1 |
|
|
! |
2 |
|
|
! |
3 |
|
|
! |
4 |
|
|
SUBROUTINE coefcdrag (klon, knon, nsrf, zxli, & |
5 |
|
|
speed, t, q, zgeop, psol, & |
6 |
|
|
ts, qsurf, rugos, okri, ri1, & |
7 |
|
|
cdram, cdrah, cdran, zri1, pref) |
8 |
|
|
|
9 |
|
|
USE indice_sol_mod |
10 |
|
|
|
11 |
|
|
IMPLICIT none |
12 |
|
|
!------------------------------------------------------------------------- |
13 |
|
|
! Objet : calcul des cdrags pour le moment (cdram) et les flux de chaleur |
14 |
|
|
! sensible et latente (cdrah), du cdrag neutre (cdran), |
15 |
|
|
! du nombre de Richardson entre la surface et le niveau de reference |
16 |
|
|
! (zri1) et de la pression au niveau de reference (pref). |
17 |
|
|
! |
18 |
|
|
! I. Musat, 01.07.2002 |
19 |
|
|
!------------------------------------------------------------------------- |
20 |
|
|
! |
21 |
|
|
! klon----input-I- dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) |
22 |
|
|
! knon----input-I- nombre de points pour un type de surface |
23 |
|
|
! nsrf----input-I- indice pour le type de surface; voir indice_sol_mod.F90 |
24 |
|
|
! zxli----input-L- TRUE si calcul des cdrags selon Laurent Li |
25 |
|
|
! speed---input-R- module du vent au 1er niveau du modele |
26 |
|
|
! t-------input-R- temperature de l'air au 1er niveau du modele |
27 |
|
|
! q-------input-R- humidite de l'air au 1er niveau du modele |
28 |
|
|
! zgeop---input-R- geopotentiel au 1er niveau du modele |
29 |
|
|
! psol----input-R- pression au sol |
30 |
|
|
! ts------input-R- temperature de l'air a la surface |
31 |
|
|
! qsurf---input-R- humidite de l'air a la surface |
32 |
|
|
! rugos---input-R- rugosite |
33 |
|
|
! okri----input-L- TRUE si on veut tester le nb. Richardson entre la sfce |
34 |
|
|
! et zref par rapport au Ri entre la sfce et la 1ere couche |
35 |
|
|
! ri1-----input-R- nb. Richardson entre la surface et la 1ere couche |
36 |
|
|
! |
37 |
|
|
! cdram--output-R- cdrag pour le moment |
38 |
|
|
! cdrah--output-R- cdrag pour les flux de chaleur latente et sensible |
39 |
|
|
! cdran--output-R- cdrag neutre |
40 |
|
|
! zri1---output-R- nb. Richardson entre la surface et la couche zgeop/RG |
41 |
|
|
! pref---output-R- pression au niveau zgeop/RG |
42 |
|
|
! |
43 |
|
|
INTEGER, intent(in) :: klon, knon, nsrf |
44 |
|
|
LOGICAL, intent(in) :: zxli |
45 |
|
|
REAL, dimension(klon), intent(in) :: speed, t, q, zgeop, psol |
46 |
