1 |
|
|
|
2 |
|
|
! $Id: conema3.F90 2346 2015-08-21 15:13:46Z emillour $ |
3 |
|
|
|
4 |
|
|
SUBROUTINE conema3(dtime, paprs, pplay, t, q, u, v, tra, ntra, work1, work2, & |
5 |
|
|
d_t, d_q, d_u, d_v, d_tra, rain, snow, kbas, ktop, upwd, dnwd, dnwdbis, & |
6 |
|
|
bas, top, ma, cape, tvp, rflag, pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, & |
7 |
|
|
dplcldr, qcond_incld) |
8 |
|
|
|
9 |
|
|
USE dimphy |
10 |
|
|
USE infotrac_phy, ONLY: nbtr |
11 |
|
|
IMPLICIT NONE |
12 |
|
|
! ====================================================================== |
13 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
14 |
|
|
! Objet: schema de convection de Emanuel (1991) interface |
15 |
|
|
! Mai 1998: Interface modifiee pour implementation dans LMDZ |
16 |
|
|
! ====================================================================== |
17 |
|
|
! Arguments: |
18 |
|
|
! dtime---input-R-pas d'integration (s) |
19 |
|
|
! paprs---input-R-pression inter-couches (Pa) |
20 |
|
|
! pplay---input-R-pression au milieu des couches (Pa) |
21 |
|
|
! t-------input-R-temperature (K) |
22 |
|
|
! q-------input-R-humidite specifique (kg/kg) |
23 |
|
|
! u-------input-R-vitesse du vent zonal (m/s) |
24 |
|
|
! v-------input-R-vitesse duvent meridien (m/s) |
25 |
|
|
! tra-----input-R-tableau de rapport de melange des traceurs |
26 |
|
|
! work*: input et output: deux variables de travail, |
27 |
|
|
! on peut les mettre a 0 au debut |
28 |
|
|
|
29 |
|
|
! d_t-----output-R-increment de la temperature |
30 |
|
|
! d_q-----output-R-increment de la vapeur d'eau |
31 |
|
|
! d_u-----output-R-increment de la vitesse zonale |
32 |
|
|
! d_v-----output-R-increment de la vitesse meridienne |
33 |
|
|
! d_tra---output-R-increment du contenu en traceurs |
34 |
|
|
! rain----output-R-la pluie (mm/s) |
35 |
|
|
! snow----output-R-la neige (mm/s) |
36 |
|
|
! kbas----output-R-bas du nuage (integer) |
37 |
|
|
! ktop----output-R-haut du nuage (integer) |
38 |
|
|
! upwd----output-R-saturated updraft mass flux (kg/m**2/s) |
39 |
|
|
! dnwd----output-R-saturated downdraft mass flux (kg/m**2/s) |
40 |
|
|
! dnwdbis-output-R-unsaturated downdraft mass flux (kg/m**2/s) |
41 |
|
|
! bas-----output-R-bas du nuage (real) |
42 |
|
|
! top-----output-R-haut du nuage (real) |
43 |
|
|
! Ma------output-R-flux ascendant non dilue (kg/m**2/s) |
44 |
|
|
! cape----output-R-CAPE |
45 |
|
|
! tvp-----output-R-virtual temperature of the lifted parcel |
46 |
|
|
! rflag---output-R-flag sur le fonctionnement de convect |
47 |
|
|
! pbase---output-R-pression a la base du nuage (Pa) |
48 |
|
|
! bbase---output-R-buoyancy a la base du nuage (K) |
49 |
|
|
