1 |
|
|
|
2 |
|
|
! $Id: cv30_routines.F90 4593 2023-06-29 13:55:54Z ymeurdesoif $ |
3 |
|
|
|
4 |
|
|
|
5 |
|
|
|
6 |
|
|
SUBROUTINE cv30_param(nd, delt) |
7 |
|
|
IMPLICIT NONE |
8 |
|
|
|
9 |
|
|
! ------------------------------------------------------------ |
10 |
|
|
! Set parameters for convectL for iflag_con = 3 |
11 |
|
|
! ------------------------------------------------------------ |
12 |
|
|
|
13 |
|
|
|
14 |
|
|
! *** PBCRIT IS THE CRITICAL CLOUD DEPTH (MB) BENEATH WHICH THE *** |
15 |
|
|
! *** PRECIPITATION EFFICIENCY IS ASSUMED TO BE ZERO *** |
16 |
|
|
! *** PTCRIT IS THE CLOUD DEPTH (MB) ABOVE WHICH THE PRECIP. *** |
17 |
|
|
! *** EFFICIENCY IS ASSUMED TO BE UNITY *** |
18 |
|
|
! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
19 |
|
|
! *** SPFAC IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
20 |
|
|
! *** OF CLOUD *** |
21 |
|
|
|
22 |
|
|
! [TAU: CHARACTERISTIC TIMESCALE USED TO COMPUTE ALPHA & BETA] |
23 |
|
|
! *** ALPHA AND BETA ARE PARAMETERS THAT CONTROL THE RATE OF *** |
24 |
|
|
! *** APPROACH TO QUASI-EQUILIBRIUM *** |
25 |
|
|
! *** (THEIR STANDARD VALUES ARE 1.0 AND 0.96, RESPECTIVELY) *** |
26 |
|
|
! *** (BETA MUST BE LESS THAN OR EQUAL TO 1) *** |
27 |
|
|
|
28 |
|
|
! *** DTCRIT IS THE CRITICAL BUOYANCY (K) USED TO ADJUST THE *** |
29 |
|
|
! *** APPROACH TO QUASI-EQUILIBRIUM *** |
30 |
|
|
! *** IT MUST BE LESS THAN 0 *** |
31 |
|
|
|
32 |
|
|
include "cv30param.h" |
33 |
|
|
include "conema3.h" |
34 |
|
|
|
35 |
|
|
INTEGER nd |
36 |
|
|
REAL delt ! timestep (seconds) |
37 |
|
|
|
38 |
|
|
! noff: integer limit for convection (nd-noff) |
39 |
|
|
! minorig: First level of convection |
40 |
|
|
|
41 |
|
|
! -- limit levels for convection: |
42 |
|
|
|
43 |
|
|
noff = 1 |
44 |
|
|
minorig = 1 |
45 |
|
|
nl = nd - noff |
46 |
|
|
nlp = nl + 1 |
47 |
|
|
nlm = nl - 1 |
48 |
|
|
|
49 |
|
|
! -- "microphysical" parameters: |
50 |
|
|
|
51 |
|
|
sigd = 0.01 |
52 |
|
|
spfac = 0.15 |
53 |
|
|
pbcrit = 150.0 |
54 |
|
|
ptcrit = 500.0 |
55 |
|
|
! IM cf. FH epmax = 0.993 |
56 |
|
|
|
57 |
|
|
omtrain = 45.0 ! used also for snow (no disctinction rain/snow) |
58 |
|
|
|
59 |
|
|
! -- misc: |
60 |
|
|
|
61 |
|
|
dtovsh = -0.2 ! dT for overshoot |
62 |
|
|
dpbase = -40. ! definition cloud base (400m above LCL) |
63 |
|
|
dttrig = 5. ! (loose) condition for triggering |
64 |
|
|
|
65 |
|
|
! -- rate of approach to quasi-equilibrium: |
66 |
|
|
|
67 |
|
|
dtcrit = -2.0 |
68 |
|
|
tau = 8000. |
69 |
|
|
beta = 1.0 - delt/tau |
70 |
|
|
alpha = 1.5E-3*delt/tau |
71 |
|
|
! increase alpha to compensate W decrease: |
72 |
|
|
alpha = alpha*1.5 |
73 |
|
|
|
74 |
|
|
! -- interface cloud parameterization: |
75 |
|
|
|
76 |
|
|
delta = 0.01 ! cld |
77 |
|
|
|
78 |
|
|
! -- interface with boundary-layer (gust factor): (sb) |
79 |
|
|
|
80 |
|
|
betad = 10.0 ! original value (from convect 4.3) |
81 |
|
|
|
82 |
|
|
RETURN |
83 |
|
|
END SUBROUTINE cv30_param |
84 |
|
|
|
85 |
|
|
SUBROUTINE cv30_prelim(len, nd, ndp1, t, q, p, ph, lv, cpn, tv, gz, h, hm, & |
86 |
|
|
th) |
87 |
|
|
IMPLICIT NONE |
88 |
|
|
|
89 |
|
|
! ===================================================================== |
90 |
|
|
! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
91 |
|
|
! "ori": from convect4.3 (vectorized) |
92 |
|
|
! "convect3": to be exactly consistent with convect3 |
93 |
|
|
! ===================================================================== |
94 |
|
|
|
95 |
|
|
! inputs: |
96 |
|
|
INTEGER len, nd, ndp1 |
97 |
|
|
REAL t(len, nd), q(len, nd), p(len, nd), ph(len, ndp1) |
98 |
|
|
|
99 |
|
|
! outputs: |
100 |
|
|
REAL lv(len, nd), cpn(len, nd), tv(len, nd) |
101 |
|
|
REAL gz(len, nd), h(len, nd), hm(len, nd) |
102 |
|
|
REAL th(len, nd) |
103 |
|
|
|
104 |
|
|
! local variables: |
105 |
|
|
INTEGER k, i |
106 |
|
|
REAL rdcp |
107 |
|
|
REAL tvx, tvy ! convect3 |
108 |
|
|
REAL cpx(len, nd) |
109 |
|
|
|
110 |
|
|
include "cvthermo.h" |
111 |
|
|
include "cv30param.h" |
112 |
|
|
|
113 |
|
|
|
114 |
|
|
! ori do 110 k=1,nlp |
115 |
|
|
DO k = 1, nl ! convect3 |
116 |
|
|
DO i = 1, len |
117 |
|
|
! debug lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
118 |
|
|
lv(i, k) = lv0 - clmcpv*(t(i,k)-273.15) |
119 |
|
|
cpn(i, k) = cpd*(1.0-q(i,k)) + cpv*q(i, k) |
120 |
|
|
cpx(i, k) = cpd*(1.0-q(i,k)) + cl*q(i, k) |
121 |
|
|
! ori tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
122 |
|
|
tv(i, k) = t(i, k)*(1.0+q(i,k)/eps-q(i,k)) |
123 |
|
|
rdcp = (rrd*(1.-q(i,k))+q(i,k)*rrv)/cpn(i, k) |
124 |
|
|
th(i, k) = t(i, k)*(1000.0/p(i,k))**rdcp |
125 |
|
|
END DO |
126 |
|
|
END DO |
127 |
|
|
|
128 |
|
|
! gz = phi at the full levels (same as p). |
129 |
|
|
|
130 |
|
|
DO i = 1, len |
131 |
|
|
gz(i, 1) = 0.0 |
132 |
|
|
END DO |
133 |
|
|
! ori do 140 k=2,nlp |
134 |
|
|
DO k = 2, nl ! convect3 |
135 |
|
|
DO i = 1, len |
136 |
|
|
tvx = t(i, k)*(1.+q(i,k)/eps-q(i,k)) !convect3 |
137 |
|
|
tvy = t(i, k-1)*(1.+q(i,k-1)/eps-q(i,k-1)) !convect3 |
138 |
|
|
gz(i, k) = gz(i, k-1) + 0.5*rrd*(tvx+tvy) & !convect3 |
139 |
|
|
*(p(i,k-1)-p(i,k))/ph(i, k) !convect3 |
140 |
|
|
|
141 |
|
|
! ori gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
142 |
|
|
! ori & *(p(i,k-1)-p(i,k))/ph(i,k) |
143 |
|
|
END DO |
144 |
|
|
END DO |
145 |
|
|
|
146 |
|
|
! h = phi + cpT (dry static energy). |
147 |
|
|
! hm = phi + cp(T-Tbase)+Lq |
148 |
|
|
|
149 |
|
|
! ori do 170 k=1,nlp |
150 |
|
|
DO k = 1, nl ! convect3 |
151 |
|
|
DO i = 1, len |
152 |
|
|
h(i, k) = gz(i, k) + cpn(i, k)*t(i, k) |
153 |
|
|
hm(i, k) = gz(i, k) + cpx(i, k)*(t(i,k)-t(i,1)) + lv(i, k)*q(i, k) |
154 |
|
|
END DO |
155 |
|
|
END DO |
156 |
|
|
|
157 |
|
|
RETURN |
158 |
|
|
END SUBROUTINE cv30_prelim |
159 |
|
|
|
160 |
|
|
SUBROUTINE cv30_feed(len, nd, t, q, qs, p, ph, hm, gz, nk, icb, icbmax, & |
161 |
|
|
iflag, tnk, qnk, gznk, plcl) |
162 |
|
|
IMPLICIT NONE |
163 |
|
|
|
164 |
|
|
! ================================================================ |
165 |
|
|
! Purpose: CONVECTIVE FEED |
166 |
|
|
|
167 |
|
|
! Main differences with cv_feed: |
168 |
|
|
! - ph added in input |
169 |
|
|
! - here, nk(i)=minorig |
170 |
|
|
! - icb defined differently (plcl compared with ph instead of p) |
171 |
|
|
|
172 |
|
|
! Main differences with convect3: |
173 |
|
|
! - we do not compute dplcldt and dplcldr of CLIFT anymore |
174 |
|
|
! - values iflag different (but tests identical) |
175 |
|
|
! - A,B explicitely defined (!...) |
176 |
|
|
! ================================================================ |
177 |
|
|
|
178 |
|
|
include "cv30param.h" |
179 |
|
|
|
180 |
|
|
! inputs: |
181 |
|
|
INTEGER len, nd |
182 |
|
|
REAL t(len, nd), q(len, nd), qs(len, nd), p(len, nd) |
183 |
|
|
REAL hm(len, nd), gz(len, nd) |
184 |
|
|
REAL ph(len, nd+1) |
185 |
|
|
|
186 |
|
|
! outputs: |
187 |
|
|
INTEGER iflag(len), nk(len), icb(len), icbmax |
188 |
|
|
REAL tnk(len), qnk(len), gznk(len), plcl(len) |
189 |
|
|
|
190 |
|
|
! local variables: |
191 |
|
|
INTEGER i, k |
192 |
|
|
INTEGER ihmin(len) |
193 |
|
|
REAL work(len) |
194 |
|
|
REAL pnk(len), qsnk(len), rh(len), chi(len) |
195 |
|
|
REAL a, b ! convect3 |
196 |
|
|
! ym |
197 |
|
|
plcl = 0.0 |
198 |
|
|
! @ !------------------------------------------------------------------- |
199 |
|
|
! @ ! --- Find level of minimum moist static energy |
200 |
|
|
! @ ! --- If level of minimum moist static energy coincides with |
201 |
|
|
! @ ! --- or is lower than minimum allowable parcel origin level, |
202 |
|
|
! @ ! --- set iflag to 6. |
203 |
|
|
! @ !------------------------------------------------------------------- |
204 |
|
|
! @ |
205 |
|
|
! @ do 180 i=1,len |
206 |
|
|
! @ work(i)=1.0e12 |
207 |
|
|
! @ ihmin(i)=nl |
208 |
|
|
! @ 180 continue |
209 |
|
|
! @ do 200 k=2,nlp |
210 |
|
|
! @ do 190 i=1,len |
211 |
|
|
! @ if((hm(i,k).lt.work(i)).and. |
212 |
|
|
! @ & (hm(i,k).lt.hm(i,k-1)))then |
213 |
|
|
! @ work(i)=hm(i,k) |
214 |
|
|
! @ ihmin(i)=k |
215 |
|
|
! @ endif |
216 |
|
|
! @ 190 continue |
217 |
|
|
! @ 200 continue |
218 |
|
|
! @ do 210 i=1,len |
219 |
|
|
! @ ihmin(i)=min(ihmin(i),nlm) |
220 |
|
|
! @ if(ihmin(i).le.minorig)then |
221 |
|
|
! @ iflag(i)=6 |
222 |
|
|
! @ endif |
223 |
|
|
! @ 210 continue |
224 |
|
|
! @ c |
225 |
|
|
! @ !------------------------------------------------------------------- |
226 |
|
|
! @ ! --- Find that model level below the level of minimum moist static |
227 |
|
|
! @ ! --- energy that has the maximum value of moist static energy |
228 |
|
|
! @ !------------------------------------------------------------------- |
229 |
|
|
! @ |
230 |
|
|
! @ do 220 i=1,len |
231 |
|
|
! @ work(i)=hm(i,minorig) |
232 |
|
|
! @ nk(i)=minorig |
233 |
|
|
! @ 220 continue |
234 |
|
|
! @ do 240 k=minorig+1,nl |
235 |
|
|
! @ do 230 i=1,len |
236 |
|
|
! @ if((hm(i,k).gt.work(i)).and.(k.le.ihmin(i)))then |
237 |
|
|
! @ work(i)=hm(i,k) |
238 |
|
|
! @ nk(i)=k |
239 |
|
|
! @ endif |
240 |
|
|
! @ 230 continue |
241 |
|
|
! @ 240 continue |
242 |
|
|
|
243 |
|
|
! ------------------------------------------------------------------- |
244 |
|
|
! --- Origin level of ascending parcels for convect3: |
245 |
|
|
! ------------------------------------------------------------------- |
246 |
|
|
|
247 |
|
|
DO i = 1, len |
248 |
|
|
nk(i) = minorig |
249 |
|
|
END DO |
250 |
|
|
|
251 |
|
|
! ------------------------------------------------------------------- |
252 |
|
|
! --- Check whether parcel level temperature and specific humidity |
253 |
|
|
! --- are reasonable |
254 |
|
|
! ------------------------------------------------------------------- |
255 |
|
|
DO i = 1, len |
256 |
|
|
IF (((t(i,nk(i))<250.0) .OR. (q(i,nk(i))<=0.0)) & ! @ & .or.( |
257 |
|
|
! p(i,ihmin(i)).lt.400.0 |
258 |
|
|
! ) ) |
259 |
|
|
.AND. (iflag(i)==0)) iflag(i) = 7 |
260 |
|
|
END DO |
261 |
|
|
! ------------------------------------------------------------------- |
262 |
|
|
! --- Calculate lifted condensation level of air at parcel origin level |
263 |
|
|
! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
264 |
|
|
! ------------------------------------------------------------------- |
265 |
|
|
|
266 |
|
|
a = 1669.0 ! convect3 |
267 |
|
|
b = 122.0 ! convect3 |
268 |
|
|
|
269 |
|
|
DO i = 1, len |
270 |
|
|
|
271 |
|
|
IF (iflag(i)/=7) THEN ! modif sb Jun7th 2002 |
272 |
|
|
|
273 |
|
|
tnk(i) = t(i, nk(i)) |
274 |
|
|
qnk(i) = q(i, nk(i)) |
275 |
|
|
gznk(i) = gz(i, nk(i)) |
276 |
|
|
pnk(i) = p(i, nk(i)) |
277 |
|
|
qsnk(i) = qs(i, nk(i)) |
278 |
|
|
|
279 |
|
|
rh(i) = qnk(i)/qsnk(i) |
280 |
|
|
! ori rh(i)=min(1.0,rh(i)) ! removed for convect3 |
281 |
|
|
! ori chi(i)=tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
282 |
|
|
chi(i) = tnk(i)/(a-b*rh(i)-tnk(i)) ! convect3 |
283 |
|
|
plcl(i) = pnk(i)*(rh(i)**chi(i)) |
284 |
|
|
IF (((plcl(i)<200.0) .OR. (plcl(i)>=2000.0)) .AND. (iflag(i)==0)) iflag & |
285 |
|
|
(i) = 8 |
286 |
|
|
|
287 |
|
|
END IF ! iflag=7 |
288 |
|
|
|
289 |
|
|
END DO |
290 |
|
|
|
291 |
|
|
! ------------------------------------------------------------------- |
292 |
|
|
! --- Calculate first level above lcl (=icb) |
293 |
|
|
! ------------------------------------------------------------------- |
294 |
|
|
|
295 |
|
|
! @ do 270 i=1,len |
296 |
|
|
! @ icb(i)=nlm |
297 |
|
|
! @ 270 continue |
298 |
|
|
! @c |
299 |
|
|
! @ do 290 k=minorig,nl |
300 |
|
|
! @ do 280 i=1,len |
301 |
|
|
! @ if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) |
302 |
|
|
! @ & icb(i)=min(icb(i),k) |
303 |
|
|
! @ 280 continue |
304 |
|
|
! @ 290 continue |
305 |
|
|
! @c |
306 |
|
|
! @ do 300 i=1,len |
307 |
|
|
! @ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
308 |
|
|
! @ 300 continue |
309 |
|
|
|
310 |
|
|
DO i = 1, len |
311 |
|
|
icb(i) = nlm |
312 |
|
|
END DO |
313 |
|
|
|
314 |
|
|
! la modification consiste a comparer plcl a ph et non a p: |
315 |
|
|
! icb est defini par : ph(icb)<plcl<ph(icb-1) |
316 |
|
|
! @ do 290 k=minorig,nl |
317 |
|
|
DO k = 3, nl - 1 ! modif pour que icb soit sup/egal a 2 |
318 |
|
|
DO i = 1, len |
319 |
|
|
IF (ph(i,k)<plcl(i)) icb(i) = min(icb(i), k) |
320 |
|
|
END DO |
321 |
|
|
END DO |
322 |
|
|
|
323 |
|
|
DO i = 1, len |
324 |
|
|
! @ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
325 |
|
|
IF ((icb(i)==nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
326 |
|
|
END DO |
327 |
|
|
|
328 |
|
|
DO i = 1, len |
329 |
|
|
icb(i) = icb(i) - 1 ! icb sup ou egal a 2 |
330 |
|
|
END DO |
331 |
|
|
|
332 |
|
|
! Compute icbmax. |
333 |
|
|
|
334 |
|
|
icbmax = 2 |
335 |
|
|
DO i = 1, len |
336 |
|
|
! ! icbmax=max(icbmax,icb(i)) |
337 |
|
|
IF (iflag(i)<7) icbmax = max(icbmax, icb(i)) ! sb Jun7th02 |
338 |
|
|
END DO |
339 |
|
|
|
340 |
|
|
RETURN |
341 |
|
|
END SUBROUTINE cv30_feed |
342 |
|
|
|
343 |
|
|
SUBROUTINE cv30_undilute1(len, nd, t, q, qs, gz, plcl, p, nk, icb, tp, tvp, & |
344 |
|
|
clw, icbs) |
345 |
|
|
IMPLICIT NONE |
346 |
|
|
|
347 |
|
|
! ---------------------------------------------------------------- |
348 |
|
|
! Equivalent de TLIFT entre NK et ICB+1 inclus |
349 |
|
|
|
350 |
|
|
! Differences with convect4: |
351 |
|
|
! - specify plcl in input |
352 |
|
|
! - icbs is the first level above LCL (may differ from icb) |
353 |
|
|
! - in the iterations, used x(icbs) instead x(icb) |
354 |
|
|
! - many minor differences in the iterations |
355 |
|
|
! - tvp is computed in only one time |
356 |
|
|
! - icbs: first level above Plcl (IMIN de TLIFT) in output |
357 |
|
|
! - if icbs=icb, compute also tp(icb+1),tvp(icb+1) & clw(icb+1) |
358 |
|
|
! ---------------------------------------------------------------- |
359 |
|
|
|
360 |
|
|
include "cvthermo.h" |
361 |
|
|
include "cv30param.h" |
362 |
|
|
|
363 |
|
|
! inputs: |
364 |
|
|
INTEGER len, nd |
365 |
|
|
INTEGER nk(len), icb(len) |
366 |
|
|
REAL t(len, nd), q(len, nd), qs(len, nd), gz(len, nd) |
367 |
|
|
REAL p(len, nd) |
368 |
|
|
REAL plcl(len) ! convect3 |
369 |
|
|
|
370 |
|
|
! outputs: |
371 |
|
|
REAL tp(len, nd), tvp(len, nd), clw(len, nd) |
372 |
|
|
|
373 |
|
|
! local variables: |
374 |
|
|
INTEGER i, k |
375 |
|
|
INTEGER icb1(len), icbs(len), icbsmax2 ! convect3 |
376 |
|
|
REAL tg, qg, alv, s, ahg, tc, denom, es, rg |
377 |
|
|
REAL ah0(len), cpp(len) |
378 |
|
|
REAL tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
379 |
|
|
REAL qsicb(len) ! convect3 |
380 |
|
|
REAL cpinv(len) ! convect3 |
381 |
|
|
|
382 |
|
|
! ------------------------------------------------------------------- |
383 |
|
|
! --- Calculates the lifted parcel virtual temperature at nk, |
384 |
|
|
! --- the actual temperature, and the adiabatic |
385 |
|
|
! --- liquid water content. The procedure is to solve the equation. |
386 |
|
|
! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
387 |
|
|
! ------------------------------------------------------------------- |
388 |
|
|
|
389 |
|
|
DO i = 1, len |
390 |
|
|
tnk(i) = t(i, nk(i)) |
391 |
|
|
qnk(i) = q(i, nk(i)) |
392 |
|
|
gznk(i) = gz(i, nk(i)) |
393 |
|
|
! ori ticb(i)=t(i,icb(i)) |
394 |
|
|
! ori gzicb(i)=gz(i,icb(i)) |
395 |
|
|
END DO |
396 |
|
|
|
397 |
|
|
! *** Calculate certain parcel quantities, including static energy *** |
398 |
|
|