|
|
REAL, dimension(klon), intent(in) :: ts, qsurf, rugos, ri1 |
47 |
|
|
LOGICAL, intent(in) :: okri |
48 |
|
|
! |
49 |
|
|
REAL, dimension(klon), intent(out) :: cdram, cdrah, cdran, zri1, pref |
50 |
|
|
!------------------------------------------------------------------------- |
51 |
|
|
! |
52 |
|
|
include "YOMCST.h" |
53 |
|
|
include "YOETHF.h" |
54 |
|
|
INCLUDE "clesphys.h" |
55 |
|
|
! Quelques constantes : |
56 |
|
|
REAL, parameter :: RKAR=0.40, CB=5.0, CC=5.0, CD=5.0, cepdu2=(0.1)**2 |
57 |
|
|
! |
58 |
|
|
! Variables locales : |
59 |
|
|
INTEGER :: i |
60 |
|
|
REAL, dimension(klon) :: zdu2, zdphi, ztsolv, ztvd |
61 |
|
|
REAL, dimension(klon) :: zscf, friv, frih, zucf, zcr |
62 |
|
|
REAL, dimension(klon) :: zcfm1, zcfh1 |
63 |
|
|
REAL, dimension(klon) :: zcfm2, zcfh2 |
64 |
|
|
REAL, dimension(klon) :: trm0, trm1 |
65 |
|
|
|
66 |
|
|
CHARACTER (LEN=80) :: abort_message |
67 |
|
|
CHARACTER (LEN=20) :: modname = 'coefcdra' |
68 |
|
|
|
69 |
|
|
|
70 |
|
|
! |
71 |
|
|
|
72 |
|
|
|
73 |
|
|
!------------------------------------------------------------------------- |
74 |
|
|
REAL :: fsta, fins, x |
75 |
|
|
fsta(x) = 1.0 / (1.0+10.0*x*(1+8.0*x)) |
76 |
|
|
fins(x) = SQRT(1.0-18.0*x) |
77 |
|
|
!------------------------------------------------------------------------- |
78 |
|
|
|
79 |
|
|
abort_message='obsolete, remplace par cdrag, use at you own risk' |
80 |
|
|
CALL abort_physic(modname,abort_message,1) |
81 |
|
|
|
82 |
|
|
! |
83 |
|
|
DO i = 1, knon |
84 |
|
|
! |
85 |
|
|
zdphi(i) = zgeop(i) |
86 |
|
|
zdu2(i) = max(cepdu2,speed(i)**2) |
87 |
|
|
pref(i) = exp(log(psol(i)) - zdphi(i)/(RD*t(i)* & |
88 |
|
|
(1.+ RETV * max(q(i),0.0)))) |
89 |
|
|
ztsolv(i) = ts(i) |
90 |
|
|
! ztvd(i) = t(i) * (psol(i)/pref(i))**RKAPPA |
91 |
|
|
! ztvd(i) = (t(i)+zdphi(i)/RCPD/(1.+RVTMP2*q(i))) & |
92 |
|
|
! *(1.+RETV*q(i)) |
93 |
|
|
ztvd(i) = (t(i)+zdphi(i)/RCPD/(1.+RVTMP2*q(i))) |
94 |
|
|
trm0(i) = 1. + RETV * max(qsurf(i),0.0) |
95 |
|
|
trm1(i) = 1. + RETV * max(q(i),0.0) |
96 |
|
|
ztsolv(i) = ztsolv(i) * trm0(i) |
97 |
|
|
ztvd(i) = ztvd(i) * trm1(i) |
98 |
|
|
zri1(i) = zdphi(i)*(ztvd(i)-ztsolv(i))/(zdu2(i)*ztvd(i)) |
99 |
|
|
! |
100 |
|
|
! on teste zri1 par rapport au Richardson de la 1ere couche ri1 |
101 |
|
|
! |
102 |
|
|
!IM +++ |
103 |
|
|
IF(1.EQ.0) THEN |
104 |
|
|
IF (okri) THEN |
105 |
|
|