! dtvpdt1-output-R-derivative of parcel virtual temp wrt T1 |
50 |
|
|
! dtvpdq1-output-R-derivative of parcel virtual temp wrt Q1 |
51 |
|
|
! dplcldt-output-R-derivative of the PCP pressure wrt T1 |
52 |
|
|
! dplcldr-output-R-derivative of the PCP pressure wrt Q1 |
53 |
|
|
! ====================================================================== |
54 |
|
|
|
55 |
|
|
include "conema3.h" |
56 |
|
|
INTEGER i, l, m, itra |
57 |
|
|
INTEGER ntra ! if no tracer transport |
58 |
|
|
! is needed, set ntra = 1 (or 0) |
59 |
|
|
REAL dtime |
60 |
|
|
|
61 |
|
|
REAL d_t2(klon, klev), d_q2(klon, klev) ! sbl |
62 |
|
|
REAL d_u2(klon, klev), d_v2(klon, klev) ! sbl |
63 |
|
|
REAL em_d_t2(klev), em_d_q2(klev) ! sbl |
64 |
|
|
REAL em_d_u2(klev), em_d_v2(klev) ! sbl |
65 |
|
|
|
66 |
|
|
REAL paprs(klon, klev+1), pplay(klon, klev) |
67 |
|
|
REAL t(klon, klev), q(klon, klev), d_t(klon, klev), d_q(klon, klev) |
68 |
|
|
REAL u(klon, klev), v(klon, klev), tra(klon, klev, ntra) |
69 |
|
|
REAL d_u(klon, klev), d_v(klon, klev), d_tra(klon, klev, ntra) |
70 |
|
|
REAL work1(klon, klev), work2(klon, klev) |
71 |
|
|
REAL upwd(klon, klev), dnwd(klon, klev), dnwdbis(klon, klev) |
72 |
|
|
REAL rain(klon) |
73 |
|
|
REAL snow(klon) |
74 |
|
|
REAL cape(klon), tvp(klon, klev), rflag(klon) |
75 |
|
|
REAL pbase(klon), bbase(klon) |
76 |
|
|
REAL dtvpdt1(klon, klev), dtvpdq1(klon, klev) |
77 |
|
|
REAL dplcldt(klon), dplcldr(klon) |
78 |
|
|
INTEGER kbas(klon), ktop(klon) |
79 |
|
|
|
80 |
|
|
REAL wd(klon) |
81 |
|
|
REAL qcond_incld(klon, klev) |
82 |
|
|
|
83 |
|
|
LOGICAL, SAVE :: first = .TRUE. |
84 |
|
|
!$OMP THREADPRIVATE(first) |
85 |
|
|
|
86 |
|
|
! ym REAL em_t(klev) |
87 |
|
|
REAL, ALLOCATABLE, SAVE :: em_t(:) |
88 |
|
|
!$OMP THREADPRIVATE(em_t) |
89 |
|
|
! ym REAL em_q(klev) |
90 |
|
|
REAL, ALLOCATABLE, SAVE :: em_q(:) |
91 |
|
|
!$OMP THREADPRIVATE(em_q) |
92 |
|
|
! ym REAL em_qs(klev) |
93 |
|
|
REAL, ALLOCATABLE, SAVE :: em_qs(:) |
94 |
|
|
!$OMP THREADPRIVATE(em_qs) |
95 |
|
|
! ym REAL em_u(klev), em_v(klev), em_tra(klev,nbtr) |
96 |
|
|
REAL, ALLOCATABLE, SAVE :: em_u(:), em_v(:), em_tra(:, :) |
97 |
|
|
!$OMP THREADPRIVATE(em_u,em_v,em_tra) |
98 |
|
|
! ym REAL em_ph(klev+1), em_p(klev) |
99 |
|
|
REAL, ALLOCATABLE, SAVE :: em_ph(:), em_p(:) |
100 |
|
|
!$OMP THREADPRIVATE(em_ph,em_p) |
101 |
|
|
! ym REAL em_work1(klev), em_work2(klev) |
102 |
|
|
REAL, ALLOCATABLE, SAVE :: em_work1(:), em_work2(:) |
103 |
|
|
!$OMP THREADPRIVATE(em_work1,em_work2) |
104 |
|
|
! ym REAL em_precip, em_d_t(klev), em_d_q(klev) |
105 |
|
|
REAL, SAVE :: em_precip |
106 |
|
|
!$OMP THREADPRIVATE(em_precip) |
107 |
|
|
REAL, ALLOCATABLE, SAVE :: em_d_t(:), em_d_q(:) |