|
399 |
|
|
DO i = 1, len |
400 |
|
|
ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
401 |
|
|
273.15)) + gznk(i) |
402 |
|
|
cpp(i) = cpd*(1.-qnk(i)) + qnk(i)*cpv |
403 |
|
|
cpinv(i) = 1./cpp(i) |
404 |
|
|
END DO |
405 |
|
|
|
406 |
|
|
! *** Calculate lifted parcel quantities below cloud base *** |
407 |
|
|
|
408 |
|
|
DO i = 1, len !convect3 |
409 |
|
|
icb1(i) = min(max(icb(i), 2), nl) |
410 |
|
|
! if icb is below LCL, start loop at ICB+1: |
411 |
|
|
! (icbs est le premier niveau au-dessus du LCL) |
412 |
|
|
icbs(i) = icb1(i) !convect3 |
413 |
|
|
IF (plcl(i)<p(i,icb1(i))) THEN |
414 |
|
|
icbs(i) = min(icbs(i)+1, nl) !convect3 |
415 |
|
|
END IF |
416 |
|
|
END DO !convect3 |
417 |
|
|
|
418 |
|
|
DO i = 1, len !convect3 |
419 |
|
|
ticb(i) = t(i, icbs(i)) !convect3 |
420 |
|
|
gzicb(i) = gz(i, icbs(i)) !convect3 |
421 |
|
|
qsicb(i) = qs(i, icbs(i)) !convect3 |
422 |
|
|
END DO !convect3 |
423 |
|
|
|
424 |
|
|
|
425 |
|
|
! Re-compute icbsmax (icbsmax2): !convect3 |
426 |
|
|
! !convect3 |
427 |
|
|
icbsmax2 = 2 !convect3 |
428 |
|
|
DO i = 1, len !convect3 |
429 |
|
|
icbsmax2 = max(icbsmax2, icbs(i)) !convect3 |
430 |
|
|
END DO !convect3 |
431 |
|
|
|
432 |
|
|
! initialization outputs: |
433 |
|
|
|
434 |
|
|
DO k = 1, icbsmax2 ! convect3 |
435 |
|
|
DO i = 1, len ! convect3 |
436 |
|
|
tp(i, k) = 0.0 ! convect3 |
437 |
|
|
tvp(i, k) = 0.0 ! convect3 |
438 |
|
|
clw(i, k) = 0.0 ! convect3 |
439 |
|
|
END DO ! convect3 |
440 |
|
|
END DO ! convect3 |
441 |
|
|
|
442 |
|
|
! tp and tvp below cloud base: |
443 |
|
|
|
444 |
|
|
DO k = minorig, icbsmax2 - 1 |
445 |
|
|
DO i = 1, len |
446 |
|
|
tp(i, k) = tnk(i) - (gz(i,k)-gznk(i))*cpinv(i) |
447 |
|
|
tvp(i, k) = tp(i, k)*(1.+qnk(i)/eps-qnk(i)) !whole thing (convect3) |
448 |
|
|
END DO |
449 |
|
|
END DO |
450 |
|
|
|
451 |
|
|
! *** Find lifted parcel quantities above cloud base *** |
452 |
|
|
|
453 |
|
|
DO i = 1, len |
454 |
|
|
tg = ticb(i) |
455 |
|
|
! ori qg=qs(i,icb(i)) |
456 |
|
|
qg = qsicb(i) ! convect3 |
457 |
|
|
! debug alv=lv0-clmcpv*(ticb(i)-t0) |
458 |
|
|
alv = lv0 - clmcpv*(ticb(i)-273.15) |
459 |
|
|
|
460 |
|
|
! First iteration. |
461 |
|
|
|
462 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
463 |
|
|
s = cpd*(1.-qnk(i)) + cl*qnk(i) & ! convect3 |
464 |
|
|
+alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
465 |
|
|
s = 1./s |
466 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
467 |
|
|
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
468 |
|
|
tg = tg + s*(ah0(i)-ahg) |
469 |
|
|
! ori tg=max(tg,35.0) |
470 |
|
|
! debug tc=tg-t0 |
471 |
|
|
tc = tg - 273.15 |
472 |
|
|
denom = 243.5 + tc |
473 |
|
|
denom = max(denom, 1.0) ! convect3 |
474 |
|
|
! ori if(tc.ge.0.0)then |
475 |
|
|
es = 6.112*exp(17.67*tc/denom) |
476 |
|
|
! ori else |
477 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
478 |
|
|
! ori endif |
479 |
|
|
! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
480 |
|
|
qg = eps*es/(p(i,icbs(i))-es*(1.-eps)) |
481 |
|
|
|
482 |
|
|
! Second iteration. |
483 |
|
|
|
484 |
|
|
|
485 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
486 |
|
|
! ori s=1./s |
487 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
488 |
|
|
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
489 |
|
|
tg = tg + s*(ah0(i)-ahg) |
490 |
|
|
! ori tg=max(tg,35.0) |
491 |
|
|
! debug tc=tg-t0 |
492 |
|
|
tc = tg - 273.15 |
493 |
|
|
denom = 243.5 + tc |
494 |
|
|
denom = max(denom, 1.0) ! convect3 |
495 |
|
|
! ori if(tc.ge.0.0)then |
496 |
|
|
es = 6.112*exp(17.67*tc/denom) |
497 |
|
|
! ori else |
498 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
499 |
|
|
! ori end if |
500 |
|
|
! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
501 |
|
|
qg = eps*es/(p(i,icbs(i))-es*(1.-eps)) |
502 |
|
|
|
503 |
|
|
alv = lv0 - clmcpv*(ticb(i)-273.15) |
504 |
|
|
|
505 |
|
|
! ori c approximation here: |
506 |
|
|
! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
507 |
|
|
! ori & -gz(i,icb(i))-alv*qg)/cpd |
508 |
|
|
|
509 |
|
|
! convect3: no approximation: |
510 |
|
|
tp(i, icbs(i)) = (ah0(i)-gz(i,icbs(i))-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
511 |
|
|
|
512 |
|
|
! ori clw(i,icb(i))=qnk(i)-qg |
513 |
|
|
! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
514 |
|
|
clw(i, icbs(i)) = qnk(i) - qg |
515 |
|
|
clw(i, icbs(i)) = max(0.0, clw(i,icbs(i))) |
516 |
|
|
|
517 |
|
|
rg = qg/(1.-qnk(i)) |
518 |
|
|
! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
519 |
|
|
! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
520 |
|
|
tvp(i, icbs(i)) = tp(i, icbs(i))*(1.+qg/eps-qnk(i)) !whole thing |
521 |
|
|
|
522 |
|
|
END DO |
523 |
|
|
|
524 |
|
|
! ori do 380 k=minorig,icbsmax2 |
525 |
|
|
! ori do 370 i=1,len |
526 |
|
|
! ori tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
527 |
|
|
! ori 370 continue |
528 |
|
|
! ori 380 continue |
529 |
|
|
|
530 |
|
|
|
531 |
|
|
! -- The following is only for convect3: |
532 |
|
|
|
533 |
|
|
! * icbs is the first level above the LCL: |
534 |
|
|
! if plcl<p(icb), then icbs=icb+1 |
535 |
|
|
! if plcl>p(icb), then icbs=icb |
536 |
|
|
|
537 |
|
|
! * the routine above computes tvp from minorig to icbs (included). |
538 |
|
|
|
539 |
|
|
! * to compute buoybase (in cv3_trigger.F), both tvp(icb) and tvp(icb+1) |
540 |
|
|
! must be known. This is the case if icbs=icb+1, but not if icbs=icb. |
541 |
|
|
|
542 |
|
|
! * therefore, in the case icbs=icb, we compute tvp at level icb+1 |
543 |
|
|
! (tvp at other levels will be computed in cv3_undilute2.F) |
544 |
|
|
|
545 |
|
|
|
546 |
|
|
DO i = 1, len |
547 |
|
|
ticb(i) = t(i, icb(i)+1) |
548 |
|
|
gzicb(i) = gz(i, icb(i)+1) |
549 |
|
|
qsicb(i) = qs(i, icb(i)+1) |
550 |
|
|
END DO |
551 |
|
|
|
552 |
|
|
DO i = 1, len |
553 |
|
|
tg = ticb(i) |
554 |
|
|
qg = qsicb(i) ! convect3 |
555 |
|
|
! debug alv=lv0-clmcpv*(ticb(i)-t0) |
556 |
|
|
alv = lv0 - clmcpv*(ticb(i)-273.15) |
557 |
|
|
|
558 |
|
|
! First iteration. |
559 |
|
|
|
560 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
561 |
|
|
s = cpd*(1.-qnk(i)) + cl*qnk(i) & ! convect3 |
562 |
|
|
+alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
563 |
|
|
s = 1./s |
564 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
565 |
|
|
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
566 |
|
|
tg = tg + s*(ah0(i)-ahg) |
567 |
|
|
! ori tg=max(tg,35.0) |
568 |
|
|
! debug tc=tg-t0 |
569 |
|
|
tc = tg - 273.15 |
570 |
|
|
denom = 243.5 + tc |
571 |
|
|
denom = max(denom, 1.0) ! convect3 |
572 |
|
|
! ori if(tc.ge.0.0)then |
573 |
|
|
es = 6.112*exp(17.67*tc/denom) |
574 |
|
|
! ori else |
575 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
576 |
|
|
! ori endif |
577 |
|
|
! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
578 |
|
|
qg = eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
579 |
|
|
|
580 |
|
|
! Second iteration. |
581 |
|
|
|
582 |
|
|
|
583 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
584 |
|
|
! ori s=1./s |
585 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
586 |
|
|
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
587 |
|
|
tg = tg + s*(ah0(i)-ahg) |
588 |
|
|
! ori tg=max(tg,35.0) |
589 |
|
|
! debug tc=tg-t0 |
590 |
|
|
tc = tg - 273.15 |
591 |
|
|
denom = 243.5 + tc |
592 |
|
|
denom = max(denom, 1.0) ! convect3 |
593 |
|
|
! ori if(tc.ge.0.0)then |
594 |
|
|
es = 6.112*exp(17.67*tc/denom) |
595 |
|
|
! ori else |
596 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
597 |
|
|
! ori end if |
598 |
|
|
! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
599 |
|
|
qg = eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
600 |
|
|
|
601 |
|
|
alv = lv0 - clmcpv*(ticb(i)-273.15) |
602 |
|
|
|
603 |
|
|
! ori c approximation here: |
604 |
|
|
! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
605 |
|
|
! ori & -gz(i,icb(i))-alv*qg)/cpd |
606 |
|
|
|
607 |
|
|
! convect3: no approximation: |
608 |
|
|
tp(i, icb(i)+1) = (ah0(i)-gz(i,icb(i)+1)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
609 |
|
|
|
610 |
|
|
! ori clw(i,icb(i))=qnk(i)-qg |
611 |
|
|
! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
612 |
|
|
clw(i, icb(i)+1) = qnk(i) - qg |
613 |
|
|
clw(i, icb(i)+1) = max(0.0, clw(i,icb(i)+1)) |
614 |
|
|
|
615 |
|
|
rg = qg/(1.-qnk(i)) |
616 |
|
|
! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
617 |
|
|
! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
618 |
|
|
tvp(i, icb(i)+1) = tp(i, icb(i)+1)*(1.+qg/eps-qnk(i)) !whole thing |
619 |
|
|
|
620 |
|
|
END DO |
621 |
|
|
|
622 |
|
|
RETURN |
623 |
|
|
END SUBROUTINE cv30_undilute1 |
624 |
|
|
|
625 |
|
|
SUBROUTINE cv30_trigger(len, nd, icb, plcl, p, th, tv, tvp, pbase, buoybase, & |
626 |
|
|
iflag, sig, w0) |
627 |
|
|
IMPLICIT NONE |
628 |
|
|
|
629 |
|
|
! ------------------------------------------------------------------- |
630 |
|
|
! --- TRIGGERING |
631 |
|
|
|
632 |
|
|
! - computes the cloud base |
633 |
|
|
! - triggering (crude in this version) |
634 |
|
|
! - relaxation of sig and w0 when no convection |
635 |
|
|
|
636 |
|
|
! Caution1: if no convection, we set iflag=4 |
637 |
|
|
! (it used to be 0 in convect3) |
638 |
|
|
|
639 |
|
|
! Caution2: at this stage, tvp (and thus buoy) are know up |
640 |
|
|
! through icb only! |
641 |
|
|
! -> the buoyancy below cloud base not (yet) set to the cloud base buoyancy |
642 |
|
|
! ------------------------------------------------------------------- |
643 |
|
|
|
644 |
|
|
include "cv30param.h" |
645 |
|
|
|
646 |
|
|
! input: |
647 |
|
|
INTEGER len, nd |
648 |
|
|
INTEGER icb(len) |
649 |
|
|
REAL plcl(len), p(len, nd) |
650 |
|
|
REAL th(len, nd), tv(len, nd), tvp(len, nd) |
651 |
|
|
|
652 |
|
|
! output: |
653 |
|
|
REAL pbase(len), buoybase(len) |
654 |
|
|
|
655 |
|
|
! input AND output: |
656 |
|
|
INTEGER iflag(len) |
657 |
|
|
REAL sig(len, nd), w0(len, nd) |
658 |
|
|
|
659 |
|
|
! local variables: |
660 |
|
|
INTEGER i, k |
661 |
|
|
REAL tvpbase, tvbase, tdif, ath, ath1 |
662 |
|
|
|
663 |
|
|
|
664 |
|
|
! *** set cloud base buoyancy at (plcl+dpbase) level buoyancy |
665 |
|
|
|
666 |
|
|
DO i = 1, len |
667 |
|
|
pbase(i) = plcl(i) + dpbase |
668 |
|
|
tvpbase = tvp(i, icb(i))*(pbase(i)-p(i,icb(i)+1))/ & |
669 |
|
|
(p(i,icb(i))-p(i,icb(i)+1)) + tvp(i, icb(i)+1)*(p(i,icb(i))-pbase(i))/( & |
670 |
|
|
p(i,icb(i))-p(i,icb(i)+1)) |
671 |
|
|
tvbase = tv(i, icb(i))*(pbase(i)-p(i,icb(i)+1))/ & |
672 |
|
|
(p(i,icb(i))-p(i,icb(i)+1)) + tv(i, icb(i)+1)*(p(i,icb(i))-pbase(i))/(p & |
673 |
|
|
(i,icb(i))-p(i,icb(i)+1)) |
674 |
|
|
buoybase(i) = tvpbase - tvbase |
675 |
|
|
END DO |
676 |
|
|
|
677 |
|
|
|
678 |
|
|
! *** make sure that column is dry adiabatic between the surface *** |
679 |
|
|
! *** and cloud base, and that lifted air is positively buoyant *** |
680 |
|
|
! *** at cloud base *** |
681 |
|
|
! *** if not, return to calling program after resetting *** |
682 |
|
|
! *** sig(i) and w0(i) *** |
683 |
|
|
|
684 |
|
|
|
685 |
|
|
! oct3 do 200 i=1,len |
686 |
|
|
! oct3 |
687 |
|
|
! oct3 tdif = buoybase(i) |
688 |
|
|
! oct3 ath1 = th(i,1) |
689 |
|
|
! oct3 ath = th(i,icb(i)-1) - dttrig |
690 |
|
|
! oct3 |
691 |
|
|
! oct3 if (tdif.lt.dtcrit .or. ath.gt.ath1) then |
692 |
|
|
! oct3 do 60 k=1,nl |
693 |
|
|
! oct3 sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
694 |
|
|
! oct3 sig(i,k) = AMAX1(sig(i,k),0.0) |
695 |
|
|
! oct3 w0(i,k) = beta*w0(i,k) |
696 |
|
|
! oct3 60 continue |
697 |
|
|
! oct3 iflag(i)=4 ! pour version vectorisee |
698 |
|
|
! oct3c convect3 iflag(i)=0 |
699 |
|
|
! oct3cccc return |
700 |
|
|
! oct3 endif |
701 |
|
|
! oct3 |
702 |
|
|
! oct3200 continue |
703 |
|
|
|
704 |
|
|
! -- oct3: on reecrit la boucle 200 (pour la vectorisation) |
705 |
|
|
|
706 |
|
|
DO k = 1, nl |
707 |
|
|
DO i = 1, len |
708 |
|
|
|
709 |
|
|
tdif = buoybase(i) |
710 |
|
|
ath1 = th(i, 1) |
711 |
|
|
ath = th(i, icb(i)-1) - dttrig |
712 |
|
|
|
713 |
|
|
IF (tdif<dtcrit .OR. ath>ath1) THEN |
714 |
|
|
sig(i, k) = beta*sig(i, k) - 2.*alpha*tdif*tdif |
715 |
|
|
sig(i, k) = amax1(sig(i,k), 0.0) |
716 |
|
|
w0(i, k) = beta*w0(i, k) |
717 |
|
|
iflag(i) = 4 ! pour version vectorisee |
718 |
|
|
! convect3 iflag(i)=0 |
719 |
|
|
END IF |
720 |
|
|
|
721 |
|
|
END DO |
722 |
|
|
END DO |
723 |
|
|
|
724 |
|
|
! fin oct3 -- |
725 |
|
|
|
726 |
|
|
RETURN |
727 |
|
|
END SUBROUTINE cv30_trigger |
728 |
|
|
|
729 |
|
|
SUBROUTINE cv30_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, icbs1, & |
730 |
|
|
plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, & |
731 |
|
|
th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, & |
732 |
|
|
iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, & |
733 |
|
|
v, gz, th, tra, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0) |
734 |
|
|
USE print_control_mod, ONLY: lunout |
735 |
|
|
IMPLICIT NONE |
736 |
|
|
|
737 |
|
|
include "cv30param.h" |
738 |
|
|
|
739 |
|
|
! inputs: |
740 |
|
|
INTEGER len, ncum, nd, ntra, nloc |
741 |
|
|
INTEGER iflag1(len), nk1(len), icb1(len), icbs1(len) |
742 |
|
|
REAL plcl1(len), tnk1(len), qnk1(len), gznk1(len) |
743 |
|
|
REAL pbase1(len), buoybase1(len) |
744 |
|
|
REAL t1(len, nd), q1(len, nd), qs1(len, nd), u1(len, nd), v1(len, nd) |
745 |
|
|
REAL gz1(len, nd), h1(len, nd), lv1(len, nd), cpn1(len, nd) |
746 |
|
|
REAL p1(len, nd), ph1(len, nd+1), tv1(len, nd), tp1(len, nd) |
747 |
|
|
REAL tvp1(len, nd), clw1(len, nd) |
748 |
|
|
REAL th1(len, nd) |
749 |
|
|
REAL sig1(len, nd), w01(len, nd) |
750 |
|
|
REAL tra1(len, nd, ntra) |
751 |
|
|
|
752 |
|
|
! outputs: |
753 |
|
|
! en fait, on a nloc=len pour l'instant (cf cv_driver) |
754 |
|
|
INTEGER iflag(nloc), nk(nloc), icb(nloc), icbs(nloc) |
755 |
|
|
REAL plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
756 |
|
|
REAL pbase(nloc), buoybase(nloc) |
757 |
|
|
REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), u(nloc, nd), v(nloc, nd) |
758 |
|
|
REAL gz(nloc, nd), h(nloc, nd), lv(nloc, nd), cpn(nloc, nd) |
759 |
|
|
REAL p(nloc, nd), ph(nloc, nd+1), tv(nloc, nd), tp(nloc, nd) |
760 |
|
|
REAL tvp(nloc, nd), clw(nloc, nd) |
761 |
|
|
REAL th(nloc, nd) |
762 |
|
|
REAL sig(nloc, nd), w0(nloc, nd) |
763 |
|
|
REAL tra(nloc, nd, ntra) |
764 |
|
|
|
765 |
|
|
! local variables: |
766 |
|
|
INTEGER i, k, nn, j |
767 |
|
|
|
768 |
|
|
CHARACTER (LEN=20) :: modname = 'cv30_compress' |
769 |
|
|
CHARACTER (LEN=80) :: abort_message |
770 |
|
|
|
771 |
|
|
|
772 |
|
|
DO k = 1, nl + 1 |
773 |
|
|
nn = 0 |
774 |
|
|
DO i = 1, len |
775 |
|
|
IF (iflag1(i)==0) THEN |
776 |
|
|
nn = nn + 1 |
777 |
|
|
sig(nn, k) = sig1(i, k) |
778 |
|
|
w0(nn, k) = w01(i, k) |
779 |
|
|
t(nn, k) = t1(i, k) |
780 |
|
|
q(nn, k) = q1(i, k) |
781 |
|
|
qs(nn, k) = qs1(i, k) |
782 |
|
|
u(nn, k) = u1(i, k) |
783 |
|
|
v(nn, k) = v1(i, k) |
784 |
|
|
gz(nn, k) = gz1(i, k) |
785 |
|
|
h(nn, k) = h1(i, k) |
786 |
|
|
lv(nn, k) = lv1(i, k) |
787 |
|
|
cpn(nn, k) = cpn1(i, k) |
788 |
|
|
p(nn, k) = p1(i, k) |
789 |
|
|
ph(nn, k) = ph1(i, k) |
790 |
|
|
tv(nn, k) = tv1(i, k) |
791 |
|
|
tp(nn, k) = tp1(i, k) |
792 |
|
|
tvp(nn, k) = tvp1(i, k) |
793 |
|
|
clw(nn, k) = clw1(i, k) |
794 |
|
|
th(nn, k) = th1(i, k) |
795 |
|
|
END IF |
796 |
|