IF (ri1(i).GE.0.0.AND.zri1(i).LT.0.0) THEN |
106 |
|
|
zri1(i) = ri1(i) |
107 |
|
|
ELSE IF(ri1(i).LT.0.0.AND.zri1(i).GE.0.0) THEN |
108 |
|
|
zri1(i) = ri1(i) |
109 |
|
|
ENDIF |
110 |
|
|
ENDIF |
111 |
|
|
ENDIF |
112 |
|
|
!IM --- |
113 |
|
|
! |
114 |
|
|
cdran(i) = (RKAR/log(1.+zdphi(i)/(RG*rugos(i))))**2 |
115 |
|
|
|
116 |
|
|
IF (zri1(i) .ge. 0.) THEN |
117 |
|
|
! |
118 |
|
|
! situation stable : pour eviter les inconsistances dans les cas |
119 |
|
|
! tres stables on limite zri1 a 20. cf Hess et al. (1995) |
120 |
|
|
! |
121 |
|
|
zri1(i) = min(20.,zri1(i)) |
122 |
|
|
! |
123 |
|
|
IF (.NOT.zxli) THEN |
124 |
|
|
zscf(i) = SQRT(1.+CD*ABS(zri1(i))) |
125 |
|
|
friv(i) = max(1. / (1.+2.*CB*zri1(i)/ zscf(i)), f_ri_cd_min) |
126 |
|
|
zcfm1(i) = cdran(i) * friv(i) |
127 |
|
|
frih(i) = max(1./ (1.+3.*CB*zri1(i)*zscf(i)), f_ri_cd_min ) |
128 |
|
|
! zcfh1(i) = cdran(i) * frih(i) |
129 |
|
|
zcfh1(i) = f_cdrag_ter*cdran(i) * frih(i) |
130 |
|
|
IF(nsrf.EQ.is_oce) zcfh1(i)=f_cdrag_oce*cdran(i)*frih(i) |
131 |
|
|
cdram(i) = zcfm1(i) |
132 |
|
|
cdrah(i) = zcfh1(i) |
133 |
|
|
ELSE |
134 |
|
|
cdram(i) = cdran(i)* fsta(zri1(i)) |
135 |
|
|
cdrah(i) = cdran(i)* fsta(zri1(i)) |
136 |
|
|
ENDIF |
137 |
|
|
! |
138 |
|
|
ELSE |
139 |
|
|
! |
140 |
|
|
! situation instable |
141 |
|
|
! |
142 |
|
|
IF (.NOT.zxli) THEN |
143 |
|
|
zucf(i) = 1./(1.+3.0*CB*CC*cdran(i)*SQRT(ABS(zri1(i)) & |
144 |
|
|
*(1.0+zdphi(i)/(RG*rugos(i))))) |
145 |
|
|
zcfm2(i) = cdran(i)*max((1.-2.0*CB*zri1(i)*zucf(i)),f_ri_cd_min) |
146 |
|
|
! zcfh2(i) = cdran(i)*max((1.-3.0*CB*zri1(i)*zucf(i)),f_ri_cd_min) |
147 |
|
|
zcfh2(i) = f_cdrag_ter*cdran(i)*max((1.-3.0*CB*zri1(i)*zucf(i)),f_ri_cd_min) |
148 |
|
|
cdram(i) = zcfm2(i) |
149 |
|
|
cdrah(i) = zcfh2(i) |
150 |
|
|
ELSE |
151 |
|
|
cdram(i) = cdran(i)* fins(zri1(i)) |
152 |
|
|
cdrah(i) = cdran(i)* fins(zri1(i)) |
153 |
|
|
ENDIF |
154 |
|
|
! |
155 |
|
|
! cdrah sur l'ocean cf. Miller et al. (1992) |
156 |
|
|
! |
157 |
|
|
zcr(i) = (0.0016/(cdran(i)*SQRT(zdu2(i))))*ABS(ztvd(i)-ztsolv(i)) & |
158 |
|
|
**(1./3.) |
159 |
|
|
! IF (nsrf.EQ.is_oce) cdrah(i) = cdran(i)*(1.0+zcr(i)**1.25) & |
160 |
|
|
! **(1./1.25) |
161 |
|
|
IF (nsrf.EQ.is_oce) cdrah(i)=f_cdrag_oce*cdran(i)*(1.0+zcr(i)**1.25) & |
162 |
|
|
**(1./1.25) |
163 |
|
|
ENDIF |
164 |
|
|
! |
165 |
|
|
END DO |
166 |
|
|
RETURN |
167 |
|
|
END SUBROUTINE coefcdrag |