108 |
|
|
!$OMP THREADPRIVATE(em_d_t,em_d_q) |
109 |
|
|
! ym REAL em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr) |
110 |
|
|
REAL, ALLOCATABLE, SAVE :: em_d_u(:), em_d_v(:), em_d_tra(:, :) |
111 |
|
|
!$OMP THREADPRIVATE(em_d_u,em_d_v,em_d_tra) |
112 |
|
|
! ym REAL em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev) |
113 |
|
|
REAL, ALLOCATABLE, SAVE :: em_upwd(:), em_dnwd(:), em_dnwdbis(:) |
114 |
|
|
!$OMP THREADPRIVATE(em_upwd,em_dnwd,em_dnwdbis) |
115 |
|
|
REAL em_dtvpdt1(klev), em_dtvpdq1(klev) |
116 |
|
|
REAL em_dplcldt, em_dplcldr |
117 |
|
|
! ym SAVE em_t,em_q, em_qs, em_ph, em_p, em_work1, em_work2 |
118 |
|
|
! ym SAVE em_u,em_v, em_tra |
119 |
|
|
! ym SAVE em_d_u,em_d_v, em_d_tra |
120 |
|
|
! ym SAVE em_precip, em_d_t, em_d_q, em_upwd, em_dnwd, em_dnwdbis |
121 |
|
|
|
122 |
|
|
INTEGER em_bas, em_top |
123 |
|
|
SAVE em_bas, em_top |
124 |
|
|
!$OMP THREADPRIVATE(em_bas,em_top) |
125 |
|
|
REAL em_wd |
126 |
|
|
REAL em_qcond(klev) |
127 |
|
|
REAL em_qcondc(klev) |
128 |
|
|
|
129 |
|
|
REAL zx_t, zx_qs, zdelta, zcor |
130 |
|
|
INTEGER iflag |
131 |
|
|
REAL sigsum |
132 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
133 |
|
|
! VARIABLES A SORTIR |
134 |
|
|
! ccccccccccccccccccccccccccccccccccccccccccccccccc |
135 |
|
|
|
136 |
|
|
! ym REAL emmip(klev) !variation de flux ascnon dilue i et i+1 |
137 |
|
|
REAL, ALLOCATABLE, SAVE :: emmip(:) |
138 |
|
|
!$OMP THREADPRIVATE(emmip) |
139 |
|
|
! ym SAVE emmip |
140 |
|
|
! ym real emMke(klev) |
141 |
|
|
REAL, ALLOCATABLE, SAVE :: emmke(:) |
142 |
|
|
!$OMP THREADPRIVATE(emMke) |
143 |
|
|
! ym save emMke |
144 |
|
|
REAL top |
145 |
|
|
REAL bas |
146 |
|
|
! ym real emMa(klev) |
147 |
|
|
REAL, ALLOCATABLE, SAVE :: emma(:) |
148 |
|
|
!$OMP THREADPRIVATE(emMa) |
149 |
|
|
! ym save emMa |
150 |
|
|
REAL ma(klon, klev) |
151 |
|
|
REAL ment(klev, klev) |
152 |
|
|
REAL qent(klev, klev) |
153 |
|
|
REAL tps(klev), tls(klev) |
154 |
|
|
REAL sij(klev, klev) |
155 |
|
|
REAL em_cape, em_tvp(klev) |
156 |
|
|
REAL em_pbase, em_bbase |
157 |
|
|
INTEGER iw, j, k, ix, iy |
158 |
|
|
|
159 |
|
|
! -- sb: pour schema nuages: |
160 |
|
|
|
161 |
|
|
INTEGER iflagcon |
162 |
|
|
INTEGER em_ifc(klev) |
163 |
|
|
|
164 |
|
|
REAL em_pradj |
165 |
|
|
REAL em_cldf(klev), em_cldq(klev) |
166 |
|
|
REAL em_ftadj(klev), em_fradj(klev) |
167 |
|
|
|
168 |
|
|
INTEGER ifc(klon, klev) |
169 |
|
|
REAL pradj(klon) |
170 |
|
|
REAL cldf(klon, klev), cldq(klon, klev) |
171 |
|
|
REAL ftadj(klon, klev), fqadj(klon, klev) |
172 |
|
|
|
173 |
|
|
! sb -- |
174 |
|
|
|
175 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