|
END DO |
797 |
|
|
END DO |
798 |
|
|
|
799 |
|
|
! do 121 j=1,ntra |
800 |
|
|
! do 111 k=1,nd |
801 |
|
|
! nn=0 |
802 |
|
|
! do 101 i=1,len |
803 |
|
|
! if(iflag1(i).eq.0)then |
804 |
|
|
! nn=nn+1 |
805 |
|
|
! tra(nn,k,j)=tra1(i,k,j) |
806 |
|
|
! endif |
807 |
|
|
! 101 continue |
808 |
|
|
! 111 continue |
809 |
|
|
! 121 continue |
810 |
|
|
|
811 |
|
|
IF (nn/=ncum) THEN |
812 |
|
|
WRITE (lunout, *) 'strange! nn not equal to ncum: ', nn, ncum |
813 |
|
|
abort_message = '' |
814 |
|
|
CALL abort_physic(modname, abort_message, 1) |
815 |
|
|
END IF |
816 |
|
|
|
817 |
|
|
nn = 0 |
818 |
|
|
DO i = 1, len |
819 |
|
|
IF (iflag1(i)==0) THEN |
820 |
|
|
nn = nn + 1 |
821 |
|
|
pbase(nn) = pbase1(i) |
822 |
|
|
buoybase(nn) = buoybase1(i) |
823 |
|
|
plcl(nn) = plcl1(i) |
824 |
|
|
tnk(nn) = tnk1(i) |
825 |
|
|
qnk(nn) = qnk1(i) |
826 |
|
|
gznk(nn) = gznk1(i) |
827 |
|
|
nk(nn) = nk1(i) |
828 |
|
|
icb(nn) = icb1(i) |
829 |
|
|
icbs(nn) = icbs1(i) |
830 |
|
|
iflag(nn) = iflag1(i) |
831 |
|
|
END IF |
832 |
|
|
END DO |
833 |
|
|
|
834 |
|
|
RETURN |
835 |
|
|
END SUBROUTINE cv30_compress |
836 |
|
|
|
837 |
|
|
SUBROUTINE cv30_undilute2(nloc, ncum, nd, icb, icbs, nk, tnk, qnk, gznk, t, & |
838 |
|
|
q, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, tvp, clw, hp, & |
839 |
|
|
ep, sigp, buoy) |
840 |
|
|
! epmax_cape: ajout arguments |
841 |
|
|
IMPLICIT NONE |
842 |
|
|
|
843 |
|
|
! --------------------------------------------------------------------- |
844 |
|
|
! Purpose: |
845 |
|
|
! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
846 |
|
|
! & |
847 |
|
|
! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
848 |
|
|
! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
849 |
|
|
! & |
850 |
|
|
! FIND THE LEVEL OF NEUTRAL BUOYANCY |
851 |
|
|
|
852 |
|
|
! Main differences convect3/convect4: |
853 |
|
|
! - icbs (input) is the first level above LCL (may differ from icb) |
854 |
|
|
! - many minor differences in the iterations |
855 |
|
|
! - condensed water not removed from tvp in convect3 |
856 |
|
|
! - vertical profile of buoyancy computed here (use of buoybase) |
857 |
|
|
! - the determination of inb is different |
858 |
|
|
! - no inb1, only inb in output |
859 |
|
|
! --------------------------------------------------------------------- |
860 |
|
|
|
861 |
|
|
include "cvthermo.h" |
862 |
|
|
include "cv30param.h" |
863 |
|
|
include "conema3.h" |
864 |
|
|
|
865 |
|
|
! inputs: |
866 |
|
|
INTEGER ncum, nd, nloc |
867 |
|
|
INTEGER icb(nloc), icbs(nloc), nk(nloc) |
868 |
|
|
REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), gz(nloc, nd) |
869 |
|
|
REAL p(nloc, nd) |
870 |
|
|
REAL tnk(nloc), qnk(nloc), gznk(nloc) |
871 |
|
|
REAL lv(nloc, nd), tv(nloc, nd), h(nloc, nd) |
872 |
|
|
REAL pbase(nloc), buoybase(nloc), plcl(nloc) |
873 |
|
|
|
874 |
|
|
! outputs: |
875 |
|
|
INTEGER inb(nloc) |
876 |
|
|
REAL tp(nloc, nd), tvp(nloc, nd), clw(nloc, nd) |
877 |
|
|
REAL ep(nloc, nd), sigp(nloc, nd), hp(nloc, nd) |
878 |
|
|
REAL buoy(nloc, nd) |
879 |
|
|
|
880 |
|
|
! local variables: |
881 |
|
|
INTEGER i, k |
882 |
|
|
REAL tg, qg, ahg, alv, s, tc, es, denom, rg, tca, elacrit |
883 |
|
|
REAL by, defrac, pden |
884 |
|
|
REAL ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
885 |
|
|
LOGICAL lcape(nloc) |
886 |
|
|
|
887 |
|
|
! ===================================================================== |
888 |
|
|
! --- SOME INITIALIZATIONS |
889 |
|
|
! ===================================================================== |
890 |
|
|
|
891 |
|
|
DO k = 1, nl |
892 |
|
|
DO i = 1, ncum |
893 |
|
|
ep(i, k) = 0.0 |
894 |
|
|
sigp(i, k) = spfac |
895 |
|
|
END DO |
896 |
|
|
END DO |
897 |
|
|
|
898 |
|
|
! ===================================================================== |
899 |
|
|
! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
900 |
|
|
! ===================================================================== |
901 |
|
|
|
902 |
|
|
! --- The procedure is to solve the equation. |
903 |
|
|
! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
904 |
|
|
|
905 |
|
|
! *** Calculate certain parcel quantities, including static energy *** |
906 |
|
|
|
907 |
|
|
|
908 |
|
|
DO i = 1, ncum |
909 |
|
|
ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) & ! debug & |
910 |
|
|
! +qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
911 |
|
|
+qnk(i)*(lv0-clmcpv*(tnk(i)-273.15)) + gznk(i) |
912 |
|
|
END DO |
913 |
|
|
|
914 |
|
|
|
915 |
|
|
! *** Find lifted parcel quantities above cloud base *** |
916 |
|
|
|
917 |
|
|
|
918 |
|
|
DO k = minorig + 1, nl |
919 |
|
|
DO i = 1, ncum |
920 |
|
|
! ori if(k.ge.(icb(i)+1))then |
921 |
|
|
IF (k>=(icbs(i)+1)) THEN ! convect3 |
922 |
|
|
tg = t(i, k) |
923 |
|
|
qg = qs(i, k) |
924 |
|
|
! debug alv=lv0-clmcpv*(t(i,k)-t0) |
925 |
|
|
alv = lv0 - clmcpv*(t(i,k)-273.15) |
926 |
|
|
|
927 |
|
|
! First iteration. |
928 |
|
|
|
929 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
930 |
|
|
s = cpd*(1.-qnk(i)) + cl*qnk(i) & ! convect3 |
931 |
|
|
+alv*alv*qg/(rrv*t(i,k)*t(i,k)) ! convect3 |
932 |
|
|
s = 1./s |
933 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
934 |
|
|
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gz(i, k) ! convect3 |
935 |
|
|
tg = tg + s*(ah0(i)-ahg) |
936 |
|
|
! ori tg=max(tg,35.0) |
937 |
|
|
! debug tc=tg-t0 |
938 |
|
|
tc = tg - 273.15 |
939 |
|
|
denom = 243.5 + tc |
940 |
|
|
denom = max(denom, 1.0) ! convect3 |
941 |
|
|
! ori if(tc.ge.0.0)then |
942 |
|
|
es = 6.112*exp(17.67*tc/denom) |
943 |
|
|
! ori else |
944 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
945 |
|
|
! ori endif |
946 |
|
|
qg = eps*es/(p(i,k)-es*(1.-eps)) |
947 |
|
|
|
948 |
|
|
! Second iteration. |
949 |
|
|
|
950 |
|
|
! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
951 |
|
|
! ori s=1./s |
952 |
|
|
! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
953 |
|
|
ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gz(i, k) ! convect3 |
954 |
|
|
tg = tg + s*(ah0(i)-ahg) |
955 |
|
|
! ori tg=max(tg,35.0) |
956 |
|
|
! debug tc=tg-t0 |
957 |
|
|
tc = tg - 273.15 |
958 |
|
|
denom = 243.5 + tc |
959 |
|
|
denom = max(denom, 1.0) ! convect3 |
960 |
|
|
! ori if(tc.ge.0.0)then |
961 |
|
|
es = 6.112*exp(17.67*tc/denom) |
962 |
|
|
! ori else |
963 |
|
|
! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
964 |
|
|
! ori endif |
965 |
|
|
qg = eps*es/(p(i,k)-es*(1.-eps)) |
966 |
|
|
|
967 |
|
|
! debug alv=lv0-clmcpv*(t(i,k)-t0) |
968 |
|
|
alv = lv0 - clmcpv*(t(i,k)-273.15) |
969 |
|
|
! print*,'cpd dans convect2 ',cpd |
970 |
|
|
! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
971 |
|
|
! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
972 |
|
|
|
973 |
|
|
! ori c approximation here: |
974 |
|
|
! ori |
975 |
|
|
! tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
976 |
|
|
|
977 |
|
|
! convect3: no approximation: |
978 |
|
|
tp(i, k) = (ah0(i)-gz(i,k)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
979 |
|
|
|
980 |
|
|
clw(i, k) = qnk(i) - qg |
981 |
|
|
clw(i, k) = max(0.0, clw(i,k)) |
982 |
|
|
rg = qg/(1.-qnk(i)) |
983 |
|
|
! ori tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
984 |
|
|
! convect3: (qg utilise au lieu du vrai mixing ratio rg): |
985 |
|
|
tvp(i, k) = tp(i, k)*(1.+qg/eps-qnk(i)) ! whole thing |
986 |
|
|
END IF |
987 |
|
|
END DO |
988 |
|
|
END DO |
989 |
|
|
|
990 |
|
|
! ===================================================================== |
991 |
|
|
! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
992 |
|
|
! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
993 |
|
|
! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
994 |
|
|
! ===================================================================== |
995 |
|
|
|
996 |
|
|
! ori do 320 k=minorig+1,nl |
997 |
|
|
DO k = 1, nl ! convect3 |
998 |
|
|
DO i = 1, ncum |
999 |
|
|
pden = ptcrit - pbcrit |
1000 |
|
|
ep(i, k) = (plcl(i)-p(i,k)-pbcrit)/pden*epmax |
1001 |
|
|
ep(i, k) = amax1(ep(i,k), 0.0) |
1002 |
|
|
ep(i, k) = amin1(ep(i,k), epmax) |
1003 |
|
|
sigp(i, k) = spfac |
1004 |
|
|
! ori if(k.ge.(nk(i)+1))then |
1005 |
|
|
! ori tca=tp(i,k)-t0 |
1006 |
|
|
! ori if(tca.ge.0.0)then |
1007 |
|
|
! ori elacrit=elcrit |
1008 |
|
|
! ori else |
1009 |
|
|
! ori elacrit=elcrit*(1.0-tca/tlcrit) |
1010 |
|
|
! ori endif |
1011 |
|
|
! ori elacrit=max(elacrit,0.0) |
1012 |
|
|
! ori ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) |
1013 |
|
|
! ori ep(i,k)=max(ep(i,k),0.0 ) |
1014 |
|
|
! ori ep(i,k)=min(ep(i,k),1.0 ) |
1015 |
|
|
! ori sigp(i,k)=sigs |
1016 |
|
|
! ori endif |
1017 |
|
|
END DO |
1018 |
|
|
END DO |
1019 |
|
|
|
1020 |
|
|
! ===================================================================== |
1021 |
|
|
! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
1022 |
|
|
! --- VIRTUAL TEMPERATURE |
1023 |
|
|
! ===================================================================== |
1024 |
|
|
|
1025 |
|
|
! dans convect3, tvp est calcule en une seule fois, et sans retirer |
1026 |
|
|
! l'eau condensee (~> reversible CAPE) |
1027 |
|
|
|
1028 |
|
|
! ori do 340 k=minorig+1,nl |
1029 |
|
|
! ori do 330 i=1,ncum |
1030 |
|
|
! ori if(k.ge.(icb(i)+1))then |
1031 |
|
|
! ori tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
1032 |
|
|
! oric print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
1033 |
|
|
! oric print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
1034 |
|
|
! ori endif |
1035 |
|
|
! ori 330 continue |
1036 |
|
|
! ori 340 continue |
1037 |
|
|
|
1038 |
|
|
! ori do 350 i=1,ncum |
1039 |
|
|
! ori tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
1040 |
|
|
! ori 350 continue |
1041 |
|
|
|
1042 |
|
|
DO i = 1, ncum ! convect3 |
1043 |
|
|
tp(i, nlp) = tp(i, nl) ! convect3 |
1044 |
|
|
END DO ! convect3 |
1045 |
|
|
|
1046 |
|
|
! ===================================================================== |
1047 |
|
|
! --- EFFECTIVE VERTICAL PROFILE OF BUOYANCY (convect3 only): |
1048 |
|
|
! ===================================================================== |
1049 |
|
|
|
1050 |
|
|
! -- this is for convect3 only: |
1051 |
|
|
|
1052 |
|
|
! first estimate of buoyancy: |
1053 |
|
|
|
1054 |
|
|
DO i = 1, ncum |
1055 |
|
|
DO k = 1, nl |
1056 |
|
|
buoy(i, k) = tvp(i, k) - tv(i, k) |
1057 |
|
|
END DO |
1058 |
|
|
END DO |
1059 |
|
|
|
1060 |
|
|
! set buoyancy=buoybase for all levels below base |
1061 |
|
|
! for safety, set buoy(icb)=buoybase |
1062 |
|
|
|
1063 |
|
|
DO i = 1, ncum |
1064 |
|
|
DO k = 1, nl |
1065 |
|
|
IF ((k>=icb(i)) .AND. (k<=nl) .AND. (p(i,k)>=pbase(i))) THEN |
1066 |
|
|
buoy(i, k) = buoybase(i) |
1067 |
|
|
END IF |
1068 |
|
|
END DO |
1069 |
|
|
! IM cf. CRio/JYG 270807 buoy(icb(i),k)=buoybase(i) |
1070 |
|
|
buoy(i, icb(i)) = buoybase(i) |
1071 |
|
|
END DO |
1072 |
|
|
|
1073 |
|
|
! -- end convect3 |
1074 |
|
|
|
1075 |
|
|
! ===================================================================== |
1076 |
|
|
! --- FIND THE FIRST MODEL LEVEL (INB) ABOVE THE PARCEL'S |
1077 |
|
|
! --- LEVEL OF NEUTRAL BUOYANCY |
1078 |
|
|
! ===================================================================== |
1079 |
|
|
|
1080 |
|
|
! -- this is for convect3 only: |
1081 |
|
|
|
1082 |
|
|
DO i = 1, ncum |
1083 |
|
|
inb(i) = nl - 1 |
1084 |
|
|
END DO |
1085 |
|
|
|
1086 |
|
|
DO i = 1, ncum |
1087 |
|
|
DO k = 1, nl - 1 |
1088 |
|
|
IF ((k>=icb(i)) .AND. (buoy(i,k)<dtovsh)) THEN |
1089 |
|
|
inb(i) = min(inb(i), k) |
1090 |
|
|
END IF |
1091 |
|
|
END DO |
1092 |
|
|
END DO |
1093 |
|
|
|
1094 |
|
|
! -- end convect3 |
1095 |
|
|
|
1096 |
|
|
! ori do 510 i=1,ncum |
1097 |
|
|
! ori cape(i)=0.0 |
1098 |
|
|
! ori capem(i)=0.0 |
1099 |
|
|
! ori inb(i)=icb(i)+1 |
1100 |
|
|
! ori inb1(i)=inb(i) |
1101 |
|
|
! ori 510 continue |
1102 |
|
|
|
1103 |
|
|
! Originial Code |
1104 |
|
|
|
1105 |
|
|
! do 530 k=minorig+1,nl-1 |
1106 |
|
|
! do 520 i=1,ncum |
1107 |
|
|
! if(k.ge.(icb(i)+1))then |
1108 |
|
|
! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
1109 |
|
|
! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
1110 |
|
|
! cape(i)=cape(i)+by |
1111 |
|
|
! if(by.ge.0.0)inb1(i)=k+1 |
1112 |
|
|
! if(cape(i).gt.0.0)then |
1113 |
|
|
! inb(i)=k+1 |
1114 |
|
|
! capem(i)=cape(i) |
1115 |
|
|
! endif |
1116 |
|
|
! endif |
1117 |
|
|
! 520 continue |
1118 |
|
|
! 530 continue |
1119 |
|
|
! do 540 i=1,ncum |
1120 |
|
|
! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
1121 |
|
|
! cape(i)=capem(i)+byp |
1122 |
|
|
! defrac=capem(i)-cape(i) |
1123 |
|
|
! defrac=max(defrac,0.001) |
1124 |
|
|
! frac(i)=-cape(i)/defrac |
1125 |
|
|
! frac(i)=min(frac(i),1.0) |
1126 |
|
|
! frac(i)=max(frac(i),0.0) |
1127 |
|
|
! 540 continue |
1128 |
|
|
|
1129 |
|
|
! K Emanuel fix |
1130 |
|
|
|
1131 |
|
|
! call zilch(byp,ncum) |
1132 |
|
|
! do 530 k=minorig+1,nl-1 |
1133 |
|
|
! do 520 i=1,ncum |
1134 |
|
|
! if(k.ge.(icb(i)+1))then |
1135 |
|
|
! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
1136 |
|
|
! cape(i)=cape(i)+by |
1137 |
|
|
! if(by.ge.0.0)inb1(i)=k+1 |
1138 |
|
|
! if(cape(i).gt.0.0)then |
1139 |
|
|
! inb(i)=k+1 |
1140 |
|
|
! capem(i)=cape(i) |
1141 |
|
|
! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
1142 |
|
|
! endif |
1143 |
|
|
! endif |
1144 |
|
|
! 520 continue |
1145 |
|
|
! 530 continue |
1146 |
|
|
! do 540 i=1,ncum |
1147 |
|
|
! inb(i)=max(inb(i),inb1(i)) |
1148 |
|
|
! cape(i)=capem(i)+byp(i) |
1149 |
|
|
! defrac=capem(i)-cape(i) |
1150 |
|
|
! defrac=max(defrac,0.001) |
1151 |
|
|
! frac(i)=-cape(i)/defrac |
1152 |
|
|
! frac(i)=min(frac(i),1.0) |
1153 |
|
|
! frac(i)=max(frac(i),0.0) |
1154 |
|
|
! 540 continue |
1155 |
|
|
|
1156 |
|
|
! J Teixeira fix |
1157 |
|
|
|
1158 |
|
|
! ori call zilch(byp,ncum) |
1159 |
|
|
! ori do 515 i=1,ncum |
1160 |
|
|
! ori lcape(i)=.true. |
1161 |
|
|
! ori 515 continue |
1162 |
|
|
! ori do 530 k=minorig+1,nl-1 |
1163 |
|
|
! ori do 520 i=1,ncum |
1164 |
|
|
! ori if(cape(i).lt.0.0)lcape(i)=.false. |
1165 |
|
|
! ori if((k.ge.(icb(i)+1)).and.lcape(i))then |
1166 |
|
|
! ori by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
1167 |
|
|
! ori byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
1168 |
|
|
! ori cape(i)=cape(i)+by |
1169 |
|
|
! ori if(by.ge.0.0)inb1(i)=k+1 |
1170 |
|
|
! ori if(cape(i).gt.0.0)then |
1171 |
|
|
! ori inb(i)=k+1 |
1172 |
|
|
! ori capem(i)=cape(i) |
1173 |
|
|
! ori endif |
1174 |
|
|
! ori endif |
1175 |
|
|
! ori 520 continue |
1176 |
|
|
! ori 530 continue |
1177 |
|
|
! ori do 540 i=1,ncum |
1178 |
|
|
! ori cape(i)=capem(i)+byp(i) |
1179 |
|
|
! ori defrac=capem(i)-cape(i) |
1180 |
|
|
! ori defrac=max(defrac,0.001) |
1181 |
|
|
! ori frac(i)=-cape(i)/defrac |
1182 |
|
|
! ori frac(i)=min(frac(i),1.0) |
1183 |
|
|
! ori frac(i)=max(frac(i),0.0) |
1184 |
|
|
! ori 540 continue |
1185 |
|
|
|
1186 |
|
|
! ===================================================================== |
1187 |
|
|
! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
1188 |
|
|
! ===================================================================== |
1189 |
|
|
|
1190 |
|
|
! ym do i=1,ncum*nlp |
1191 |
|
|
! ym hp(i,1)=h(i,1) |
1192 |
|
|
! ym enddo |
1193 |
|
|
|
1194 |
|
|
DO k = 1, nlp |
