |
|
|
DO i = 1, klon |
127 |
|
|
local_tr(i,k) = zx_ctr(i,k+1) + zx_dtr(i,k+1)*local_tr(i,k+1) |
128 |
|
|
ENDDO |
129 |
|
|
ENDDO |
130 |
|
|
|
131 |
|
|
!====================================================================== |
132 |
|
|
!== flux_tr est le flux de traceur (positif vers bas) |
133 |
|
|
! DO i = 1, klon |
134 |
|
|
! flux_tr(i,1) = zx_coef(i,1)/(RG*dtime) |
135 |
|
|
! ENDDO |
136 |
|
|
! DO k = 2, klev |
137 |
|
|
! DO i = 1, klon |
138 |
|
|
! flux_tr(i,k) = zx_coef(i,k)/(RG*dtime) |
139 |
|
|
! . * (local_tr(i,k)-local_tr(i,k-1)) |
140 |
|
|
! ENDDO |
141 |
|
|
! ENDDO |
142 |
|
|
!====================================================================== |
143 |
|
|
DO k = 1, klev |
144 |
|
|
DO i = 1, klon |
145 |
|
|
d_tr(i,k) = local_tr(i,k) - tr(i,k) |
146 |
|
|
ENDDO |
147 |
|
|
ENDDO |
148 |
|
|
|
149 |
|
|
END SUBROUTINE cltrac |