176 |
|
|
|
177 |
|
|
include "YOMCST.h" |
178 |
|
|
include "YOETHF.h" |
179 |
|
|
include "FCTTRE.h" |
180 |
|
|
|
181 |
|
|
IF (first) THEN |
182 |
|
|
|
183 |
|
|
ALLOCATE (em_t(klev)) |
184 |
|
|
ALLOCATE (em_q(klev)) |
185 |
|
|
ALLOCATE (em_qs(klev)) |
186 |
|
|
ALLOCATE (em_u(klev), em_v(klev), em_tra(klev,nbtr)) |
187 |
|
|
ALLOCATE (em_ph(klev+1), em_p(klev)) |
188 |
|
|
ALLOCATE (em_work1(klev), em_work2(klev)) |
189 |
|
|
ALLOCATE (em_d_t(klev), em_d_q(klev)) |
190 |
|
|
ALLOCATE (em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr)) |
191 |
|
|
ALLOCATE (em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev)) |
192 |
|
|
ALLOCATE (emmip(klev)) |
193 |
|
|
ALLOCATE (emmke(klev)) |
194 |
|
|
ALLOCATE (emma(klev)) |
195 |
|
|
|
196 |
|
|
first = .FALSE. |
197 |
|
|
END IF |
198 |
|
|
|
199 |
|
|
qcond_incld(:, :) = 0. |
200 |
|
|
|
201 |
|
|
! @$$ print*,'debut conema' |
202 |
|
|
|
203 |
|
|
DO i = 1, klon |
204 |
|
|
DO l = 1, klev + 1 |
205 |
|
|
em_ph(l) = paprs(i, l)/100.0 |
206 |
|
|
END DO |
207 |
|
|
|
208 |
|
|
DO l = 1, klev |
209 |
|
|
em_p(l) = pplay(i, l)/100.0 |
210 |
|
|
em_t(l) = t(i, l) |
211 |
|
|
em_q(l) = q(i, l) |
212 |
|
|
em_u(l) = u(i, l) |
213 |
|
|
em_v(l) = v(i, l) |
214 |
|
|
DO itra = 1, ntra |
215 |
|
|
em_tra(l, itra) = tra(i, l, itra) |
216 |
|
|
END DO |
217 |
|
|
! @$$ print*,'em_t',em_t |
218 |
|
|
! @$$ print*,'em_q',em_q |
219 |
|
|
! @$$ print*,'em_qs',em_qs |
220 |
|
|
! @$$ print*,'em_u',em_u |
221 |
|
|
! @$$ print*,'em_v',em_v |
222 |
|
|
! @$$ print*,'em_tra',em_tra |
223 |
|
|
! @$$ print*,'em_p',em_p |
224 |
|
|
|
225 |
|
|
|
226 |
|
|
|
227 |
|
|
zx_t = em_t(l) |
228 |
|
|
zdelta = max(0., sign(1.,rtt-zx_t)) |
229 |
|
|
zx_qs = r2es*foeew(zx_t, zdelta)/em_p(l)/100.0 |
230 |
|
|
zx_qs = min(0.5, zx_qs) |
231 |
|
|
! @$$ print*,'zx_qs',zx_qs |
232 |
|
|
zcor = 1./(1.-retv*zx_qs) |
233 |
|
|
zx_qs = zx_qs*zcor |
234 |
|
|
em_qs(l) = zx_qs |
235 |
|
|
! @$$ print*,'em_qs',em_qs |
236 |
|
|
|
237 |
|
|
em_work1(l) = work1(i, l) |
238 |
|
|
em_work2(l) = work2(i, l) |
239 |
|
|
emmke(l) = 0 |
240 |
|
|
! emMa(l)=0 |
241 |
|
|
! Ma(i,l)=0 |
242 |
|
|
|
243 |
|
|
em_dtvpdt1(l) = 0. |
244 |
|
|
em_dtvpdq1(l) = 0. |
245 |
|
|
dtvpdt1(i, l) = 0. |
246 |
|
|
dtvpdq1(i, l) = 0. |
247 |
|
|
END DO |
248 |
|
|
|
249 |
|
|
em_dplcldt = 0. |
250 |
|
|
em_dplcldr = 0. |
251 |
|
|
rain(i) = 0.0 |
252 |
|
|
snow(i) = 0.0 |
253 |
|
|
kbas(i) = 1 |
254 |
|
|
ktop(i) = 1 |
255 |
|
|
! ajout SB: |
256 |
|
|
bas = 1 |
257 |
|
|
top = 1 |
258 |
|
|
|
259 |
|
|
|
260 |
|
|
! sb3d write(*,1792) (em_work1(m),m=1,klev) |
261 |
|
|
1792 FORMAT ('sig avant convect ', /, 10(1X,E13.5)) |