1195 |
|
|
DO i = 1, ncum |
1196 |
|
|
hp(i, k) = h(i, k) |
1197 |
|
|
END DO |
1198 |
|
|
END DO |
1199 |
|
|
|
1200 |
|
|
DO k = minorig + 1, nl |
1201 |
|
|
DO i = 1, ncum |
1202 |
|
|
IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
1203 |
|
|
hp(i, k) = h(i, nk(i)) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k & |
1204 |
|
|
) |
1205 |
|
|
END IF |
1206 |
|
|
END DO |
1207 |
|
|
END DO |
1208 |
|
|
|
1209 |
|
|
RETURN |
1210 |
|
|
END SUBROUTINE cv30_undilute2 |
1211 |
|
|
|
1212 |
|
|
SUBROUTINE cv30_closure(nloc, ncum, nd, icb, inb, pbase, p, ph, tv, buoy, & |
1213 |
|
|
sig, w0, cape, m) |
1214 |
|
|
IMPLICIT NONE |
1215 |
|
|
|
1216 |
|
|
! =================================================================== |
1217 |
|
|
! --- CLOSURE OF CONVECT3 |
1218 |
|
|
|
1219 |
|
|
! vectorization: S. Bony |
1220 |
|
|
! =================================================================== |
1221 |
|
|
|
1222 |
|
|
include "cvthermo.h" |
1223 |
|
|
include "cv30param.h" |
1224 |
|
|
|
1225 |
|
|
! input: |
1226 |
|
|
INTEGER ncum, nd, nloc |
1227 |
|
|
INTEGER icb(nloc), inb(nloc) |
1228 |
|
|
REAL pbase(nloc) |
1229 |
|
|
REAL p(nloc, nd), ph(nloc, nd+1) |
1230 |
|
|
REAL tv(nloc, nd), buoy(nloc, nd) |
1231 |
|
|
|
1232 |
|
|
! input/output: |
1233 |
|
|
REAL sig(nloc, nd), w0(nloc, nd) |
1234 |
|
|
|
1235 |
|
|
! output: |
1236 |
|
|
REAL cape(nloc) |
1237 |
|
|
REAL m(nloc, nd) |
1238 |
|
|
|
1239 |
|
|
! local variables: |
1240 |
|
|
INTEGER i, j, k, icbmax |
1241 |
|
|
REAL deltap, fac, w, amu |
1242 |
|
|
REAL dtmin(nloc, nd), sigold(nloc, nd) |
1243 |
|
|
|
1244 |
|
|
! ------------------------------------------------------- |
1245 |
|
|
! -- Initialization |
1246 |
|
|
! ------------------------------------------------------- |
1247 |
|
|
|
1248 |
|
|
DO k = 1, nl |
1249 |
|
|
DO i = 1, ncum |
1250 |
|
|
m(i, k) = 0.0 |
1251 |
|
|
END DO |
1252 |
|
|
END DO |
1253 |
|
|
|
1254 |
|
|
! ------------------------------------------------------- |
1255 |
|
|
! -- Reset sig(i) and w0(i) for i>inb and i<icb |
1256 |
|
|
! ------------------------------------------------------- |
1257 |
|
|
|
1258 |
|
|
! update sig and w0 above LNB: |
1259 |
|
|
|
1260 |
|
|
DO k = 1, nl - 1 |
1261 |
|
|
DO i = 1, ncum |
1262 |
|
|
IF ((inb(i)<(nl-1)) .AND. (k>=(inb(i)+1))) THEN |
1263 |
|
|
sig(i, k) = beta*sig(i, k) + 2.*alpha*buoy(i, inb(i))*abs(buoy(i,inb( & |
1264 |
|
|
i))) |
1265 |
|
|
sig(i, k) = amax1(sig(i,k), 0.0) |
1266 |
|
|
w0(i, k) = beta*w0(i, k) |
1267 |
|
|
END IF |
1268 |
|
|
END DO |
1269 |
|
|
END DO |
1270 |
|
|
|
1271 |
|
|
! compute icbmax: |
1272 |
|
|
|
1273 |
|
|
icbmax = 2 |
1274 |
|
|
DO i = 1, ncum |
1275 |
|
|
icbmax = max(icbmax, icb(i)) |
1276 |
|
|
END DO |
1277 |
|
|
|
1278 |
|
|
! update sig and w0 below cloud base: |
1279 |
|
|
|
1280 |
|
|
DO k = 1, icbmax |
1281 |
|
|
DO i = 1, ncum |
1282 |
|
|
IF (k<=icb(i)) THEN |
1283 |
|
|
sig(i, k) = beta*sig(i, k) - 2.*alpha*buoy(i, icb(i))*buoy(i, icb(i)) |
1284 |
|
|
sig(i, k) = amax1(sig(i,k), 0.0) |
1285 |
|
|
w0(i, k) = beta*w0(i, k) |
1286 |
|
|
END IF |
1287 |
|
|
END DO |
1288 |
|
|
END DO |
1289 |
|
|
|
1290 |
|
|
! ! if(inb.lt.(nl-1))then |
1291 |
|
|
! ! do 85 i=inb+1,nl-1 |
1292 |
|
|
! ! sig(i)=beta*sig(i)+2.*alpha*buoy(inb)* |
1293 |
|
|
! ! 1 abs(buoy(inb)) |
1294 |
|
|
! ! sig(i)=amax1(sig(i),0.0) |
1295 |
|
|
! ! w0(i)=beta*w0(i) |
1296 |
|
|
! ! 85 continue |
1297 |
|
|
! ! end if |
1298 |
|
|
|
1299 |
|
|
! ! do 87 i=1,icb |
1300 |
|
|
! ! sig(i)=beta*sig(i)-2.*alpha*buoy(icb)*buoy(icb) |
1301 |
|
|
! ! sig(i)=amax1(sig(i),0.0) |
1302 |
|
|
! ! w0(i)=beta*w0(i) |
1303 |
|
|
! ! 87 continue |
1304 |
|
|
|
1305 |
|
|
! ------------------------------------------------------------- |
1306 |
|
|
! -- Reset fractional areas of updrafts and w0 at initial time |
1307 |
|
|
! -- and after 10 time steps of no convection |
1308 |
|
|
! ------------------------------------------------------------- |
1309 |
|
|
|
1310 |
|
|
DO k = 1, nl - 1 |
1311 |
|
|
DO i = 1, ncum |
1312 |
|
|
IF (sig(i,nd)<1.5 .OR. sig(i,nd)>12.0) THEN |
1313 |
|
|
sig(i, k) = 0.0 |
1314 |
|
|
w0(i, k) = 0.0 |
1315 |
|
|
END IF |
1316 |
|
|
END DO |
1317 |
|
|
END DO |
1318 |
|
|
|
1319 |
|
|
! ------------------------------------------------------------- |
1320 |
|
|
! -- Calculate convective available potential energy (cape), |
1321 |
|
|
! -- vertical velocity (w), fractional area covered by |
1322 |
|
|
! -- undilute updraft (sig), and updraft mass flux (m) |
1323 |
|
|
! ------------------------------------------------------------- |
1324 |
|
|
|
1325 |
|
|
DO i = 1, ncum |
1326 |
|
|
cape(i) = 0.0 |
1327 |
|
|
END DO |
1328 |
|
|
|
1329 |
|
|
! compute dtmin (minimum buoyancy between ICB and given level k): |
1330 |
|
|
|
1331 |
|
|
DO i = 1, ncum |
1332 |
|
|
DO k = 1, nl |
1333 |
|
|
dtmin(i, k) = 100.0 |
1334 |
|
|
END DO |
1335 |
|
|
END DO |
1336 |
|
|
|
1337 |
|
|
DO i = 1, ncum |
1338 |
|
|
DO k = 1, nl |
1339 |
|
|
DO j = minorig, nl |
1340 |
|
|
IF ((k>=(icb(i)+1)) .AND. (k<=inb(i)) .AND. (j>=icb(i)) .AND. (j<=(k- & |
1341 |
|
|
1))) THEN |
1342 |
|
|
dtmin(i, k) = amin1(dtmin(i,k), buoy(i,j)) |
1343 |
|
|
END IF |
1344 |
|
|
END DO |
1345 |
|
|
END DO |
1346 |
|
|
END DO |
1347 |
|
|
|
1348 |
|
|
! the interval on which cape is computed starts at pbase : |
1349 |
|
|
DO k = 1, nl |
1350 |
|
|
DO i = 1, ncum |
1351 |
|
|
|
1352 |
|
|
IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN |
1353 |
|
|
|
1354 |
|
|
deltap = min(pbase(i), ph(i,k-1)) - min(pbase(i), ph(i,k)) |
1355 |
|
|
cape(i) = cape(i) + rrd*buoy(i, k-1)*deltap/p(i, k-1) |
1356 |
|
|
cape(i) = amax1(0.0, cape(i)) |
1357 |
|
|
sigold(i, k) = sig(i, k) |
1358 |
|
|
|
1359 |
|
|
! dtmin(i,k)=100.0 |
1360 |
|
|
! do 97 j=icb(i),k-1 ! mauvaise vectorisation |
1361 |
|
|
! dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
1362 |
|
|
! 97 continue |
1363 |
|
|
|
1364 |
|
|
sig(i, k) = beta*sig(i, k) + alpha*dtmin(i, k)*abs(dtmin(i,k)) |
1365 |
|
|
sig(i, k) = amax1(sig(i,k), 0.0) |
1366 |
|
|
sig(i, k) = amin1(sig(i,k), 0.01) |
1367 |
|
|
fac = amin1(((dtcrit-dtmin(i,k))/dtcrit), 1.0) |
1368 |
|
|
w = (1.-beta)*fac*sqrt(cape(i)) + beta*w0(i, k) |
1369 |
|
|
amu = 0.5*(sig(i,k)+sigold(i,k))*w |
1370 |
|
|
m(i, k) = amu*0.007*p(i, k)*(ph(i,k)-ph(i,k+1))/tv(i, k) |
1371 |
|
|
w0(i, k) = w |
1372 |
|
|
END IF |
1373 |
|
|
|
1374 |
|
|
END DO |
1375 |
|
|
END DO |
1376 |
|
|
|
1377 |
|
|
DO i = 1, ncum |
1378 |
|
|
w0(i, icb(i)) = 0.5*w0(i, icb(i)+1) |
1379 |
|
|
m(i, icb(i)) = 0.5*m(i, icb(i)+1)*(ph(i,icb(i))-ph(i,icb(i)+1))/ & |
1380 |
|
|
(ph(i,icb(i)+1)-ph(i,icb(i)+2)) |
1381 |
|
|
sig(i, icb(i)) = sig(i, icb(i)+1) |
1382 |
|
|
sig(i, icb(i)-1) = sig(i, icb(i)) |
1383 |
|
|
END DO |
1384 |
|
|
|
1385 |
|
|
|
1386 |
|
|
! ! cape=0.0 |
1387 |
|
|
! ! do 98 i=icb+1,inb |
1388 |
|
|
! ! deltap = min(pbase,ph(i-1))-min(pbase,ph(i)) |
1389 |
|
|
! ! cape=cape+rrd*buoy(i-1)*deltap/p(i-1) |
1390 |
|
|
! ! dcape=rrd*buoy(i-1)*deltap/p(i-1) |
1391 |
|
|
! ! dlnp=deltap/p(i-1) |
1392 |
|
|
! ! cape=amax1(0.0,cape) |
1393 |
|
|
! ! sigold=sig(i) |
1394 |
|
|
|
1395 |
|
|
! ! dtmin=100.0 |
1396 |
|
|
! ! do 97 j=icb,i-1 |
1397 |
|
|
! ! dtmin=amin1(dtmin,buoy(j)) |
1398 |
|
|
! ! 97 continue |
1399 |
|
|
|
1400 |
|
|
! ! sig(i)=beta*sig(i)+alpha*dtmin*abs(dtmin) |
1401 |
|
|
! ! sig(i)=amax1(sig(i),0.0) |
1402 |
|
|
! ! sig(i)=amin1(sig(i),0.01) |
1403 |
|
|
! ! fac=amin1(((dtcrit-dtmin)/dtcrit),1.0) |
1404 |
|
|
! ! w=(1.-beta)*fac*sqrt(cape)+beta*w0(i) |
1405 |
|
|
! ! amu=0.5*(sig(i)+sigold)*w |
1406 |
|
|
! ! m(i)=amu*0.007*p(i)*(ph(i)-ph(i+1))/tv(i) |
1407 |
|
|
! ! w0(i)=w |
1408 |
|
|
! ! 98 continue |
1409 |
|
|
! ! w0(icb)=0.5*w0(icb+1) |
1410 |
|
|
! ! m(icb)=0.5*m(icb+1)*(ph(icb)-ph(icb+1))/(ph(icb+1)-ph(icb+2)) |
1411 |
|
|
! ! sig(icb)=sig(icb+1) |
1412 |
|
|
! ! sig(icb-1)=sig(icb) |
1413 |
|
|
|
1414 |
|
|
RETURN |
1415 |
|
|
END SUBROUTINE cv30_closure |
1416 |
|
|
|
1417 |
|
|
SUBROUTINE cv30_mixing(nloc, ncum, nd, na, ntra, icb, nk, inb, ph, t, rr, rs, & |
1418 |
|
|
u, v, tra, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, qent, uent, & |
1419 |
|
|
vent, sij, elij, ments, qents, traent) |
1420 |
|
|
IMPLICIT NONE |
1421 |
|
|
|
1422 |
|
|
! --------------------------------------------------------------------- |
1423 |
|
|
! a faire: |
1424 |
|
|
! - changer rr(il,1) -> qnk(il) |
1425 |
|
|
! - vectorisation de la partie normalisation des flux (do 789...) |
1426 |
|
|
! --------------------------------------------------------------------- |
1427 |
|
|
|
1428 |
|
|
include "cvthermo.h" |
1429 |
|
|
include "cv30param.h" |
1430 |
|
|
|
1431 |
|
|
! inputs: |
1432 |
|
|
INTEGER ncum, nd, na, ntra, nloc |
1433 |
|
|
INTEGER icb(nloc), inb(nloc), nk(nloc) |
1434 |
|
|
REAL sig(nloc, nd) |
1435 |
|
|
REAL qnk(nloc) |
1436 |
|
|
REAL ph(nloc, nd+1) |
1437 |
|
|
REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
1438 |
|
|
REAL u(nloc, nd), v(nloc, nd) |
1439 |
|
|
REAL tra(nloc, nd, ntra) ! input of convect3 |
1440 |
|
|
REAL lv(nloc, na), h(nloc, na), hp(nloc, na) |
1441 |
|
|
REAL tv(nloc, na), tvp(nloc, na), ep(nloc, na), clw(nloc, na) |
1442 |
|
|
REAL m(nloc, na) ! input of convect3 |
1443 |
|
|
|
1444 |
|
|
! outputs: |
1445 |
|
|
REAL ment(nloc, na, na), qent(nloc, na, na) |
1446 |
|
|
REAL uent(nloc, na, na), vent(nloc, na, na) |
1447 |
|
|
REAL sij(nloc, na, na), elij(nloc, na, na) |
1448 |
|
|
REAL traent(nloc, nd, nd, ntra) |
1449 |
|
|
REAL ments(nloc, nd, nd), qents(nloc, nd, nd) |
1450 |
|
|
REAL sigij(nloc, nd, nd) |
1451 |
|
|
|
1452 |
|
|
! local variables: |
1453 |
|
|
INTEGER i, j, k, il, im, jm |
1454 |
|
|
INTEGER num1, num2 |
1455 |
|
|
INTEGER nent(nloc, na) |
1456 |
|
|
REAL rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
1457 |
|
|
REAL alt, smid, sjmin, sjmax, delp, delm |
1458 |
|
|
REAL asij(nloc), smax(nloc), scrit(nloc) |
1459 |
|
|
REAL asum(nloc, nd), bsum(nloc, nd), csum(nloc, nd) |
1460 |
|
|
REAL wgh |
1461 |
|
|
REAL zm(nloc, na) |
1462 |
|
|
LOGICAL lwork(nloc) |
1463 |
|
|
|
1464 |
|
|
! ===================================================================== |
1465 |
|
|
! --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
1466 |
|
|
! ===================================================================== |
1467 |
|
|
|
1468 |
|
|
! ori do 360 i=1,ncum*nlp |
1469 |
|
|
DO j = 1, nl |
1470 |
|
|
DO i = 1, ncum |
1471 |
|
|
nent(i, j) = 0 |
1472 |
|
|
! in convect3, m is computed in cv3_closure |
1473 |
|
|
! ori m(i,1)=0.0 |
1474 |
|
|
END DO |
1475 |
|
|
END DO |
1476 |
|
|
|
1477 |
|
|
! ori do 400 k=1,nlp |
1478 |
|
|
! ori do 390 j=1,nlp |
1479 |
|
|
DO j = 1, nl |
1480 |
|
|
DO k = 1, nl |
1481 |
|
|
DO i = 1, ncum |
1482 |
|
|
qent(i, k, j) = rr(i, j) |
1483 |
|
|
uent(i, k, j) = u(i, j) |
1484 |
|
|
vent(i, k, j) = v(i, j) |
1485 |
|
|
elij(i, k, j) = 0.0 |
1486 |
|
|
! ym ment(i,k,j)=0.0 |
1487 |
|
|
! ym sij(i,k,j)=0.0 |
1488 |
|
|
END DO |
1489 |
|
|
END DO |
1490 |
|
|
END DO |
1491 |
|
|
|
1492 |
|
|
! ym |
1493 |
|
|
ment(1:ncum, 1:nd, 1:nd) = 0.0 |
1494 |
|
|
sij(1:ncum, 1:nd, 1:nd) = 0.0 |
1495 |
|
|
|
1496 |
|
|
! do k=1,ntra |
1497 |
|
|
! do j=1,nd ! instead nlp |
1498 |
|
|
! do i=1,nd ! instead nlp |
1499 |
|
|
! do il=1,ncum |
1500 |
|
|
! traent(il,i,j,k)=tra(il,j,k) |
1501 |
|
|
! enddo |
1502 |
|
|
! enddo |
1503 |
|
|
! enddo |
1504 |
|
|
! enddo |
1505 |
|
|
zm(:, :) = 0. |
1506 |
|
|
|
1507 |
|
|
! ===================================================================== |
1508 |
|
|
! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
1509 |
|
|
! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
1510 |
|
|
! --- FRACTION (sij) |
1511 |
|
|
! ===================================================================== |
1512 |
|
|
|
1513 |
|
|
DO i = minorig + 1, nl |
1514 |
|
|
|
1515 |
|
|
DO j = minorig, nl |
1516 |
|
|
DO il = 1, ncum |
1517 |
|
|
IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (j>=(icb(il)- & |
1518 |
|
|
1)) .AND. (j<=inb(il))) THEN |
1519 |
|
|
|
1520 |
|
|
rti = rr(il, 1) - ep(il, i)*clw(il, i) |
1521 |
|
|
bf2 = 1. + lv(il, j)*lv(il, j)*rs(il, j)/(rrv*t(il,j)*t(il,j)*cpd) |
1522 |
|
|
anum = h(il, j) - hp(il, i) + (cpv-cpd)*t(il, j)*(rti-rr(il,j)) |
1523 |
|
|
denom = h(il, i) - hp(il, i) + (cpd-cpv)*(rr(il,i)-rti)*t(il, j) |
1524 |
|
|
dei = denom |
1525 |
|
|
IF (abs(dei)<0.01) dei = 0.01 |
1526 |
|
|
sij(il, i, j) = anum/dei |
1527 |
|
|
sij(il, i, i) = 1.0 |
1528 |
|
|
altem = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti - rs(il, j) |
1529 |
|
|
altem = altem/bf2 |
1530 |
|
|
cwat = clw(il, j)*(1.-ep(il,j)) |
1531 |
|
|
stemp = sij(il, i, j) |
1532 |
|
|
IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
1533 |
|
|
anum = anum - lv(il, j)*(rti-rs(il,j)-cwat*bf2) |
1534 |
|
|
denom = denom + lv(il, j)*(rr(il,i)-rti) |
1535 |
|
|
IF (abs(denom)<0.01) denom = 0.01 |
1536 |
|
|
sij(il, i, j) = anum/denom |
1537 |
|
|
altem = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti - & |
1538 |
|
|
rs(il, j) |
1539 |
|
|
altem = altem - (bf2-1.)*cwat |
1540 |
|
|
END IF |
1541 |
|
|
IF (sij(il,i,j)>0.0 .AND. sij(il,i,j)<0.95) THEN |
1542 |
|
|
qent(il, i, j) = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti |
1543 |
|
|
uent(il, i, j) = sij(il, i, j)*u(il, i) + & |
1544 |
|
|
(1.-sij(il,i,j))*u(il, nk(il)) |
1545 |
|
|
vent(il, i, j) = sij(il, i, j)*v(il, i) + & |
1546 |
|
|
(1.-sij(il,i,j))*v(il, nk(il)) |
1547 |
|
|
! !!! do k=1,ntra |
1548 |
|
|
! !!! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
1549 |
|
|
! !!! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
1550 |
|
|
! !!! end do |
1551 |
|
|
elij(il, i, j) = altem |
1552 |
|
|
elij(il, i, j) = amax1(0.0, elij(il,i,j)) |
1553 |
|
|
ment(il, i, j) = m(il, i)/(1.-sij(il,i,j)) |
1554 |
|
|
nent(il, i) = nent(il, i) + 1 |
1555 |
|
|
END IF |
1556 |
|
|
sij(il, i, j) = amax1(0.0, sij(il,i,j)) |
1557 |
|
|
sij(il, i, j) = amin1(1.0, sij(il,i,j)) |
1558 |
|
|
END IF ! new |
1559 |
|
|
END DO |
1560 |
|
|
END DO |
1561 |
|
|
|
1562 |
|
|
! do k=1,ntra |
1563 |
|
|
! do j=minorig,nl |
1564 |
|
|
! do il=1,ncum |
1565 |
|
|
! if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
1566 |
|
|
! : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
1567 |
|
|
! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
1568 |
|
|
! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
1569 |
|
|
! endif |
1570 |
|
|
! enddo |
1571 |
|
|
! enddo |
1572 |
|
|
! enddo |
1573 |
|
|
|
1574 |
|
|
|
1575 |
|
|
! *** if no air can entrain at level i assume that updraft detrains |
1576 |
|
|
! *** |
1577 |
|
|
! *** at that level and calculate detrained air flux and properties |
1578 |
|
|
! *** |
1579 |
|
|
|
1580 |
|
|
|
1581 |
|
|
! @ do 170 i=icb(il),inb(il) |
1582 |
|
|
|
1583 |
|
|
DO il = 1, ncum |
1584 |
|
|
IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (nent(il,i)==0)) THEN |
1585 |
|
|
! @ if(nent(il,i).eq.0)then |
1586 |
|
|
ment(il, i, i) = m(il, i) |
1587 |
|
|
qent(il, i, i) = rr(il, nk(il)) - ep(il, i)*clw(il, i) |
1588 |
|
|
uent(il, i, i) = u(il, nk(il)) |
1589 |
|
|
vent(il, i, i) = v(il, nk(il)) |
1590 |
|
|
elij(il, i, i) = clw(il, i) |
1591 |
|
|
! MAF sij(il,i,i)=1.0 |