262 |
|
|
|
263 |
|
|
! sb d write(*,1793) (em_work2(m),m=1,klev) |
264 |
|
|
1793 FORMAT ('w avant convect ', /, 10(1X,E13.5)) |
265 |
|
|
|
266 |
|
|
! @$$ print*,'avant convect' |
267 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
268 |
|
|
|
269 |
|
|
|
270 |
|
|
! print*,'avant convect i=',i |
271 |
|
|
CALL convect3(dtime, epmax, ok_adj_ema, em_t, em_q, em_qs, em_u, em_v, & |
272 |
|
|
em_tra, em_p, em_ph, klev, klev+1, klev-1, ntra, dtime, iflag, em_d_t, & |
273 |
|
|
em_d_q, em_d_u, em_d_v, em_d_tra, em_precip, em_bas, em_top, em_upwd, & |
274 |
|
|
em_dnwd, em_dnwdbis, em_work1, em_work2, emmip, emmke, emma, ment, & |
275 |
|
|
qent, tps, tls, sij, em_cape, em_tvp, em_pbase, em_bbase, em_dtvpdt1, & |
276 |
|
|
em_dtvpdq1, em_dplcldt, em_dplcldr, & ! sbl |
277 |
|
|
em_d_t2, em_d_q2, em_d_u2, em_d_v2, em_wd, em_qcond, em_qcondc) !sbl |
278 |
|
|
! print*,'apres convect ' |
279 |
|
|
|
280 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
281 |
|
|
|
282 |
|
|
! -- sb: Appel schema statistique de nuages couple a la convection |
283 |
|
|
! (Bony et Emanuel 2001): |
284 |
|
|
|
285 |
|
|
! -- creer cvthermo.h qui contiendra les cstes thermo de LMDZ: |
286 |
|
|
|
287 |
|
|
iflagcon = 3 |
288 |
|
|
! CALL cv_thermo(iflagcon) |
289 |
|
|
|
290 |
|
|
! -- appel schema de nuages: |
291 |
|
|
|
292 |
|
|
! CALL CLOUDS_SUB_LS(klev,em_q,em_qs,em_t |
293 |
|
|
! i ,em_p,em_ph,dtime,em_qcondc |
294 |
|
|
! o ,em_cldf,em_cldq,em_pradj,em_ftadj,em_fradj,em_ifc) |
295 |
|
|
|
296 |
|
|
DO k = 1, klev |
297 |
|
|
cldf(i, k) = em_cldf(k) ! cloud fraction (0-1) |
298 |
|
|
cldq(i, k) = em_cldq(k) ! in-cloud water content (kg/kg) |
299 |
|
|
ftadj(i, k) = em_ftadj(k) ! (dT/dt)_{LS adj} (K/s) |
300 |
|
|
fqadj(i, k) = em_fradj(k) ! (dq/dt)_{LS adj} (kg/kg/s) |
301 |
|
|
ifc(i, k) = em_ifc(k) ! flag convergence clouds_gno (1 ou 2) |
302 |
|
|
END DO |
303 |
|
|
pradj(i) = em_pradj ! precip from LS supersat adj (mm/day) |
304 |
|
|
|
305 |
|
|
! sb -- |
306 |
|
|
|
307 |
|
|
! SB: |
308 |
|
|
IF (iflag/=1 .AND. iflag/=4) THEN |
309 |
|
|
em_cape = 0. |
310 |
|
|
DO l = 1, klev |
311 |
|
|
em_upwd(l) = 0. |
312 |
|
|
em_dnwd(l) = 0. |
313 |
|
|
em_dnwdbis(l) = 0. |
314 |
|
|
emma(l) = 0. |
315 |
|
|
em_tvp(l) = 0. |
316 |
|
|
END DO |
317 |
|
|
END IF |
318 |
|
|
! fin SB |
319 |
|
|
|
320 |
|
|
! If sig has been set to zero, then set Ma to zero |
321 |
|
|
|
322 |
|
|
sigsum = 0. |
323 |
|
|
DO k = 1, klev |
324 |
|
|
sigsum = sigsum + em_work1(k) |
325 |
|
|
END DO |
326 |
|
|
IF (sigsum==0.0) THEN |
327 |
|
|
DO k = 1, klev |
328 |
|
|
emma(k) = 0. |
329 |
|
|
END DO |
330 |
|
|
END IF |
331 |
|
|
|
332 |
|
|