1592 |
|
|
sij(il, i, i) = 0.0 |
1593 |
|
|
END IF |
1594 |
|
|
END DO |
1595 |
|
|
END DO |
1596 |
|
|
|
1597 |
|
|
! do j=1,ntra |
1598 |
|
|
! do i=minorig+1,nl |
1599 |
|
|
! do il=1,ncum |
1600 |
|
|
! if (i.ge.icb(il) .and. i.le.inb(il) .and. nent(il,i).eq.0) then |
1601 |
|
|
! traent(il,i,i,j)=tra(il,nk(il),j) |
1602 |
|
|
! endif |
1603 |
|
|
! enddo |
1604 |
|
|
! enddo |
1605 |
|
|
! enddo |
1606 |
|
|
|
1607 |
|
|
DO j = minorig, nl |
1608 |
|
|
DO i = minorig, nl |
1609 |
|
|
DO il = 1, ncum |
1610 |
|
|
IF ((j>=(icb(il)-1)) .AND. (j<=inb(il)) .AND. (i>=icb(il)) .AND. (i<= & |
1611 |
|
|
inb(il))) THEN |
1612 |
|
|
sigij(il, i, j) = sij(il, i, j) |
1613 |
|
|
END IF |
1614 |
|
|
END DO |
1615 |
|
|
END DO |
1616 |
|
|
END DO |
1617 |
|
|
! @ enddo |
1618 |
|
|
|
1619 |
|
|
! @170 continue |
1620 |
|
|
|
1621 |
|
|
! ===================================================================== |
1622 |
|
|
! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
1623 |
|
|
! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
1624 |
|
|
! ===================================================================== |
1625 |
|
|
|
1626 |
|
|
! ym call zilch(asum,ncum*nd) |
1627 |
|
|
! ym call zilch(bsum,ncum*nd) |
1628 |
|
|
! ym call zilch(csum,ncum*nd) |
1629 |
|
|
CALL zilch(asum, nloc*nd) |
1630 |
|
|
CALL zilch(csum, nloc*nd) |
1631 |
|
|
CALL zilch(csum, nloc*nd) |
1632 |
|
|
|
1633 |
|
|
DO il = 1, ncum |
1634 |
|
|
lwork(il) = .FALSE. |
1635 |
|
|
END DO |
1636 |
|
|
|
1637 |
|
|
DO i = minorig + 1, nl |
1638 |
|
|
|
1639 |
|
|
num1 = 0 |
1640 |
|
|
DO il = 1, ncum |
1641 |
|
|
IF (i>=icb(il) .AND. i<=inb(il)) num1 = num1 + 1 |
1642 |
|
|
END DO |
1643 |
|
|
IF (num1<=0) GO TO 789 |
1644 |
|
|
|
1645 |
|
|
|
1646 |
|
|
DO il = 1, ncum |
1647 |
|
|
IF (i>=icb(il) .AND. i<=inb(il)) THEN |
1648 |
|
|
lwork(il) = (nent(il,i)/=0) |
1649 |
|
|
qp = rr(il, 1) - ep(il, i)*clw(il, i) |
1650 |
|
|
anum = h(il, i) - hp(il, i) - lv(il, i)*(qp-rs(il,i)) + & |
1651 |
|
|
(cpv-cpd)*t(il, i)*(qp-rr(il,i)) |
1652 |
|
|
denom = h(il, i) - hp(il, i) + lv(il, i)*(rr(il,i)-qp) + & |
1653 |
|
|
(cpd-cpv)*t(il, i)*(rr(il,i)-qp) |
1654 |
|
|
IF (abs(denom)<0.01) denom = 0.01 |
1655 |
|
|
scrit(il) = anum/denom |
1656 |
|
|
alt = qp - rs(il, i) + scrit(il)*(rr(il,i)-qp) |
1657 |
|
|
IF (scrit(il)<=0.0 .OR. alt<=0.0) scrit(il) = 1.0 |
1658 |
|
|
smax(il) = 0.0 |
1659 |
|
|
asij(il) = 0.0 |
1660 |
|
|
END IF |
1661 |
|
|
END DO |
1662 |
|
|
|
1663 |
|
|
DO j = nl, minorig, -1 |
1664 |
|
|
|
1665 |
|
|
num2 = 0 |
1666 |
|
|
DO il = 1, ncum |
1667 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. j>=(icb( & |
1668 |
|
|
il)-1) .AND. j<=inb(il) .AND. lwork(il)) num2 = num2 + 1 |
1669 |
|
|
END DO |
1670 |
|
|
IF (num2<=0) GO TO 175 |
1671 |
|
|
|
1672 |
|
|
DO il = 1, ncum |
1673 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. j>=(icb( & |
1674 |
|
|
il)-1) .AND. j<=inb(il) .AND. lwork(il)) THEN |
1675 |
|
|
|
1676 |
|
|
IF (sij(il,i,j)>1.0E-16 .AND. sij(il,i,j)<0.95) THEN |
1677 |
|
|
wgh = 1.0 |
1678 |
|
|
IF (j>i) THEN |
1679 |
|
|
sjmax = amax1(sij(il,i,j+1), smax(il)) |
1680 |
|
|
sjmax = amin1(sjmax, scrit(il)) |
1681 |
|
|
smax(il) = amax1(sij(il,i,j), smax(il)) |
1682 |
|
|
sjmin = amax1(sij(il,i,j-1), smax(il)) |
1683 |
|
|
sjmin = amin1(sjmin, scrit(il)) |
1684 |
|
|
IF (sij(il,i,j)<(smax(il)-1.0E-16)) wgh = 0.0 |
1685 |
|
|
smid = amin1(sij(il,i,j), scrit(il)) |
1686 |
|
|
ELSE |
1687 |
|
|
sjmax = amax1(sij(il,i,j+1), scrit(il)) |
1688 |
|
|
smid = amax1(sij(il,i,j), scrit(il)) |
1689 |
|
|
sjmin = 0.0 |
1690 |
|
|
IF (j>1) sjmin = sij(il, i, j-1) |
1691 |
|
|
sjmin = amax1(sjmin, scrit(il)) |
1692 |
|
|
END IF |
1693 |
|
|
delp = abs(sjmax-smid) |
1694 |
|
|
delm = abs(sjmin-smid) |
1695 |
|
|
asij(il) = asij(il) + wgh*(delp+delm) |
1696 |
|
|
ment(il, i, j) = ment(il, i, j)*(delp+delm)*wgh |
1697 |
|
|
END IF |
1698 |
|
|
END IF |
1699 |
|
|
END DO |
1700 |
|
|
|
1701 |
|
|
175 END DO |
1702 |
|
|
|
1703 |
|
|
DO il = 1, ncum |
1704 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
1705 |
|
|
asij(il) = amax1(1.0E-16, asij(il)) |
1706 |
|
|
asij(il) = 1.0/asij(il) |
1707 |
|
|
asum(il, i) = 0.0 |
1708 |
|
|
bsum(il, i) = 0.0 |
1709 |
|
|
csum(il, i) = 0.0 |
1710 |
|
|
END IF |
1711 |
|
|
END DO |
1712 |
|
|
|
1713 |
|
|
DO j = minorig, nl |
1714 |
|
|
DO il = 1, ncum |
1715 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
1716 |
|
|
il)-1) .AND. j<=inb(il)) THEN |
1717 |
|
|
ment(il, i, j) = ment(il, i, j)*asij(il) |
1718 |
|
|
END IF |
1719 |
|
|
END DO |
1720 |
|
|
END DO |
1721 |
|
|
|
1722 |
|
|
DO j = minorig, nl |
1723 |
|
|
DO il = 1, ncum |
1724 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
1725 |
|
|
il)-1) .AND. j<=inb(il)) THEN |
1726 |
|
|
asum(il, i) = asum(il, i) + ment(il, i, j) |
1727 |
|
|
ment(il, i, j) = ment(il, i, j)*sig(il, j) |
1728 |
|
|
bsum(il, i) = bsum(il, i) + ment(il, i, j) |
1729 |
|
|
END IF |
1730 |
|
|
END DO |
1731 |
|
|
END DO |
1732 |
|
|
|
1733 |
|
|
DO il = 1, ncum |
1734 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
1735 |
|
|
bsum(il, i) = amax1(bsum(il,i), 1.0E-16) |
1736 |
|
|
bsum(il, i) = 1.0/bsum(il, i) |
1737 |
|
|
END IF |
1738 |
|
|
END DO |
1739 |
|
|
|
1740 |
|
|
DO j = minorig, nl |
1741 |
|
|
DO il = 1, ncum |
1742 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
1743 |
|
|
il)-1) .AND. j<=inb(il)) THEN |
1744 |
|
|
ment(il, i, j) = ment(il, i, j)*asum(il, i)*bsum(il, i) |
1745 |
|
|
END IF |
1746 |
|
|
END DO |
1747 |
|
|
END DO |
1748 |
|
|
|
1749 |
|
|
DO j = minorig, nl |
1750 |
|
|
DO il = 1, ncum |
1751 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
1752 |
|
|
il)-1) .AND. j<=inb(il)) THEN |
1753 |
|
|
csum(il, i) = csum(il, i) + ment(il, i, j) |
1754 |
|
|
END IF |
1755 |
|
|
END DO |
1756 |
|
|
END DO |
1757 |
|
|
|
1758 |
|
|
DO il = 1, ncum |
1759 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
1760 |
|
|
csum(il,i)<m(il,i)) THEN |
1761 |
|
|
nent(il, i) = 0 |
1762 |
|
|
ment(il, i, i) = m(il, i) |
1763 |
|
|
qent(il, i, i) = rr(il, 1) - ep(il, i)*clw(il, i) |
1764 |
|
|
uent(il, i, i) = u(il, nk(il)) |
1765 |
|
|
vent(il, i, i) = v(il, nk(il)) |
1766 |
|
|
elij(il, i, i) = clw(il, i) |
1767 |
|
|
! MAF sij(il,i,i)=1.0 |
1768 |
|
|
sij(il, i, i) = 0.0 |
1769 |
|
|
END IF |
1770 |
|
|
END DO ! il |
1771 |
|
|
|
1772 |
|
|
! do j=1,ntra |
1773 |
|
|
! do il=1,ncum |
1774 |
|
|
! if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
1775 |
|
|
! : .and. csum(il,i).lt.m(il,i) ) then |
1776 |
|
|
! traent(il,i,i,j)=tra(il,nk(il),j) |
1777 |
|
|
! endif |
1778 |
|
|
! enddo |
1779 |
|
|
! enddo |
1780 |
|
|
789 END DO |
1781 |
|
|
|
1782 |
|
|
! MAF: renormalisation de MENT |
1783 |
|
|
DO jm = 1, nd |
1784 |
|
|
DO im = 1, nd |
1785 |
|
|
DO il = 1, ncum |
1786 |
|
|
zm(il, im) = zm(il, im) + (1.-sij(il,im,jm))*ment(il, im, jm) |
1787 |
|
|
END DO |
1788 |
|
|
END DO |
1789 |
|
|
END DO |
1790 |
|
|
|
1791 |
|
|
DO jm = 1, nd |
1792 |
|
|
DO im = 1, nd |
1793 |
|
|
DO il = 1, ncum |
1794 |
|
|
IF (zm(il,im)/=0.) THEN |
1795 |
|
|
ment(il, im, jm) = ment(il, im, jm)*m(il, im)/zm(il, im) |
1796 |
|
|
END IF |
1797 |
|
|
END DO |
1798 |
|
|
END DO |
1799 |
|
|
END DO |
1800 |
|
|
|
1801 |
|
|
DO jm = 1, nd |
1802 |
|
|
DO im = 1, nd |
1803 |
|
|
DO il = 1, ncum |
1804 |
|
|
qents(il, im, jm) = qent(il, im, jm) |
1805 |
|
|
ments(il, im, jm) = ment(il, im, jm) |
1806 |
|
|
END DO |
1807 |
|
|
END DO |
1808 |
|
|
END DO |
1809 |
|
|
|
1810 |
|
|
RETURN |
1811 |
|
|
END SUBROUTINE cv30_mixing |
1812 |
|
|
|
1813 |
|
|
|
1814 |
|
|
SUBROUTINE cv30_unsat(nloc, ncum, nd, na, ntra, icb, inb, t, rr, rs, gz, u, & |
1815 |
|
|
v, tra, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, & |
1816 |
|
|
mp, rp, up, vp, trap, wt, water, evap, b & ! RomP-jyg |
1817 |
|
|
, wdtraina, wdtrainm) ! 26/08/10 RomP-jyg |
1818 |
|
|
IMPLICIT NONE |
1819 |
|
|
|
1820 |
|
|
|
1821 |
|
|
include "cvthermo.h" |
1822 |
|
|
include "cv30param.h" |
1823 |
|
|
include "cvflag.h" |
1824 |
|
|
|
1825 |
|
|
! inputs: |
1826 |
|
|
INTEGER ncum, nd, na, ntra, nloc |
1827 |
|
|
INTEGER icb(nloc), inb(nloc) |
1828 |
|
|
REAL delt, plcl(nloc) |
1829 |
|
|
REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
1830 |
|
|
REAL u(nloc, nd), v(nloc, nd) |
1831 |
|
|
REAL tra(nloc, nd, ntra) |
1832 |
|
|
REAL p(nloc, nd), ph(nloc, nd+1) |
1833 |
|
|
REAL th(nloc, na), gz(nloc, na) |
1834 |
|
|
REAL lv(nloc, na), ep(nloc, na), sigp(nloc, na), clw(nloc, na) |
1835 |
|
|
REAL cpn(nloc, na), tv(nloc, na) |
1836 |
|
|
REAL m(nloc, na), ment(nloc, na, na), elij(nloc, na, na) |
1837 |
|
|
|
1838 |
|
|
! outputs: |
1839 |
|
|
REAL mp(nloc, na), rp(nloc, na), up(nloc, na), vp(nloc, na) |
1840 |
|
|
REAL water(nloc, na), evap(nloc, na), wt(nloc, na) |
1841 |
|
|
REAL trap(nloc, na, ntra) |
1842 |
|
|
REAL b(nloc, na) |
1843 |
|
|
! 25/08/10 - RomP---- ajout des masses precipitantes ejectees |
1844 |
|
|
! lascendance adiabatique et des flux melanges Pa et Pm. |
1845 |
|
|
! Distinction des wdtrain |
1846 |
|
|
! Pa = wdtrainA Pm = wdtrainM |
1847 |
|
|
REAL wdtraina(nloc, na), wdtrainm(nloc, na) |
1848 |
|
|
|
1849 |
|
|
! local variables |
1850 |
|
|
INTEGER i, j, k, il, num1 |
1851 |
|
|
REAL tinv, delti |
1852 |
|
|
REAL awat, afac, afac1, afac2, bfac |
1853 |
|
|
REAL pr1, pr2, sigt, b6, c6, revap, tevap, delth |
1854 |
|
|
REAL amfac, amp2, xf, tf, fac2, ur, sru, fac, d, af, bf |
1855 |
|
|
REAL ampmax |
1856 |
|
|
REAL lvcp(nloc, na) |
1857 |
|
|
REAL wdtrain(nloc) |
1858 |
|
|
LOGICAL lwork(nloc) |
1859 |
|
|
|
1860 |
|
|
|
1861 |
|
|
! ------------------------------------------------------ |
1862 |
|
|
|
1863 |
|
|
delti = 1./delt |
1864 |
|
|
tinv = 1./3. |
1865 |
|
|
|
1866 |
|
|
mp(:, :) = 0. |
1867 |
|
|
|
1868 |
|
|
DO i = 1, nl |
1869 |
|
|
DO il = 1, ncum |
1870 |
|
|
mp(il, i) = 0.0 |
1871 |
|
|
rp(il, i) = rr(il, i) |
1872 |
|
|
up(il, i) = u(il, i) |
1873 |
|
|
vp(il, i) = v(il, i) |
1874 |
|
|
wt(il, i) = 0.001 |
1875 |
|
|
water(il, i) = 0.0 |
1876 |
|
|
evap(il, i) = 0.0 |
1877 |
|
|
b(il, i) = 0.0 |
1878 |
|
|
lvcp(il, i) = lv(il, i)/cpn(il, i) |
1879 |
|
|
END DO |
1880 |
|
|
END DO |
1881 |
|
|
|
1882 |
|
|
! do k=1,ntra |
1883 |
|
|
! do i=1,nd |
1884 |
|
|
! do il=1,ncum |
1885 |
|
|
! trap(il,i,k)=tra(il,i,k) |
1886 |
|
|
! enddo |
1887 |
|
|
! enddo |
1888 |
|
|
! enddo |
1889 |
|
|
! ! RomP >>> |
1890 |
|
|
DO i = 1, nd |
1891 |
|
|
DO il = 1, ncum |
1892 |
|
|
wdtraina(il, i) = 0.0 |
1893 |
|
|
wdtrainm(il, i) = 0.0 |
1894 |
|
|
END DO |
1895 |
|
|
END DO |
1896 |
|
|
! ! RomP <<< |
1897 |
|
|
|
1898 |
|
|
! *** check whether ep(inb)=0, if so, skip precipitating *** |
1899 |
|
|
! *** downdraft calculation *** |
1900 |
|
|
|
1901 |
|
|
|
1902 |
|
|
DO il = 1, ncum |
1903 |
|
|
lwork(il) = .TRUE. |
1904 |
|
|
IF (ep(il,inb(il))<0.0001) lwork(il) = .FALSE. |
1905 |
|
|
END DO |
1906 |
|
|
|
1907 |
|
|
CALL zilch(wdtrain, ncum) |
1908 |
|
|
|
1909 |
|
|
DO i = nl + 1, 1, -1 |
1910 |
|
|
|
1911 |
|
|
num1 = 0 |
1912 |
|
|
DO il = 1, ncum |
1913 |
|
|
IF (i<=inb(il) .AND. lwork(il)) num1 = num1 + 1 |
1914 |
|
|
END DO |
1915 |
|
|
IF (num1<=0) GO TO 400 |
1916 |
|
|
|
1917 |
|
|
|
1918 |
|
|
! *** integrate liquid water equation to find condensed water *** |
1919 |
|
|
! *** and condensed water flux *** |
1920 |
|
|
|
1921 |
|
|
|
1922 |
|
|
|
1923 |
|
|
! *** begin downdraft loop *** |
1924 |
|
|
|
1925 |
|
|
|
1926 |
|
|
|
1927 |
|
|
! *** calculate detrained precipitation *** |
1928 |
|
|
|
1929 |
|
|
DO il = 1, ncum |
1930 |
|
|
IF (i<=inb(il) .AND. lwork(il)) THEN |
1931 |
|
|
IF (cvflag_grav) THEN |
1932 |
|
|
wdtrain(il) = grav*ep(il, i)*m(il, i)*clw(il, i) |
1933 |
|
|
wdtraina(il, i) = wdtrain(il)/grav ! Pa 26/08/10 RomP |
1934 |
|
|
ELSE |
1935 |
|
|
wdtrain(il) = 10.0*ep(il, i)*m(il, i)*clw(il, i) |
1936 |
|
|
wdtraina(il, i) = wdtrain(il)/10. ! Pa 26/08/10 RomP |
1937 |
|
|
END IF |
1938 |
|
|
END IF |
1939 |
|
|
END DO |
1940 |
|
|
|
1941 |
|
|
IF (i>1) THEN |
1942 |
|
|
|
1943 |
|
|
DO j = 1, i - 1 |
1944 |
|
|
DO il = 1, ncum |
1945 |
|
|
IF (i<=inb(il) .AND. lwork(il)) THEN |
1946 |
|
|
awat = elij(il, j, i) - (1.-ep(il,i))*clw(il, i) |
1947 |
|
|
awat = amax1(awat, 0.0) |
1948 |
|
|
IF (cvflag_grav) THEN |
1949 |
|
|
wdtrain(il) = wdtrain(il) + grav*awat*ment(il, j, i) |
1950 |
|
|
ELSE |
1951 |
|
|
wdtrain(il) = wdtrain(il) + 10.0*awat*ment(il, j, i) |
1952 |
|
|
END IF |
1953 |
|
|
END IF |
1954 |
|
|
END DO |
1955 |
|
|
END DO |
1956 |
|
|
DO il = 1, ncum |
1957 |
|
|
IF (cvflag_grav) THEN |
1958 |
|
|
wdtrainm(il, i) = wdtrain(il)/grav - wdtraina(il, i) ! Pm 26/08/10 RomP |
1959 |
|
|
ELSE |
1960 |
|
|
wdtrainm(il, i) = wdtrain(il)/10. - wdtraina(il, i) ! Pm 26/08/10 RomP |
1961 |
|
|
END IF |
1962 |
|
|
END DO |
1963 |
|
|
|
1964 |
|
|
END IF |
1965 |
|
|
|
1966 |
|
|
|
1967 |
|
|
! *** find rain water and evaporation using provisional *** |
1968 |
|
|
! *** estimates of rp(i)and rp(i-1) *** |
1969 |
|
|
|
1970 |
|
|
|
1971 |
|
|
DO il = 1, ncum |
1972 |
|
|
|
1973 |
|
|
IF (i<=inb(il) .AND. lwork(il)) THEN |
1974 |
|
|
|
1975 |
|
|
wt(il, i) = 45.0 |
1976 |
|
|
|
1977 |
|
|
IF (i<inb(il)) THEN |
1978 |
|
|
rp(il, i) = rp(il, i+1) + (cpd*(t(il,i+1)-t(il, & |
1979 |
|
|
i))+gz(il,i+1)-gz(il,i))/lv(il, i) |
1980 |
|
|
rp(il, i) = 0.5*(rp(il,i)+rr(il,i)) |
1981 |
|
|
END IF |
1982 |
|
|
rp(il, i) = amax1(rp(il,i), 0.0) |
1983 |
|
|
rp(il, i) = amin1(rp(il,i), rs(il,i)) |
1984 |
|
|
rp(il, inb(il)) = rr(il, inb(il)) |
1985 |
|
|
|
1986 |
|
|
IF (i==1) THEN |
1987 |
|
|
afac = p(il, 1)*(rs(il,1)-rp(il,1))/(1.0E4+2000.0*p(il,1)*rs(il,1)) |
1988 |
|
|
ELSE |
1989 |
|
|
rp(il, i-1) = rp(il, i) + (cpd*(t(il,i)-t(il, & |
1990 |
|
|
i-1))+gz(il,i)-gz(il,i-1))/lv(il, i) |
1991 |
|
|
rp(il, i-1) = 0.5*(rp(il,i-1)+rr(il,i-1)) |
1992 |
|
|
rp(il, i-1) = amin1(rp(il,i-1), rs(il,i-1)) |
1993 |
|
|
rp(il, i-1) = amax1(rp(il,i-1), 0.0) |
1994 |
|
|
afac1 = p(il, i)*(rs(il,i)-rp(il,i))/(1.0E4+2000.0*p(il,i)*rs(il,i) & |
1995 |
|
|
) |
1996 |
|
|
afac2 = p(il, i-1)*(rs(il,i-1)-rp(il,i-1))/ & |
1997 |
|
|
(1.0E4+2000.0*p(il,i-1)*rs(il,i-1)) |
1998 |
|
|
afac = 0.5*(afac1+afac2) |
1999 |
|
|
END IF |
2000 |
|
|
IF (i==inb(il)) afac = 0.0 |
2001 |
|
|
afac = amax1(afac, 0.0) |
2002 |
|
|
bfac = 1./(sigd*wt(il,i)) |
2003 |
|
|
|
2004 |
|
|
! jyg1 |
2005 |
|
|
! cc sigt=1.0 |
2006 |
|
|
! cc if(i.ge.icb)sigt=sigp(i) |
2007 |
|
|
! prise en compte de la variation progressive de sigt dans |
2008 |
|
|
! les couches icb et icb-1: |
2009 |
|
|
! pour plcl<ph(i+1), pr1=0 & pr2=1 |
2010 |
|
|
! pour plcl>ph(i), pr1=1 & pr2=0 |
2011 |
|
|
! pour ph(i+1)<plcl<ph(i), pr1 est la proportion a cheval |
2012 |
|
|
! sur le nuage, et pr2 est la proportion sous la base du |
2013 |
|
|
! nuage. |
2014 |
|
|
pr1 = (plcl(il)-ph(il,i+1))/(ph(il,i)-ph(il,i+1)) |
2015 |
|
|
pr1 = max(0., min(1.,pr1)) |
2016 |
|
|
pr2 = (ph(il,i)-plcl(il))/(ph(il,i)-ph(il,i+1)) |
2017 |
|
|
pr2 = max(0., min(1.,pr2)) |
2018 |
|
|
sigt = sigp(il, i)*pr1 + pr2 |
2019 |
|
|
! jyg2 |
2020 |
|
|
|
2021 |
|
|
b6 = bfac*50.*sigd*(ph(il,i)-ph(il,i+1))*sigt*afac |
2022 |
|
|
c6 = water(il, i+1) + bfac*wdtrain(il) - 50.*sigd*bfac*(ph(il,i)-ph( & |
2023 |
|
|
il,i+1))*evap(il, i+1) |
2024 |
|
|
IF (c6>0.0) THEN |
2025 |
|
|
revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) |
2026 |
|
|
evap(il, i) = sigt*afac*revap |
2027 |
|
|
water(il, i) = revap*revap |
2028 |
|
|
ELSE |
2029 |
|
|
evap(il, i) = -evap(il, i+1) + 0.02*(wdtrain(il)+sigd*wt(il,i)* & |
2030 |
|
|
water(il,i+1))/(sigd*(ph(il,i)-ph(il,i+1))) |
2031 |
|
|
END IF |
2032 |
|
|
|
2033 |
|
|
! *** calculate precipitating downdraft mass flux under *** |
2034 |
|
|
! *** hydrostatic approximation *** |
2035 |
|
|
|
2036 |
|
|
IF (i/=1) THEN |
2037 |
|
|
|
2038 |
|
|
tevap = amax1(0.0, evap(il,i)) |
2039 |
|
|
delth = amax1(0.001, (th(il,i)-th(il,i-1))) |
2040 |
|
|
IF (cvflag_grav) THEN |
2041 |
|
|
mp(il, i) = 100.*ginv*lvcp(il, i)*sigd*tevap*(p(il,i-1)-p(il,i))/ & |
2042 |
|
|
delth |
2043 |
|
|
ELSE |
2044 |
|
|
mp(il, i) = 10.*lvcp(il, i)*sigd*tevap*(p(il,i-1)-p(il,i))/delth |
2045 |
|
|
END IF |
2046 |
|
|
|
2047 |
|
|
! *** if hydrostatic assumption fails, *** |
2048 |
|
|
! *** solve cubic difference equation for downdraft theta *** |
2049 |
|
|
! *** and mass flux from two simultaneous differential eqns *** |
2050 |
|
|
|
2051 |
|
|
amfac = sigd*sigd*70.0*ph(il, i)*(p(il,i-1)-p(il,i))* & |
2052 |
|
|
(th(il,i)-th(il,i-1))/(tv(il,i)*th(il,i)) |
2053 |
|
|
amp2 = abs(mp(il,i+1)*mp(il,i+1)-mp(il,i)*mp(il,i)) |
2054 |
|
|
IF (amp2>(0.1*amfac)) THEN |
2055 |
|
|
xf = 100.0*sigd*sigd*sigd*(ph(il,i)-ph(il,i+1)) |
2056 |
|
|
tf = b(il, i) - 5.0*(th(il,i)-th(il,i-1))*t(il, i)/(lvcp(il,i)* & |
2057 |
|
|
sigd*th(il,i)) |
2058 |
|
|
af = xf*tf + mp(il, i+1)*mp(il, i+1)*tinv |
2059 |
|
|
bf = 2.*(tinv*mp(il,i+1))**3 + tinv*mp(il, i+1)*xf*tf + & |
2060 |
|
|
50.*(p(il,i-1)-p(il,i))*xf*tevap |
2061 |
|
|
fac2 = 1.0 |
2062 |
|
|
IF (bf<0.0) fac2 = -1.0 |
2063 |
|
|
bf = abs(bf) |
2064 |
|
|
ur = 0.25*bf*bf - af*af*af*tinv*tinv*tinv |
2065 |
|
|
IF (ur>=0.0) THEN |
2066 |
|
|
sru = sqrt(ur) |
2067 |
|
|
fac = 1.0 |
2068 |
|
|
IF ((0.5*bf-sru)<0.0) fac = -1.0 |
2069 |
|
|
mp(il, i) = mp(il, i+1)*tinv + (0.5*bf+sru)**tinv + & |
2070 |
|
|
fac*(abs(0.5*bf-sru))**tinv |
2071 |
|
|
ELSE |
2072 |
|
|
d = atan(2.*sqrt(-ur)/(bf+1.0E-28)) |
2073 |
|
|
IF (fac2<0.0) d = 3.14159 - d |
2074 |
|
|
mp(il, i) = mp(il, i+1)*tinv + 2.*sqrt(af*tinv)*cos(d*tinv) |
2075 |
|
|
END IF |
2076 |
|
|
mp(il, i) = amax1(0.0, mp(il,i)) |
2077 |
|
|
|
2078 |
|
|
IF (cvflag_grav) THEN |
2079 |
|
|
! jyg : il y a vraisemblablement une erreur dans la ligne 2 |
2080 |
|
|
! suivante: |
2081 |
|
|
! il faut diviser par (mp(il,i)*sigd*grav) et non par |
2082 |
|
|
! (mp(il,i)+sigd*0.1). |
2083 |
|
|
! Et il faut bien revoir les facteurs 100. |
2084 |
|
|
b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*tevap/(mp(il, & |
2085 |
|
|
i)+sigd*0.1) - 10.0*(th(il,i)-th(il,i-1))*t(il, i)/(lvcp(il,i & |
2086 |
|
|
)*sigd*th(il,i)) |
2087 |
|
|
ELSE |
2088 |
|
|
b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*tevap/(mp(il, & |
2089 |
|
|
i)+sigd*0.1) - 10.0*(th(il,i)-th(il,i-1))*t(il, i)/(lvcp(il,i & |
2090 |
|
|
)*sigd*th(il,i)) |
2091 |
|
|
END IF |
2092 |
|
|
b(il, i-1) = amax1(b(il,i-1), 0.0) |
2093 |
|
|
END IF |
2094 |
|
|
|
2095 |
|
|
! *** limit magnitude of mp(i) to meet cfl condition |
2096 |
|
|
! *** |
2097 |
|
|
|
2098 |
|
|
ampmax = 2.0*(ph(il,i)-ph(il,i+1))*delti |
2099 |
|
|
amp2 = 2.0*(ph(il,i-1)-ph(il,i))*delti |
2100 |
|
|
ampmax = amin1(ampmax, amp2) |
2101 |
|
|
mp(il, i) = amin1(mp(il,i), ampmax) |
2102 |
|
|
|
2103 |
|
|
! *** force mp to decrease linearly to zero |
2104 |
|
|
! *** |
2105 |
|
|
! *** between cloud base and the surface |
2106 |
|
|
! *** |
2107 |
|
|
|
2108 |
|
|
IF (p(il,i)>p(il,icb(il))) THEN |
2109 |
|
|
mp(il, i) = mp(il, icb(il))*(p(il,1)-p(il,i))/ & |
2110 |
|
|
(p(il,1)-p(il,icb(il))) |
2111 |
|
|
END IF |
2112 |
|
|
|
2113 |
|
|
END IF ! i.eq.1 |
2114 |
|
|
|
2115 |
|
|
! *** find mixing ratio of precipitating downdraft *** |
2116 |
|
|
|
2117 |
|
|
|
2118 |
|
|
IF (i/=inb(il)) THEN |
2119 |
|
|
|
2120 |
|
|
rp(il, i) = rr(il, i) |
2121 |
|
|
|
2122 |
|
|
IF (mp(il,i)>mp(il,i+1)) THEN |
2123 |
|
|
|
2124 |
|
|
IF (cvflag_grav) THEN |
2125 |
|
|
rp(il, i) = rp(il, i+1)*mp(il, i+1) + & |
2126 |
|
|
rr(il, i)*(mp(il,i)-mp(il,i+1)) + 100.*ginv*0.5*sigd*(ph(il,i & |
2127 |
|
|
)-ph(il,i+1))*(evap(il,i+1)+evap(il,i)) |
2128 |
|
|
ELSE |
2129 |
|
|
rp(il, i) = rp(il, i+1)*mp(il, i+1) + & |
2130 |
|
|
rr(il, i)*(mp(il,i)-mp(il,i+1)) + 5.*sigd*(ph(il,i)-ph(il,i+1 & |
2131 |
|
|
))*(evap(il,i+1)+evap(il,i)) |
2132 |
|
|
END IF |
2133 |
|
|
rp(il, i) = rp(il, i)/mp(il, i) |
2134 |
|
|
up(il, i) = up(il, i+1)*mp(il, i+1) + u(il, i)*(mp(il,i)-mp(il,i+ & |
2135 |
|
|
1)) |
2136 |
|
|
up(il, i) = up(il, i)/mp(il, i) |
2137 |
|
|
vp(il, i) = vp(il, i+1)*mp(il, i+1) + v(il, i)*(mp(il,i)-mp(il,i+ & |
2138 |
|
|
1)) |
2139 |
|
|
vp(il, i) = vp(il, i)/mp(il, i) |
2140 |
|
|
|
2141 |
|
|
! do j=1,ntra |
2142 |
|
|
! trap(il,i,j)=trap(il,i+1,j)*mp(il,i+1) |
2143 |
|
|
! testmaf : +trap(il,i,j)*(mp(il,i)-mp(il,i+1)) |
2144 |
|
|
! : +tra(il,i,j)*(mp(il,i)-mp(il,i+1)) |
2145 |
|
|
! trap(il,i,j)=trap(il,i,j)/mp(il,i) |
2146 |
|
|
! end do |
2147 |
|
|
|
2148 |
|
|
ELSE |
2149 |
|
|
|
2150 |
|
|
IF (mp(il,i+1)>1.0E-16) THEN |
2151 |
|
|
IF (cvflag_grav) THEN |
2152 |
|
|
rp(il, i) = rp(il, i+1) + 100.*ginv*0.5*sigd*(ph(il,i)-ph(il, & |
2153 |
|
|
i+1))*(evap(il,i+1)+evap(il,i))/mp(il, i+1) |
2154 |
|
|
ELSE |
2155 |
|
|
rp(il, i) = rp(il, i+1) + 5.*sigd*(ph(il,i)-ph(il,i+1))*(evap & |
2156 |
|
|
(il,i+1)+evap(il,i))/mp(il, i+1) |
2157 |
|
|
END IF |
2158 |
|
|
up(il, i) = up(il, i+1) |
2159 |
|
|
vp(il, i) = vp(il, i+1) |
2160 |
|
|
|
2161 |
|
|
! do j=1,ntra |
2162 |
|
|
! trap(il,i,j)=trap(il,i+1,j) |
2163 |
|
|
! end do |
2164 |
|
|
|
2165 |
|
|
END IF |
2166 |
|
|
END IF |
2167 |
|
|
rp(il, i) = amin1(rp(il,i), rs(il,i)) |
2168 |
|
|
rp(il, i) = amax1(rp(il,i), 0.0) |
2169 |
|
|
|
2170 |
|
|
END IF |
2171 |
|
|
END IF |
2172 |
|
|
END DO |
2173 |
|
|
|
2174 |
|
|
400 END DO |
2175 |
|
|
|
2176 |
|
|
RETURN |
2177 |
|
|
END SUBROUTINE cv30_unsat |
2178 |
|
|
|
2179 |
|
|
SUBROUTINE cv30_yield(nloc, ncum, nd, na, ntra, icb, inb, delt, t, rr, u, v, & |
2180 |
|
|
tra, gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, rp, up, vp, trap, & |
2181 |
|
|
wt, water, evap, b, ment, qent, uent, vent, nent, elij, traent, sig, tv, & |
2182 |
|
|
tvp, iflag, precip, vprecip, ft, fr, fu, fv, ftra, upwd, dnwd, dnwd0, ma, & |
2183 |
|
|
mike, tls, tps, qcondc, wd) |
2184 |
|
|
IMPLICIT NONE |
2185 |
|
|
|
2186 |
|
|
include "cvthermo.h" |
2187 |
|
|
include "cv30param.h" |
2188 |
|
|
include "cvflag.h" |
2189 |
|
|
include "conema3.h" |
2190 |
|
|
|
2191 |
|
|
! inputs: |
2192 |
|
|
INTEGER ncum, nd, na, ntra, nloc |
2193 |
|
|
INTEGER icb(nloc), inb(nloc) |
2194 |
|
|
REAL delt |
2195 |
|
|
REAL t(nloc, nd), rr(nloc, nd), u(nloc, nd), v(nloc, nd) |
2196 |
|
|
REAL tra(nloc, nd, ntra), sig(nloc, nd) |
2197 |
|
|
REAL gz(nloc, na), ph(nloc, nd+1), h(nloc, na), hp(nloc, na) |
2198 |
|
|
REAL th(nloc, na), p(nloc, nd), tp(nloc, na) |
2199 |
|
|
REAL lv(nloc, na), cpn(nloc, na), ep(nloc, na), clw(nloc, na) |
2200 |
|
|
REAL m(nloc, na), mp(nloc, na), rp(nloc, na), up(nloc, na) |
2201 |
|
|
REAL vp(nloc, na), wt(nloc, nd), trap(nloc, nd, ntra) |
2202 |
|
|
REAL water(nloc, na), evap(nloc, na), b(nloc, na) |
2203 |
|
|
REAL ment(nloc, na, na), qent(nloc, na, na), uent(nloc, na, na) |
2204 |
|
|
! ym real vent(nloc,na,na), nent(nloc,na), elij(nloc,na,na) |
2205 |
|
|
REAL vent(nloc, na, na), elij(nloc, na, na) |
2206 |
|
|
INTEGER nent(nloc, na) |
2207 |
|
|
REAL traent(nloc, na, na, ntra) |
2208 |
|
|
REAL tv(nloc, nd), tvp(nloc, nd) |
2209 |
|
|
|
2210 |
|
|
! input/output: |
2211 |
|
|
INTEGER iflag(nloc) |
2212 |
|
|
|
2213 |
|
|
! outputs: |
2214 |
|
|
REAL precip(nloc) |
2215 |
|
|
REAL vprecip(nloc, nd+1) |
2216 |
|
|
REAL ft(nloc, nd), fr(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
2217 |
|
|
REAL ftra(nloc, nd, ntra) |
2218 |
|
|
REAL upwd(nloc, nd), dnwd(nloc, nd), ma(nloc, nd) |
2219 |
|
|
REAL dnwd0(nloc, nd), mike(nloc, nd) |
2220 |
|
|
REAL tls(nloc, nd), tps(nloc, nd) |
2221 |
|
|
REAL qcondc(nloc, nd) ! cld |
2222 |
|
|
REAL wd(nloc) ! gust |
2223 |
|
|
|
2224 |
|
|
! local variables: |
2225 |
|
|
INTEGER i, k, il, n, j, num1 |
2226 |
|
|
REAL rat, awat, delti |
2227 |
|
|
REAL ax, bx, cx, dx, ex |
2228 |
|
|
REAL cpinv, rdcp, dpinv |
2229 |
|
|
REAL lvcp(nloc, na), mke(nloc, na) |
2230 |
|
|
REAL am(nloc), work(nloc), ad(nloc), amp1(nloc) |
2231 |
|
|
! !! real up1(nloc), dn1(nloc) |
2232 |
|
|
REAL up1(nloc, nd, nd), dn1(nloc, nd, nd) |
2233 |
|
|
REAL asum(nloc), bsum(nloc), csum(nloc), dsum(nloc) |
2234 |
|
|
REAL qcond(nloc, nd), nqcond(nloc, nd), wa(nloc, nd) ! cld |
2235 |
|
|
REAL siga(nloc, nd), sax(nloc, nd), mac(nloc, nd) ! cld |
2236 |
|
|
|
2237 |
|
|
|
2238 |
|
|
! ------------------------------------------------------------- |
2239 |
|
|
|
2240 |
|
|
! initialization: |
2241 |
|
|
|
2242 |
|
|
delti = 1.0/delt |
2243 |
|
|
|
2244 |
|
|
DO il = 1, ncum |
2245 |
|
|
precip(il) = 0.0 |
2246 |
|
|
wd(il) = 0.0 ! gust |
2247 |
|
|
vprecip(il, nd+1) = 0. |
2248 |
|
|
END DO |
2249 |
|
|
|
2250 |
|
|
DO i = 1, nd |
2251 |
|
|
DO il = 1, ncum |
2252 |
|
|
vprecip(il, i) = 0.0 |
2253 |
|
|
ft(il, i) = 0.0 |
2254 |
|
|
fr(il, i) = 0.0 |
2255 |
|
|
fu(il, i) = 0.0 |
2256 |
|
|
fv(il, i) = 0.0 |
2257 |
|
|
qcondc(il, i) = 0.0 ! cld |
2258 |
|
|
qcond(il, i) = 0.0 ! cld |
2259 |
|
|
nqcond(il, i) = 0.0 ! cld |
2260 |
|
|
END DO |
2261 |
|
|
END DO |
2262 |
|
|
|
2263 |
|
|
! do j=1,ntra |
2264 |
|
|
! do i=1,nd |
2265 |
|
|
! do il=1,ncum |
2266 |
|
|
! ftra(il,i,j)=0.0 |
2267 |
|
|
! enddo |
2268 |
|
|
! enddo |
2269 |
|
|
! enddo |
2270 |
|
|
|
2271 |
|
|
DO i = 1, nl |
2272 |
|
|
DO il = 1, ncum |
2273 |
|
|
lvcp(il, i) = lv(il, i)/cpn(il, i) |
2274 |
|
|
END DO |
2275 |
|
|
END DO |
2276 |
|
|
|
2277 |
|
|
|
2278 |
|
|
|
2279 |
|
|
! *** calculate surface precipitation in mm/day *** |
2280 |
|
|
|
2281 |
|
|
DO il = 1, ncum |
2282 |
|
|
IF (ep(il,inb(il))>=0.0001) THEN |
2283 |
|
|
IF (cvflag_grav) THEN |
2284 |
|
|
precip(il) = wt(il, 1)*sigd*water(il, 1)*86400.*1000./(rowl*grav) |
2285 |
|
|
ELSE |
2286 |
|
|
precip(il) = wt(il, 1)*sigd*water(il, 1)*8640. |
2287 |
|
|
END IF |
2288 |
|
|
END IF |
2289 |
|
|
END DO |
2290 |
|
|
|
2291 |
|
|
! *** CALCULATE VERTICAL PROFILE OF PRECIPITATIONs IN kg/m2/s === |
2292 |
|
|
|
2293 |
|
|
! MAF rajout pour lessivage |
2294 |
|
|
DO k = 1, nl |
2295 |
|
|
DO il = 1, ncum |
2296 |
|
|
IF (k<=inb(il)) THEN |
2297 |
|
|
IF (cvflag_grav) THEN |
2298 |
|
|
vprecip(il, k) = wt(il, k)*sigd*water(il, k)/grav |
2299 |
|
|
ELSE |
2300 |
|
|
vprecip(il, k) = wt(il, k)*sigd*water(il, k)/10. |
2301 |
|
|
END IF |
2302 |
|
|
END IF |
2303 |
|
|
END DO |
2304 |
|
|
END DO |
2305 |
|
|
|
2306 |
|
|
|
2307 |
|
|
! *** Calculate downdraft velocity scale *** |
2308 |
|
|
! *** NE PAS UTILISER POUR L'INSTANT *** |
2309 |
|
|
|
2310 |
|
|
! ! do il=1,ncum |
2311 |
|
|
! ! wd(il)=betad*abs(mp(il,icb(il)))*0.01*rrd*t(il,icb(il)) |
2312 |
|
|
! ! : /(sigd*p(il,icb(il))) |
2313 |
|
|
! ! enddo |
2314 |
|
|
|
2315 |
|
|
|
2316 |
|
|
! *** calculate tendencies of lowest level potential temperature *** |
2317 |
|
|
! *** and mixing ratio *** |
2318 |
|
|
|
2319 |
|
|
DO il = 1, ncum |
2320 |
|
|
work(il) = 1.0/(ph(il,1)-ph(il,2)) |
2321 |
|
|
am(il) = 0.0 |
2322 |
|
|
END DO |
2323 |
|
|
|
2324 |
|
|
DO k = 2, nl |
2325 |
|
|
DO il = 1, ncum |
2326 |
|
|
IF (k<=inb(il)) THEN |
2327 |
|
|
am(il) = am(il) + m(il, k) |
2328 |
|
|
END IF |
2329 |
|
|
END DO |
2330 |
|
|
END DO |
2331 |
|
|
|
2332 |
|
|
DO il = 1, ncum |
2333 |
|
|
|
2334 |
|
|
! convect3 if((0.1*dpinv*am).ge.delti)iflag(il)=4 |
2335 |
|
|
IF (cvflag_grav) THEN |
2336 |
|
|
IF ((0.01*grav*work(il)*am(il))>=delti) iflag(il) = 1 !consist vect |
2337 |
|
|
ft(il, 1) = 0.01*grav*work(il)*am(il)*(t(il,2)-t(il,1)+(gz(il,2)-gz(il, & |
2338 |
|
|
1))/cpn(il,1)) |
2339 |
|
|
ELSE |
2340 |
|
|
IF ((0.1*work(il)*am(il))>=delti) iflag(il) = 1 !consistency vect |
2341 |
|
|
ft(il, 1) = 0.1*work(il)*am(il)*(t(il,2)-t(il,1)+(gz(il,2)-gz(il, & |
2342 |
|
|
1))/cpn(il,1)) |
2343 |
|
|
END IF |
2344 |
|
|
|
2345 |
|
|
ft(il, 1) = ft(il, 1) - 0.5*lvcp(il, 1)*sigd*(evap(il,1)+evap(il,2)) |
2346 |
|
|
|
2347 |
|
|
IF (cvflag_grav) THEN |
2348 |
|
|
ft(il, 1) = ft(il, 1) - 0.009*grav*sigd*mp(il, 2)*t(il, 1)*b(il, 1)* & |
2349 |
|
|
work(il) |
2350 |
|
|
ELSE |
2351 |
|
|
ft(il, 1) = ft(il, 1) - 0.09*sigd*mp(il, 2)*t(il, 1)*b(il, 1)*work(il) |
2352 |
|
|
END IF |
2353 |
|
|
|
2354 |
|
|
ft(il, 1) = ft(il, 1) + 0.01*sigd*wt(il, 1)*(cl-cpd)*water(il, 2)*(t(il,2 & |
2355 |
|
|
)-t(il,1))*work(il)/cpn(il, 1) |
2356 |
|
|
|
2357 |
|
|
IF (cvflag_grav) THEN |
2358 |
|
|
! jyg1 Correction pour mieux conserver l'eau (conformite avec |
2359 |
|
|
! CONVECT4.3) |
2360 |
|
|
! (sb: pour l'instant, on ne fait que le chgt concernant grav, pas |
2361 |
|
|
! evap) |
2362 |
|
|
fr(il, 1) = 0.01*grav*mp(il, 2)*(rp(il,2)-rr(il,1))*work(il) + & |
2363 |
|
|
sigd*0.5*(evap(il,1)+evap(il,2)) |
2364 |
|
|
! +tard : +sigd*evap(il,1) |
2365 |
|
|
|
2366 |
|
|
fr(il, 1) = fr(il, 1) + 0.01*grav*am(il)*(rr(il,2)-rr(il,1))*work(il) |
2367 |
|
|
|
2368 |
|
|
fu(il, 1) = fu(il, 1) + 0.01*grav*work(il)*(mp(il,2)*(up(il,2)-u(il, & |
2369 |
|
|
1))+am(il)*(u(il,2)-u(il,1))) |
2370 |
|
|
fv(il, 1) = fv(il, 1) + 0.01*grav*work(il)*(mp(il,2)*(vp(il,2)-v(il, & |
2371 |
|
|
1))+am(il)*(v(il,2)-v(il,1))) |
2372 |
|
|
ELSE ! cvflag_grav |
2373 |
|
|
fr(il, 1) = 0.1*mp(il, 2)*(rp(il,2)-rr(il,1))*work(il) + & |
2374 |
|
|
sigd*0.5*(evap(il,1)+evap(il,2)) |
2375 |
|
|
fr(il, 1) = fr(il, 1) + 0.1*am(il)*(rr(il,2)-rr(il,1))*work(il) |
2376 |
|
|
fu(il, 1) = fu(il, 1) + 0.1*work(il)*(mp(il,2)*(up(il,2)-u(il, & |
2377 |
|
|
1))+am(il)*(u(il,2)-u(il,1))) |
2378 |
|
|
fv(il, 1) = fv(il, 1) + 0.1*work(il)*(mp(il,2)*(vp(il,2)-v(il, & |
2379 |
|
|
1))+am(il)*(v(il,2)-v(il,1))) |
2380 |
|
|
END IF ! cvflag_grav |
2381 |
|
|
|
2382 |
|
|
END DO ! il |
2383 |
|
|
|
2384 |
|
|
! do j=1,ntra |
2385 |
|
|
! do il=1,ncum |
2386 |
|
|
! if (cvflag_grav) then |
2387 |
|
|
! ftra(il,1,j)=ftra(il,1,j)+0.01*grav*work(il) |
2388 |
|
|
! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
2389 |
|
|
! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
2390 |
|
|
! else |
2391 |
|
|
! ftra(il,1,j)=ftra(il,1,j)+0.1*work(il) |
2392 |
|
|
! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
2393 |
|
|
! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
2394 |
|
|
! endif |
2395 |
|
|
! enddo |
2396 |
|
|
! enddo |
2397 |
|
|
|
2398 |
|
|
DO j = 2, nl |
2399 |
|
|
DO il = 1, ncum |
2400 |
|
|
IF (j<=inb(il)) THEN |
2401 |
|
|
IF (cvflag_grav) THEN |
2402 |
|
|
fr(il, 1) = fr(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(qent(il, & |
2403 |
|
|
j,1)-rr(il,1)) |
2404 |
|
|
fu(il, 1) = fu(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(uent(il, & |
2405 |
|
|
j,1)-u(il,1)) |
2406 |
|
|
fv(il, 1) = fv(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(vent(il, & |
2407 |
|
|
j,1)-v(il,1)) |
2408 |
|
|
ELSE ! cvflag_grav |
2409 |
|
|
fr(il, 1) = fr(il, 1) + 0.1*work(il)*ment(il, j, 1)*(qent(il,j,1)- & |