! sb3d print*,'i, iflag=',i,iflag |
333 |
|
|
|
334 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
335 |
|
|
|
336 |
|
|
! SORTIE DES ICB ET INB |
337 |
|
|
! en fait inb et icb correspondent au niveau ou se trouve |
338 |
|
|
! le nuage,le numero d'interface |
339 |
|
|
! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
340 |
|
|
|
341 |
|
|
! modif SB: |
342 |
|
|
IF (iflag==1 .OR. iflag==4) THEN |
343 |
|
|
top = em_top |
344 |
|
|
bas = em_bas |
345 |
|
|
kbas(i) = em_bas |
346 |
|
|
ktop(i) = em_top |
347 |
|
|
END IF |
348 |
|
|
|
349 |
|
|
pbase(i) = em_pbase |
350 |
|
|
bbase(i) = em_bbase |
351 |
|
|
rain(i) = em_precip/86400.0 |
352 |
|
|
snow(i) = 0.0 |
353 |
|
|
cape(i) = em_cape |
354 |
|
|
wd(i) = em_wd |
355 |
|
|
rflag(i) = real(iflag) |
356 |
|
|
! SB kbas(i) = em_bas |
357 |
|
|
! SB ktop(i) = em_top |
358 |
|
|
dplcldt(i) = em_dplcldt |
359 |
|
|
dplcldr(i) = em_dplcldr |
360 |
|
|
DO l = 1, klev |
361 |
|
|
d_t2(i, l) = dtime*em_d_t2(l) |
362 |
|
|
d_q2(i, l) = dtime*em_d_q2(l) |
363 |
|
|
d_u2(i, l) = dtime*em_d_u2(l) |
364 |
|
|
d_v2(i, l) = dtime*em_d_v2(l) |
365 |
|
|
|
366 |
|
|
d_t(i, l) = dtime*em_d_t(l) |
367 |
|
|
d_q(i, l) = dtime*em_d_q(l) |
368 |
|
|
d_u(i, l) = dtime*em_d_u(l) |
369 |
|
|
d_v(i, l) = dtime*em_d_v(l) |
370 |
|
|
DO itra = 1, ntra |
371 |
|
|
d_tra(i, l, itra) = dtime*em_d_tra(l, itra) |
372 |
|
|
END DO |
373 |
|
|
upwd(i, l) = em_upwd(l) |
374 |
|
|
dnwd(i, l) = em_dnwd(l) |
375 |
|
|
dnwdbis(i, l) = em_dnwdbis(l) |
376 |
|
|
work1(i, l) = em_work1(l) |
377 |
|
|
work2(i, l) = em_work2(l) |
378 |
|
|
ma(i, l) = emma(l) |
379 |
|
|
tvp(i, l) = em_tvp(l) |
380 |
|
|
dtvpdt1(i, l) = em_dtvpdt1(l) |
381 |
|
|
dtvpdq1(i, l) = em_dtvpdq1(l) |
382 |
|
|
|
383 |
|
|
IF (iflag_clw==0) THEN |
384 |
|
|
qcond_incld(i, l) = em_qcondc(l) |
385 |
|
|
ELSE IF (iflag_clw==1) THEN |
386 |
|
|
qcond_incld(i, l) = em_qcond(l) |
387 |
|
|
END IF |
388 |
|
|
END DO |
389 |
|
|
END DO |
390 |
|
|
|
391 |
|
|
! On calcule une eau liquide diagnostique en fonction de la |
392 |
|
|
! precip. |
393 |
|
|
IF (iflag_clw==2) THEN |
394 |
|
|
DO l = 1, klev |
395 |
|
|
DO i = 1, klon |
396 |
|
|
IF (ktop(i)-kbas(i)>0 .AND. l>=kbas(i) .AND. l<=ktop(i)) THEN |
397 |
|
|
qcond_incld(i, l) = rain(i)*8.E4 & ! s *(pplay(i,l |
398 |
|
|
! )-paprs(i,ktop(i)+1)) |
399 |
|
|
/(pplay(i,kbas(i))-pplay(i,ktop(i))) |
400 |
|
|
! s **2 |
401 |
|
|
ELSE |
402 |
|
|
qcond_incld(i, l) = 0. |
403 |
|
|
END IF |
404 |
|
|
END DO |
405 |
|
|
PRINT *, 'l=', l, ', qcond_incld=', qcond_incld(1, l) |
406 |
|
|
END DO |
407 |
|
|
END IF |
408 |
|
|
|
409 |
|
|
|
410 |
|
|
RETURN |
411 |
|
|
END SUBROUTINE conema3 |
412 |
|
|
|