2410 |
|
|
rr(il,1)) |
2411 |
|
|
fu(il, 1) = fu(il, 1) + 0.1*work(il)*ment(il, j, 1)*(uent(il,j,1)-u & |
2412 |
|
|
(il,1)) |
2413 |
|
|
fv(il, 1) = fv(il, 1) + 0.1*work(il)*ment(il, j, 1)*(vent(il,j,1)-v & |
2414 |
|
|
(il,1)) |
2415 |
|
|
END IF ! cvflag_grav |
2416 |
|
|
END IF ! j |
2417 |
|
|
END DO |
2418 |
|
|
END DO |
2419 |
|
|
|
2420 |
|
|
! do k=1,ntra |
2421 |
|
|
! do j=2,nl |
2422 |
|
|
! do il=1,ncum |
2423 |
|
|
! if (j.le.inb(il)) then |
2424 |
|
|
|
2425 |
|
|
! if (cvflag_grav) then |
2426 |
|
|
! ftra(il,1,k)=ftra(il,1,k)+0.01*grav*work(il)*ment(il,j,1) |
2427 |
|
|
! : *(traent(il,j,1,k)-tra(il,1,k)) |
2428 |
|
|
! else |
2429 |
|
|
! ftra(il,1,k)=ftra(il,1,k)+0.1*work(il)*ment(il,j,1) |
2430 |
|
|
! : *(traent(il,j,1,k)-tra(il,1,k)) |
2431 |
|
|
! endif |
2432 |
|
|
|
2433 |
|
|
! endif |
2434 |
|
|
! enddo |
2435 |
|
|
! enddo |
2436 |
|
|
! enddo |
2437 |
|
|
|
2438 |
|
|
|
2439 |
|
|
! *** calculate tendencies of potential temperature and mixing ratio *** |
2440 |
|
|
! *** at levels above the lowest level *** |
2441 |
|
|
|
2442 |
|
|
! *** first find the net saturated updraft and downdraft mass fluxes *** |
2443 |
|
|
! *** through each level *** |
2444 |
|
|
|
2445 |
|
|
|
2446 |
|
|
DO i = 2, nl + 1 ! newvecto: mettre nl au lieu nl+1? |
2447 |
|
|
|
2448 |
|
|
num1 = 0 |
2449 |
|
|
DO il = 1, ncum |
2450 |
|
|
IF (i<=inb(il)) num1 = num1 + 1 |
2451 |
|
|
END DO |
2452 |
|
|
IF (num1<=0) GO TO 500 |
2453 |
|
|
|
2454 |
|
|
CALL zilch(amp1, ncum) |
2455 |
|
|
CALL zilch(ad, ncum) |
2456 |
|
|
|
2457 |
|
|
DO k = i + 1, nl + 1 |
2458 |
|
|
DO il = 1, ncum |
2459 |
|
|
IF (i<=inb(il) .AND. k<=(inb(il)+1)) THEN |
2460 |
|
|
amp1(il) = amp1(il) + m(il, k) |
2461 |
|
|
END IF |
2462 |
|
|
END DO |
2463 |
|
|
END DO |
2464 |
|
|
|
2465 |
|
|
DO k = 1, i |
2466 |
|
|
DO j = i + 1, nl + 1 |
2467 |
|
|
DO il = 1, ncum |
2468 |
|
|
IF (i<=inb(il) .AND. j<=(inb(il)+1)) THEN |
2469 |
|
|
amp1(il) = amp1(il) + ment(il, k, j) |
2470 |
|
|
END IF |
2471 |
|
|
END DO |
2472 |
|
|
END DO |
2473 |
|
|
END DO |
2474 |
|
|
|
2475 |
|
|
DO k = 1, i - 1 |
2476 |
|
|
DO j = i, nl + 1 ! newvecto: nl au lieu nl+1? |
2477 |
|
|
DO il = 1, ncum |
2478 |
|
|
IF (i<=inb(il) .AND. j<=inb(il)) THEN |
2479 |
|
|
ad(il) = ad(il) + ment(il, j, k) |
2480 |
|
|
END IF |
2481 |
|
|
END DO |
2482 |
|
|
END DO |
2483 |
|
|
END DO |
2484 |
|
|
|
2485 |
|
|
DO il = 1, ncum |
2486 |
|
|
IF (i<=inb(il)) THEN |
2487 |
|
|
dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
2488 |
|
|
cpinv = 1.0/cpn(il, i) |
2489 |
|
|
|
2490 |
|
|
! convect3 if((0.1*dpinv*amp1).ge.delti)iflag(il)=4 |
2491 |
|
|
IF (cvflag_grav) THEN |
2492 |
|
|
IF ((0.01*grav*dpinv*amp1(il))>=delti) iflag(il) = 1 ! vecto |
2493 |
|
|
ELSE |
2494 |
|
|
IF ((0.1*dpinv*amp1(il))>=delti) iflag(il) = 1 ! vecto |
2495 |
|
|
END IF |
2496 |
|
|
|
2497 |
|
|
IF (cvflag_grav) THEN |
2498 |
|
|
ft(il, i) = 0.01*grav*dpinv*(amp1(il)*(t(il,i+1)-t(il, & |
2499 |
|
|
i)+(gz(il,i+1)-gz(il,i))*cpinv)-ad(il)*(t(il,i)-t(il, & |
2500 |
|
|
i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) - 0.5*sigd*lvcp(il, i)*(evap( & |
2501 |
|
|
il,i)+evap(il,i+1)) |
2502 |
|
|
rat = cpn(il, i-1)*cpinv |
2503 |
|
|
ft(il, i) = ft(il, i) - 0.009*grav*sigd*(mp(il,i+1)*t(il,i)*b(il,i) & |
2504 |
|
|
-mp(il,i)*t(il,i-1)*rat*b(il,i-1))*dpinv |
2505 |
|
|
ft(il, i) = ft(il, i) + 0.01*grav*dpinv*ment(il, i, i)*(hp(il,i)-h( & |
2506 |
|
|
il,i)+t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
2507 |
|
|
ELSE ! cvflag_grav |
2508 |
|
|
ft(il, i) = 0.1*dpinv*(amp1(il)*(t(il,i+1)-t(il, & |
2509 |
|
|
i)+(gz(il,i+1)-gz(il,i))*cpinv)-ad(il)*(t(il,i)-t(il, & |
2510 |
|
|
i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) - 0.5*sigd*lvcp(il, i)*(evap( & |
2511 |
|
|
il,i)+evap(il,i+1)) |
2512 |
|
|
rat = cpn(il, i-1)*cpinv |
2513 |
|
|
ft(il, i) = ft(il, i) - 0.09*sigd*(mp(il,i+1)*t(il,i)*b(il,i)-mp(il & |
2514 |
|
|
,i)*t(il,i-1)*rat*b(il,i-1))*dpinv |
2515 |
|
|
ft(il, i) = ft(il, i) + 0.1*dpinv*ment(il, i, i)*(hp(il,i)-h(il,i)+ & |
2516 |
|
|
t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
2517 |
|
|
END IF ! cvflag_grav |
2518 |
|
|
|
2519 |
|
|
|
2520 |
|
|
ft(il, i) = ft(il, i) + 0.01*sigd*wt(il, i)*(cl-cpd)*water(il, i+1)*( & |
2521 |
|
|
t(il,i+1)-t(il,i))*dpinv*cpinv |
2522 |
|
|
|
2523 |
|
|
IF (cvflag_grav) THEN |
2524 |
|
|
fr(il, i) = 0.01*grav*dpinv*(amp1(il)*(rr(il,i+1)-rr(il, & |
2525 |
|
|
i))-ad(il)*(rr(il,i)-rr(il,i-1))) |
2526 |
|
|
fu(il, i) = fu(il, i) + 0.01*grav*dpinv*(amp1(il)*(u(il,i+1)-u(il, & |
2527 |
|
|
i))-ad(il)*(u(il,i)-u(il,i-1))) |
2528 |
|
|
fv(il, i) = fv(il, i) + 0.01*grav*dpinv*(amp1(il)*(v(il,i+1)-v(il, & |
2529 |
|
|
i))-ad(il)*(v(il,i)-v(il,i-1))) |
2530 |
|
|
ELSE ! cvflag_grav |
2531 |
|
|
fr(il, i) = 0.1*dpinv*(amp1(il)*(rr(il,i+1)-rr(il, & |
2532 |
|
|
i))-ad(il)*(rr(il,i)-rr(il,i-1))) |
2533 |
|
|
fu(il, i) = fu(il, i) + 0.1*dpinv*(amp1(il)*(u(il,i+1)-u(il, & |
2534 |
|
|
i))-ad(il)*(u(il,i)-u(il,i-1))) |
2535 |
|
|
fv(il, i) = fv(il, i) + 0.1*dpinv*(amp1(il)*(v(il,i+1)-v(il, & |
2536 |
|
|
i))-ad(il)*(v(il,i)-v(il,i-1))) |
2537 |
|
|
END IF ! cvflag_grav |
2538 |
|
|
|
2539 |
|
|
END IF ! i |
2540 |
|
|
END DO |
2541 |
|
|
|
2542 |
|
|
! do k=1,ntra |
2543 |
|
|
! do il=1,ncum |
2544 |
|
|
! if (i.le.inb(il)) then |
2545 |
|
|
! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
2546 |
|
|
! cpinv=1.0/cpn(il,i) |
2547 |
|
|
! if (cvflag_grav) then |
2548 |
|
|
! ftra(il,i,k)=ftra(il,i,k)+0.01*grav*dpinv |
2549 |
|
|
! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
2550 |
|
|
! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
2551 |
|
|
! else |
2552 |
|
|
! ftra(il,i,k)=ftra(il,i,k)+0.1*dpinv |
2553 |
|
|
! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
2554 |
|
|
! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
2555 |
|
|
! endif |
2556 |
|
|
! endif |
2557 |
|
|
! enddo |
2558 |
|
|
! enddo |
2559 |
|
|
|
2560 |
|
|
DO k = 1, i - 1 |
2561 |
|
|
DO il = 1, ncum |
2562 |
|
|
IF (i<=inb(il)) THEN |
2563 |
|
|
dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
2564 |
|
|
cpinv = 1.0/cpn(il, i) |
2565 |
|
|
|
2566 |
|
|
awat = elij(il, k, i) - (1.-ep(il,i))*clw(il, i) |
2567 |
|
|
awat = amax1(awat, 0.0) |
2568 |
|
|
|
2569 |
|
|
IF (cvflag_grav) THEN |
2570 |
|
|
fr(il, i) = fr(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(qent(il,k & |
2571 |
|
|
,i)-awat-rr(il,i)) |
2572 |
|
|
fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k & |
2573 |
|
|
,i)-u(il,i)) |
2574 |
|
|
fv(il, i) = fv(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(vent(il,k & |
2575 |
|
|
,i)-v(il,i)) |
2576 |
|
|
ELSE ! cvflag_grav |
2577 |
|
|
fr(il, i) = fr(il, i) + 0.1*dpinv*ment(il, k, i)*(qent(il,k,i)- & |
2578 |
|
|
awat-rr(il,i)) |
2579 |
|
|
fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k & |
2580 |
|
|
,i)-u(il,i)) |
2581 |
|
|
fv(il, i) = fv(il, i) + 0.1*dpinv*ment(il, k, i)*(vent(il,k,i)-v( & |
2582 |
|
|
il,i)) |
2583 |
|
|
END IF ! cvflag_grav |
2584 |
|
|
|
2585 |
|
|
! (saturated updrafts resulting from mixing) ! cld |
2586 |
|
|
qcond(il, i) = qcond(il, i) + (elij(il,k,i)-awat) ! cld |
2587 |
|
|
nqcond(il, i) = nqcond(il, i) + 1. ! cld |
2588 |
|
|
END IF ! i |
2589 |
|
|
END DO |
2590 |
|
|
END DO |
2591 |
|
|
|
2592 |
|
|
! do j=1,ntra |
2593 |
|
|
! do k=1,i-1 |
2594 |
|
|
! do il=1,ncum |
2595 |
|
|
! if (i.le.inb(il)) then |
2596 |
|
|
! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
2597 |
|
|
! cpinv=1.0/cpn(il,i) |
2598 |
|
|
! if (cvflag_grav) then |
2599 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
2600 |
|
|
! : *(traent(il,k,i,j)-tra(il,i,j)) |
2601 |
|
|
! else |
2602 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
2603 |
|
|
! : *(traent(il,k,i,j)-tra(il,i,j)) |
2604 |
|
|
! endif |
2605 |
|
|
! endif |
2606 |
|
|
! enddo |
2607 |
|
|
! enddo |
2608 |
|
|
! enddo |
2609 |
|
|
|
2610 |
|
|
DO k = i, nl + 1 |
2611 |
|
|
DO il = 1, ncum |
2612 |
|
|
IF (i<=inb(il) .AND. k<=inb(il)) THEN |
2613 |
|
|
dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
2614 |
|
|
cpinv = 1.0/cpn(il, i) |
2615 |
|
|
|
2616 |
|
|
IF (cvflag_grav) THEN |
2617 |
|
|
fr(il, i) = fr(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(qent(il,k & |
2618 |
|
|
,i)-rr(il,i)) |
2619 |
|
|
fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k & |
2620 |
|
|
,i)-u(il,i)) |
2621 |
|
|
fv(il, i) = fv(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(vent(il,k & |
2622 |
|
|
,i)-v(il,i)) |
2623 |
|
|
ELSE ! cvflag_grav |
2624 |
|
|
fr(il, i) = fr(il, i) + 0.1*dpinv*ment(il, k, i)*(qent(il,k,i)-rr & |
2625 |
|
|
(il,i)) |
2626 |
|
|
fu(il, i) = fu(il, i) + 0.1*dpinv*ment(il, k, i)*(uent(il,k,i)-u( & |
2627 |
|
|
il,i)) |
2628 |
|
|
fv(il, i) = fv(il, i) + 0.1*dpinv*ment(il, k, i)*(vent(il,k,i)-v( & |
2629 |
|
|
il,i)) |
2630 |
|
|
END IF ! cvflag_grav |
2631 |
|
|
END IF ! i and k |
2632 |
|
|
END DO |
2633 |
|
|
END DO |
2634 |
|
|
|
2635 |
|
|
! do j=1,ntra |
2636 |
|
|
! do k=i,nl+1 |
2637 |
|
|
! do il=1,ncum |
2638 |
|
|
! if (i.le.inb(il) .and. k.le.inb(il)) then |
2639 |
|
|
! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
2640 |
|
|
! cpinv=1.0/cpn(il,i) |
2641 |
|
|
! if (cvflag_grav) then |
2642 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
2643 |
|
|
! : *(traent(il,k,i,j)-tra(il,i,j)) |
2644 |
|
|
! else |
2645 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
2646 |
|
|
! : *(traent(il,k,i,j)-tra(il,i,j)) |
2647 |
|
|
! endif |
2648 |
|
|
! endif ! i and k |
2649 |
|
|
! enddo |
2650 |
|
|
! enddo |
2651 |
|
|
! enddo |
2652 |
|
|
|
2653 |
|
|
DO il = 1, ncum |
2654 |
|
|
IF (i<=inb(il)) THEN |
2655 |
|
|
dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
2656 |
|
|
cpinv = 1.0/cpn(il, i) |
2657 |
|
|
|
2658 |
|
|
IF (cvflag_grav) THEN |
2659 |
|
|
! sb: on ne fait pas encore la correction permettant de mieux |
2660 |
|
|
! conserver l'eau: |
2661 |
|
|
fr(il, i) = fr(il, i) + 0.5*sigd*(evap(il,i)+evap(il,i+1)) + & |
2662 |
|
|
0.01*grav*(mp(il,i+1)*(rp(il,i+1)-rr(il,i))-mp(il,i)*(rp(il, & |
2663 |
|
|
i)-rr(il,i-1)))*dpinv |
2664 |
|
|
|
2665 |
|
|
fu(il, i) = fu(il, i) + 0.01*grav*(mp(il,i+1)*(up(il,i+1)-u(il, & |
2666 |
|
|
i))-mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
2667 |
|
|
fv(il, i) = fv(il, i) + 0.01*grav*(mp(il,i+1)*(vp(il,i+1)-v(il, & |
2668 |
|
|
i))-mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
2669 |
|
|
ELSE ! cvflag_grav |
2670 |
|
|
fr(il, i) = fr(il, i) + 0.5*sigd*(evap(il,i)+evap(il,i+1)) + & |
2671 |
|
|
0.1*(mp(il,i+1)*(rp(il,i+1)-rr(il,i))-mp(il,i)*(rp(il,i)-rr(il, & |
2672 |
|
|
i-1)))*dpinv |
2673 |
|
|
fu(il, i) = fu(il, i) + 0.1*(mp(il,i+1)*(up(il,i+1)-u(il, & |
2674 |
|
|
i))-mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
2675 |
|
|
fv(il, i) = fv(il, i) + 0.1*(mp(il,i+1)*(vp(il,i+1)-v(il, & |
2676 |
|
|
i))-mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
2677 |
|
|
END IF ! cvflag_grav |
2678 |
|
|
|
2679 |
|
|
END IF ! i |
2680 |
|
|
END DO |
2681 |
|
|
|
2682 |
|
|
! sb: interface with the cloud parameterization: ! cld |
2683 |
|
|
|
2684 |
|
|
DO k = i + 1, nl |
2685 |
|
|
DO il = 1, ncum |
2686 |
|
|
IF (k<=inb(il) .AND. i<=inb(il)) THEN ! cld |
2687 |
|
|
! (saturated downdrafts resulting from mixing) ! cld |
2688 |
|
|
qcond(il, i) = qcond(il, i) + elij(il, k, i) ! cld |
2689 |
|
|
nqcond(il, i) = nqcond(il, i) + 1. ! cld |
2690 |
|
|
END IF ! cld |
2691 |
|
|
END DO ! cld |
2692 |
|
|
END DO ! cld |
2693 |
|
|
|
2694 |
|
|
! (particular case: no detraining level is found) ! cld |
2695 |
|
|
DO il = 1, ncum ! cld |
2696 |
|
|
IF (i<=inb(il) .AND. nent(il,i)==0) THEN ! cld |
2697 |
|
|
qcond(il, i) = qcond(il, i) + (1.-ep(il,i))*clw(il, i) ! cld |
2698 |
|
|
nqcond(il, i) = nqcond(il, i) + 1. ! cld |
2699 |
|
|
END IF ! cld |
2700 |
|
|
END DO ! cld |
2701 |
|
|
|
2702 |
|
|
DO il = 1, ncum ! cld |
2703 |
|
|
IF (i<=inb(il) .AND. nqcond(il,i)/=0.) THEN ! cld |
2704 |
|
|
qcond(il, i) = qcond(il, i)/nqcond(il, i) ! cld |
2705 |
|
|
END IF ! cld |
2706 |
|
|
END DO |
2707 |
|
|
|
2708 |
|
|
! do j=1,ntra |
2709 |
|
|
! do il=1,ncum |
2710 |
|
|
! if (i.le.inb(il)) then |
2711 |
|
|
! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
2712 |
|
|
! cpinv=1.0/cpn(il,i) |
2713 |
|
|
|
2714 |
|
|
! if (cvflag_grav) then |
2715 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv |
2716 |
|
|
! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
2717 |
|
|
! : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
2718 |
|
|
! else |
2719 |
|
|
! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv |
2720 |
|
|
! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
2721 |
|
|
! : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
2722 |
|
|
! endif |
2723 |
|
|
! endif ! i |
2724 |
|
|
! enddo |
2725 |
|
|
! enddo |
2726 |
|
|
|
2727 |
|
|
500 END DO |
2728 |
|
|
|
2729 |
|
|
|
2730 |
|
|
! *** move the detrainment at level inb down to level inb-1 *** |
2731 |
|
|
! *** in such a way as to preserve the vertically *** |
2732 |
|
|
! *** integrated enthalpy and water tendencies *** |
2733 |
|
|
|
2734 |
|
|
DO il = 1, ncum |
2735 |
|
|
|
2736 |
|
|
ax = 0.1*ment(il, inb(il), inb(il))*(hp(il,inb(il))-h(il,inb(il))+t(il, & |
2737 |
|
|
inb(il))*(cpv-cpd)*(rr(il,inb(il))-qent(il,inb(il), & |
2738 |
|
|
inb(il))))/(cpn(il,inb(il))*(ph(il,inb(il))-ph(il,inb(il)+1))) |
2739 |
|
|
ft(il, inb(il)) = ft(il, inb(il)) - ax |
2740 |
|
|
ft(il, inb(il)-1) = ft(il, inb(il)-1) + ax*cpn(il, inb(il))*(ph(il,inb(il & |
2741 |
|
|
))-ph(il,inb(il)+1))/(cpn(il,inb(il)-1)*(ph(il,inb(il)-1)-ph(il, & |
2742 |
|
|
inb(il)))) |
2743 |
|
|
|
2744 |
|
|
bx = 0.1*ment(il, inb(il), inb(il))*(qent(il,inb(il),inb(il))-rr(il,inb( & |
2745 |
|
|
il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
2746 |
|
|
fr(il, inb(il)) = fr(il, inb(il)) - bx |
2747 |
|
|
fr(il, inb(il)-1) = fr(il, inb(il)-1) + bx*(ph(il,inb(il))-ph(il,inb(il)+ & |
2748 |
|
|
1))/(ph(il,inb(il)-1)-ph(il,inb(il))) |
2749 |
|
|
|
2750 |
|
|
cx = 0.1*ment(il, inb(il), inb(il))*(uent(il,inb(il),inb(il))-u(il,inb(il & |
2751 |
|
|
)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
2752 |
|
|
fu(il, inb(il)) = fu(il, inb(il)) - cx |
2753 |
|
|
fu(il, inb(il)-1) = fu(il, inb(il)-1) + cx*(ph(il,inb(il))-ph(il,inb(il)+ & |
2754 |
|
|
1))/(ph(il,inb(il)-1)-ph(il,inb(il))) |
2755 |
|
|
|
2756 |
|
|
dx = 0.1*ment(il, inb(il), inb(il))*(vent(il,inb(il),inb(il))-v(il,inb(il & |
2757 |
|
|
)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
2758 |
|
|
fv(il, inb(il)) = fv(il, inb(il)) - dx |
2759 |
|
|
fv(il, inb(il)-1) = fv(il, inb(il)-1) + dx*(ph(il,inb(il))-ph(il,inb(il)+ & |
2760 |
|
|
1))/(ph(il,inb(il)-1)-ph(il,inb(il))) |
2761 |
|
|
|
2762 |
|
|
END DO |
2763 |
|
|
|
2764 |
|
|
! do j=1,ntra |
2765 |
|
|
! do il=1,ncum |
2766 |
|
|
! ex=0.1*ment(il,inb(il),inb(il)) |
2767 |
|
|
! : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
2768 |
|
|
! : /(ph(il,inb(il))-ph(il,inb(il)+1)) |
2769 |
|
|
! ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
2770 |
|
|
! ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
2771 |
|
|
! : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
2772 |
|
|
! : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
2773 |
|
|
! enddo |
2774 |
|
|
! enddo |
2775 |
|
|
|
2776 |
|
|
|
2777 |
|
|
! *** homoginize tendencies below cloud base *** |
2778 |
|
|
|
2779 |
|
|
|
2780 |
|
|
DO il = 1, ncum |
2781 |
|
|
asum(il) = 0.0 |
2782 |
|
|
bsum(il) = 0.0 |
2783 |
|
|
csum(il) = 0.0 |
2784 |
|
|
dsum(il) = 0.0 |
2785 |
|
|
END DO |
2786 |
|
|
|
2787 |
|
|
DO i = 1, nl |
2788 |
|
|
DO il = 1, ncum |
2789 |
|
|
IF (i<=(icb(il)-1)) THEN |
2790 |
|
|
asum(il) = asum(il) + ft(il, i)*(ph(il,i)-ph(il,i+1)) |
2791 |
|
|
bsum(il) = bsum(il) + fr(il, i)*(lv(il,i)+(cl-cpd)*(t(il,i)-t(il, & |
2792 |
|
|
1)))*(ph(il,i)-ph(il,i+1)) |
2793 |
|
|
csum(il) = csum(il) + (lv(il,i)+(cl-cpd)*(t(il,i)-t(il, & |
2794 |
|
|
1)))*(ph(il,i)-ph(il,i+1)) |
2795 |
|
|
dsum(il) = dsum(il) + t(il, i)*(ph(il,i)-ph(il,i+1))/th(il, i) |
2796 |
|
|
END IF |
2797 |
|
|
END DO |
2798 |
|
|
END DO |
2799 |
|
|
|
2800 |
|
|
! !!! do 700 i=1,icb(il)-1 |
2801 |
|
|
DO i = 1, nl |
2802 |
|
|
DO il = 1, ncum |
2803 |
|
|
IF (i<=(icb(il)-1)) THEN |
2804 |
|
|
ft(il, i) = asum(il)*t(il, i)/(th(il,i)*dsum(il)) |
2805 |
|
|
fr(il, i) = bsum(il)/csum(il) |
2806 |
|
|
END IF |
2807 |
|
|
END DO |
2808 |
|
|
END DO |
2809 |
|
|
|
2810 |
|
|
|
2811 |
|
|
! *** reset counter and return *** |
2812 |
|
|
|
2813 |
|
|
DO il = 1, ncum |
2814 |
|
|
sig(il, nd) = 2.0 |
2815 |
|
|
END DO |
2816 |
|
|
|
2817 |
|
|
|
2818 |
|
|
DO i = 1, nd |
2819 |
|
|
DO il = 1, ncum |
2820 |
|
|
upwd(il, i) = 0.0 |
2821 |
|
|
dnwd(il, i) = 0.0 |
2822 |
|
|
END DO |
2823 |
|
|
END DO |
2824 |
|
|
|
2825 |
|
|
DO i = 1, nl |
2826 |
|
|
DO il = 1, ncum |
2827 |
|
|
dnwd0(il, i) = -mp(il, i) |
2828 |
|
|
END DO |
2829 |
|
|
END DO |
2830 |
|
|
DO i = nl + 1, nd |
2831 |
|
|
DO il = 1, ncum |
2832 |
|
|
dnwd0(il, i) = 0. |
2833 |
|
|
END DO |
2834 |
|
|
END DO |
2835 |
|
|
|
2836 |
|
|
|
2837 |
|
|
DO i = 1, nl |
2838 |
|
|
DO il = 1, ncum |
2839 |
|
|
IF (i>=icb(il) .AND. i<=inb(il)) THEN |
2840 |
|
|
upwd(il, i) = 0.0 |
2841 |
|
|
dnwd(il, i) = 0.0 |
2842 |
|
|
END IF |
2843 |
|
|
END DO |
2844 |
|
|
END DO |
2845 |
|
|
|
2846 |
|
|
DO i = 1, nl |
2847 |
|
|
DO k = 1, nl |
2848 |
|
|
DO il = 1, ncum |
2849 |
|
|
up1(il, k, i) = 0.0 |
2850 |
|
|
dn1(il, k, i) = 0.0 |
2851 |
|
|
END DO |
2852 |
|
|
END DO |
2853 |
|
|
END DO |
2854 |
|
|
|
2855 |
|
|
DO i = 1, nl |
2856 |
|
|
DO k = i, nl |
2857 |
|
|
DO n = 1, i - 1 |
2858 |
|
|
DO il = 1, ncum |
2859 |
|
|
IF (i>=icb(il) .AND. i<=inb(il) .AND. k<=inb(il)) THEN |
2860 |
|
|
up1(il, k, i) = up1(il, k, i) + ment(il, n, k) |
2861 |
|
|
dn1(il, k, i) = dn1(il, k, i) - ment(il, k, n) |
2862 |
|
|
END IF |
2863 |
|
|
END DO |
2864 |
|
|
END DO |
2865 |
|
|
END DO |
2866 |
|
|
END DO |
2867 |
|
|
|
2868 |
|
|
DO i = 2, nl |
2869 |
|
|
DO k = i, nl |
2870 |
|
|
DO il = 1, ncum |
2871 |
|
|
! test if (i.ge.icb(il).and.i.le.inb(il).and.k.le.inb(il)) |
2872 |
|
|
! then |
2873 |
|
|
IF (i<=inb(il) .AND. k<=inb(il)) THEN |
2874 |
|
|
upwd(il, i) = upwd(il, i) + m(il, k) + up1(il, k, i) |
2875 |
|
|
dnwd(il, i) = dnwd(il, i) + dn1(il, k, i) |
2876 |
|
|
END IF |
2877 |
|
|
END DO |
2878 |
|
|
END DO |
2879 |
|
|
END DO |
2880 |
|
|
|
2881 |
|
|
|
2882 |
|
|
! !!! DO il=1,ncum |
2883 |
|
|
! !!! do i=icb(il),inb(il) |
2884 |
|
|
! !!! |
2885 |
|
|
! !!! upwd(il,i)=0.0 |
2886 |
|
|
! !!! dnwd(il,i)=0.0 |
2887 |
|
|
! !!! do k=i,inb(il) |
2888 |
|
|
! !!! up1=0.0 |
2889 |
|
|
! !!! dn1=0.0 |
2890 |
|
|
! !!! do n=1,i-1 |
2891 |
|
|
! !!! up1=up1+ment(il,n,k) |
2892 |
|
|
! !!! dn1=dn1-ment(il,k,n) |
2893 |
|
|
! !!! enddo |
2894 |
|
|
! !!! upwd(il,i)=upwd(il,i)+m(il,k)+up1 |
2895 |
|
|
! !!! dnwd(il,i)=dnwd(il,i)+dn1 |
2896 |
|
|
! !!! enddo |
2897 |
|
|
! !!! enddo |
2898 |
|
|
! !!! |
2899 |
|
|
! !!! ENDDO |
2900 |
|
|
|
2901 |
|
|
! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
2902 |
|
|
! determination de la variation de flux ascendant entre |
2903 |
|
|
! deux niveau non dilue mike |
2904 |
|
|
! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
2905 |
|
|
|
2906 |
|
|
DO i = 1, nl |
2907 |
|
|
DO il = 1, ncum |
2908 |
|
|
mike(il, i) = m(il, i) |
2909 |
|
|
END DO |
2910 |
|
|
END DO |
2911 |
|
|
|
2912 |
|
|
DO i = nl + 1, nd |
2913 |
|
|
DO il = 1, ncum |
2914 |
|
|
mike(il, i) = 0. |
2915 |
|
|
END DO |
2916 |
|
|
END DO |
2917 |
|
|
|
2918 |
|
|
DO i = 1, nd |
2919 |
|
|
DO il = 1, ncum |
2920 |
|
|
ma(il, i) = 0 |
2921 |
|
|
END DO |
2922 |
|
|
END DO |
2923 |
|
|
|
2924 |
|
|
DO i = 1, nl |
2925 |
|
|
DO j = i, nl |
2926 |
|
|
DO il = 1, ncum |
2927 |
|
|
ma(il, i) = ma(il, i) + m(il, j) |
2928 |
|
|
END DO |
2929 |
|
|
END DO |
2930 |
|
|
END DO |
2931 |
|
|
|
2932 |
|
|
DO i = nl + 1, nd |
2933 |
|
|
DO il = 1, ncum |
2934 |
|
|
ma(il, i) = 0. |
2935 |
|
|
END DO |
2936 |
|
|
END DO |
2937 |
|
|
|
2938 |
|
|
DO i = 1, nl |
2939 |
|
|
DO il = 1, ncum |
2940 |
|
|
IF (i<=(icb(il)-1)) THEN |
2941 |
|
|
ma(il, i) = 0 |
2942 |
|
|
END IF |
2943 |
|
|
END DO |
2944 |
|
|
END DO |
2945 |
|
|
|
2946 |
|
|
! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
2947 |
|
|
! icb represente de niveau ou se trouve la |
2948 |
|
|
! base du nuage , et inb le top du nuage |
2949 |
|
|
! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
2950 |
|
|
|
2951 |
|
|
DO i = 1, nd |
2952 |
|
|
DO il = 1, ncum |
2953 |
|
|
mke(il, i) = upwd(il, i) + dnwd(il, i) |
2954 |
|
|
END DO |
2955 |
|
|
END DO |
2956 |
|
|
|
2957 |
|
|
DO i = 1, nd |
2958 |
|
|
DO il = 1, ncum |
2959 |
|
|
rdcp = (rrd*(1.-rr(il,i))-rr(il,i)*rrv)/(cpd*(1.-rr(il, & |
2960 |
|
|
i))+rr(il,i)*cpv) |
2961 |
|
|
tls(il, i) = t(il, i)*(1000.0/p(il,i))**rdcp |
2962 |
|
|
tps(il, i) = tp(il, i) |
2963 |
|
|
END DO |
2964 |
|
|
END DO |
2965 |
|
|
|
2966 |
|
|
|
2967 |
|
|
! *** diagnose the in-cloud mixing ratio *** ! cld |
2968 |
|
|
! *** of condensed water *** ! cld |
2969 |
|
|
! ! cld |
2970 |
|
|
|
2971 |
|
|
DO i = 1, nd ! cld |
2972 |
|
|
DO il = 1, ncum ! cld |
2973 |
|
|
mac(il, i) = 0.0 ! cld |
2974 |
|
|
wa(il, i) = 0.0 ! cld |
2975 |
|
|
siga(il, i) = 0.0 ! cld |
2976 |
|
|
sax(il, i) = 0.0 ! cld |
2977 |
|
|
END DO ! cld |
2978 |
|
|
END DO ! cld |
2979 |
|
|
|
2980 |
|
|
DO i = minorig, nl ! cld |
2981 |
|
|
DO k = i + 1, nl + 1 ! cld |
2982 |
|
|
DO il = 1, ncum ! cld |
2983 |
|
|
IF (i<=inb(il) .AND. k<=(inb(il)+1)) THEN ! cld |
2984 |
|
|
mac(il, i) = mac(il, i) + m(il, k) ! cld |
2985 |
|
|
END IF ! cld |
2986 |
|
|
END DO ! cld |
2987 |
|
|
END DO ! cld |
2988 |
|
|
END DO ! cld |
2989 |
|
|
|
2990 |
|
|
DO i = 1, nl ! cld |
2991 |
|
|
DO j = 1, i ! cld |
2992 |
|
|
DO il = 1, ncum ! cld |
2993 |
|
|
IF (i>=icb(il) .AND. i<=(inb(il)-1) & ! cld |
2994 |
|
|
.AND. j>=icb(il)) THEN ! cld |
2995 |
|
|
sax(il, i) = sax(il, i) + rrd*(tvp(il,j)-tv(il,j)) & ! cld |
2996 |
|
|
*(ph(il,j)-ph(il,j+1))/p(il, j) ! cld |
2997 |
|
|
END IF ! cld |
2998 |
|
|
END DO ! cld |
2999 |
|
|
END DO ! cld |
3000 |
|
|
END DO ! cld |
3001 |
|
|
|
3002 |
|
|
DO i = 1, nl ! cld |
3003 |
|
|
DO il = 1, ncum ! cld |
3004 |
|
|
IF (i>=icb(il) .AND. i<=(inb(il)-1) & ! cld |
3005 |
|
|
.AND. sax(il,i)>0.0) THEN ! cld |
3006 |
|
|
wa(il, i) = sqrt(2.*sax(il,i)) ! cld |
3007 |
|
|
END IF ! cld |
3008 |
|
|
END DO ! cld |
3009 |
|
|
END DO ! cld |
3010 |
|
|
|
3011 |
|
|
DO i = 1, nl ! cld |
3012 |
|
|
DO il = 1, ncum ! cld |
3013 |
|
|
IF (wa(il,i)>0.0) & ! cld |
3014 |
|
|
siga(il, i) = mac(il, i)/wa(il, i) & ! cld |
3015 |
|
|
*rrd*tvp(il, i)/p(il, i)/100./delta ! cld |
3016 |
|
|
siga(il, i) = min(siga(il,i), 1.0) ! cld |
3017 |
|
|
! IM cf. FH |
3018 |
|
|
IF (iflag_clw==0) THEN |
3019 |
|
|
qcondc(il, i) = siga(il, i)*clw(il, i)*(1.-ep(il,i)) & ! cld |
3020 |
|
|
+(1.-siga(il,i))*qcond(il, i) ! cld |
3021 |
|
|
ELSE IF (iflag_clw==1) THEN |
3022 |
|
|
qcondc(il, i) = qcond(il, i) ! cld |
3023 |
|
|
END IF |
3024 |
|
|
|
3025 |
|
|
END DO ! cld |
3026 |
|
|
END DO ! cld |
3027 |
|
|
|
3028 |
|
|
RETURN |
3029 |
|
|
END SUBROUTINE cv30_yield |
3030 |
|
|
|
3031 |
|
|
! !RomP >>> |
3032 |
|
|
SUBROUTINE cv30_tracer(nloc, len, ncum, nd, na, ment, sij, da, phi, phi2, & |
3033 |
|
|
d1a, dam, ep, vprecip, elij, clw, epmlmmm, eplamm, icb, inb) |
3034 |
|
|
IMPLICIT NONE |
3035 |
|
|
|
3036 |
|
|
include "cv30param.h" |
3037 |
|
|
|
3038 |
|
|
! inputs: |
3039 |
|
|
INTEGER ncum, nd, na, nloc, len |
3040 |
|
|
REAL ment(nloc, na, na), sij(nloc, na, na) |
3041 |
|
|
REAL clw(nloc, nd), elij(nloc, na, na) |
3042 |
|
|
REAL ep(nloc, na) |
3043 |
|
|
INTEGER icb(nloc), inb(nloc) |
3044 |
|
|
REAL vprecip(nloc, nd+1) |
3045 |
|
|
! ouputs: |
3046 |
|
|
REAL da(nloc, na), phi(nloc, na, na) |
3047 |
|
|
REAL phi2(nloc, na, na) |
3048 |
|
|
REAL d1a(nloc, na), dam(nloc, na) |
3049 |
|
|
REAL epmlmmm(nloc, na, na), eplamm(nloc, na) |
3050 |
|
|
! variables pour tracer dans precip de l'AA et des mel |
3051 |
|
|
! local variables: |
3052 |
|
|
INTEGER i, j, k, nam1 |
3053 |
|
|
REAL epm(nloc, na, na) |
3054 |
|
|
|
3055 |
|
|
nam1=na-1 ! Introduced because ep is not defined for j=na |
3056 |
|
|
! variables d'Emanuel : du second indice au troisieme |
3057 |
|
|
! ---> tab(i,k,j) -> de l origine k a l arrivee j |
3058 |
|
|
! ment, sij, elij |
3059 |
|
|
! variables personnelles : du troisieme au second indice |
3060 |
|
|
! ---> tab(i,j,k) -> de k a j |
3061 |
|
|
! phi, phi2 |
3062 |
|
|
|
3063 |
|
|
! initialisations |
3064 |
|
|
DO j = 1, na |
3065 |
|
|
DO i = 1, ncum |
3066 |
|
|
da(i, j) = 0. |
3067 |
|
|
d1a(i, j) = 0. |
3068 |
|
|
dam(i, j) = 0. |
3069 |
|
|
eplamm(i, j) = 0. |
3070 |
|
|
END DO |
3071 |
|
|
END DO |
3072 |
|
|
DO k = 1, na |
3073 |
|
|
DO j = 1, na |
3074 |
|
|
DO i = 1, ncum |
3075 |
|
|
epm(i, j, k) = 0. |
3076 |
|
|
epmlmmm(i, j, k) = 0. |
3077 |
|
|
phi(i, j, k) = 0. |
3078 |
|
|
phi2(i, j, k) = 0. |
3079 |
|
|
END DO |
3080 |
|
|
END DO |
3081 |
|
|
END DO |
3082 |
|
|
|
3083 |
|
|
! fraction deau condensee dans les melanges convertie en precip : epm |
3084 |
|
|
! et eau condens�e pr�cipit�e dans masse d'air satur� : l_m*dM_m/dzdz.dzdz |
3085 |
|
|
DO j = 1, nam1 |
3086 |
|
|
DO k = 1, j - 1 |
3087 |
|
|
DO i = 1, ncum |
3088 |
|
|
IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
3089 |
|
|
! !jyg epm(i,j,k)=1.-(1.-ep(i,j))*clw(i,j)/elij(i,k,j) |
3090 |
|
|
epm(i, j, k) = 1. - (1.-ep(i,j))*clw(i, j)/max(elij(i,k,j), 1.E-16) |
3091 |
|
|
! ! |
3092 |
|
|
epm(i, j, k) = max(epm(i,j,k), 0.0) |
3093 |
|
|
END IF |
3094 |
|
|
END DO |
3095 |
|
|
END DO |
3096 |
|
|
END DO |
3097 |
|
|
|
3098 |
|
|
DO j = 1, nam1 |
3099 |
|
|
DO k = 1, nam1 |
3100 |
|
|
DO i = 1, ncum |
3101 |
|
|
IF (k>=icb(i) .AND. k<=inb(i)) THEN |
3102 |
|
|
eplamm(i, j) = eplamm(i, j) + ep(i, j)*clw(i, j)*ment(i, j, k)*(1.- & |
3103 |
|
|
sij(i,j,k)) |
3104 |
|
|
END IF |
3105 |
|
|
END DO |
3106 |
|
|
END DO |
3107 |
|
|
END DO |
3108 |
|
|
|
3109 |
|
|
DO j = 1, nam1 |
3110 |
|
|
DO k = 1, j - 1 |
3111 |
|
|
DO i = 1, ncum |
3112 |
|
|
IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
3113 |
|
|
epmlmmm(i, j, k) = epm(i, j, k)*elij(i, k, j)*ment(i, k, j) |
3114 |
|
|
END IF |
3115 |
|
|
END DO |
3116 |
|
|
END DO |
3117 |
|
|
END DO |
3118 |
|
|
|
3119 |
|
|
! matrices pour calculer la tendance des concentrations dans cvltr.F90 |
3120 |
|
|
DO j = 1, nam1 |
3121 |
|
|
DO k = 1, nam1 |
3122 |
|
|
DO i = 1, ncum |
3123 |
|
|
da(i, j) = da(i, j) + (1.-sij(i,k,j))*ment(i, k, j) |
3124 |
|
|
phi(i, j, k) = sij(i, k, j)*ment(i, k, j) |
3125 |
|
|
d1a(i, j) = d1a(i, j) + ment(i, k, j)*ep(i, k)*(1.-sij(i,k,j)) |
3126 |
|
|
END DO |
3127 |
|
|
END DO |
3128 |
|
|
END DO |
3129 |
|
|
|
3130 |
|
|
DO j = 1, nam1 |
3131 |
|
|
DO k = 1, j - 1 |
3132 |
|
|
DO i = 1, ncum |
3133 |
|
|
dam(i, j) = dam(i, j) + ment(i, k, j)*epm(i, j, k)*(1.-ep(i,k))*(1.- & |
3134 |
|
|
sij(i,k,j)) |
3135 |
|
|
phi2(i, j, k) = phi(i, j, k)*epm(i, j, k) |
3136 |
|
|
END DO |
3137 |
|
|
END DO |
3138 |
|
|
END DO |
3139 |
|
|
|
3140 |
|
|
RETURN |
3141 |
|
|
END SUBROUTINE cv30_tracer |
3142 |
|
|
! RomP <<< |
3143 |
|
|
|
3144 |
|
|
SUBROUTINE cv30_uncompress(nloc, len, ncum, nd, ntra, idcum, iflag, precip, & |
3145 |
|
|
vprecip, evap, ep, sig, w0, ft, fq, fu, fv, ftra, inb, ma, upwd, dnwd, & |
3146 |
|
|
dnwd0, qcondc, wd, cape, da, phi, mp, phi2, d1a, dam, sij, elij, clw, & |
3147 |
|
|
epmlmmm, eplamm, wdtraina, wdtrainm,epmax_diag, iflag1, precip1, vprecip1, evap1, & |
3148 |
|
|
ep1, sig1, w01, ft1, fq1, fu1, fv1, ftra1, inb1, ma1, upwd1, dnwd1, & |
3149 |
|
|
dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1, phi21, d1a1, dam1, sij1, & |
3150 |
|
|
elij1, clw1, epmlmmm1, eplamm1, wdtraina1, wdtrainm1,epmax_diag1) ! epmax_cape |
3151 |
|
|
IMPLICIT NONE |
3152 |
|
|
|
3153 |
|
|
include "cv30param.h" |
3154 |
|
|
|
3155 |
|
|
! inputs: |
3156 |
|
|
INTEGER len, ncum, nd, ntra, nloc |
3157 |
|
|
INTEGER idcum(nloc) |
3158 |
|
|
INTEGER iflag(nloc) |
3159 |
|
|
INTEGER inb(nloc) |
3160 |
|
|
REAL precip(nloc) |
3161 |
|
|
REAL vprecip(nloc, nd+1), evap(nloc, nd) |
3162 |
|
|
REAL ep(nloc, nd) |
3163 |
|
|
REAL sig(nloc, nd), w0(nloc, nd) |
3164 |
|
|
REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
3165 |
|
|
REAL ftra(nloc, nd, ntra) |
3166 |
|
|
REAL ma(nloc, nd) |
3167 |
|
|
REAL upwd(nloc, nd), dnwd(nloc, nd), dnwd0(nloc, nd) |
3168 |
|
|
REAL qcondc(nloc, nd) |
3169 |
|
|
REAL wd(nloc), cape(nloc) |
3170 |
|
|
REAL da(nloc, nd), phi(nloc, nd, nd), mp(nloc, nd) |
3171 |
|
|
REAL epmax_diag(nloc) ! epmax_cape |
3172 |
|
|
! RomP >>> |
3173 |
|
|
REAL phi2(nloc, nd, nd) |
3174 |
|
|
REAL d1a(nloc, nd), dam(nloc, nd) |
3175 |
|
|
REAL wdtraina(nloc, nd), wdtrainm(nloc, nd) |
3176 |
|
|
REAL sij(nloc, nd, nd) |
3177 |
|
|
REAL elij(nloc, nd, nd), clw(nloc, nd) |
3178 |
|
|
REAL epmlmmm(nloc, nd, nd), eplamm(nloc, nd) |
3179 |
|
|
! RomP <<< |
3180 |
|
|
|
3181 |
|
|
! outputs: |
3182 |
|
|
INTEGER iflag1(len) |
3183 |
|
|
INTEGER inb1(len) |
3184 |
|
|
REAL precip1(len) |
3185 |
|
|
REAL vprecip1(len, nd+1), evap1(len, nd) !<<< RomP |
3186 |
|
|
REAL ep1(len, nd) !<<< RomP |
3187 |
|
|
REAL sig1(len, nd), w01(len, nd) |
3188 |
|
|
REAL ft1(len, nd), fq1(len, nd), fu1(len, nd), fv1(len, nd) |
3189 |
|
|
REAL ftra1(len, nd, ntra) |
3190 |
|
|
REAL ma1(len, nd) |
3191 |
|
|
REAL upwd1(len, nd), dnwd1(len, nd), dnwd01(len, nd) |
3192 |
|
|
REAL qcondc1(nloc, nd) |
3193 |
|
|
REAL wd1(nloc), cape1(nloc) |
3194 |
|
|
REAL da1(nloc, nd), phi1(nloc, nd, nd), mp1(nloc, nd) |
3195 |
|
|
REAL epmax_diag1(len) ! epmax_cape |
3196 |
|
|
! RomP >>> |
3197 |
|
|
REAL phi21(len, nd, nd) |
3198 |
|
|
REAL d1a1(len, nd), dam1(len, nd) |
3199 |
|
|
REAL wdtraina1(len, nd), wdtrainm1(len, nd) |
3200 |
|
|
REAL sij1(len, nd, nd) |
3201 |
|
|
REAL elij1(len, nd, nd), clw1(len, nd) |
3202 |
|
|
REAL epmlmmm1(len, nd, nd), eplamm1(len, nd) |
3203 |
|
|
! RomP <<< |
3204 |
|
|
|
3205 |
|
|
! local variables: |
3206 |
|
|
INTEGER i, k, j |
3207 |
|
|
|
3208 |
|
|
DO i = 1, ncum |
3209 |
|
|
precip1(idcum(i)) = precip(i) |
3210 |
|
|
iflag1(idcum(i)) = iflag(i) |
3211 |
|
|
wd1(idcum(i)) = wd(i) |
3212 |
|
|
inb1(idcum(i)) = inb(i) |
3213 |
|
|
cape1(idcum(i)) = cape(i) |
3214 |
|
|
epmax_diag1(idcum(i))=epmax_diag(i) ! epmax_cape |
3215 |
|
|
END DO |
3216 |
|
|
|
3217 |
|
|
DO k = 1, nl |
3218 |
|
|
DO i = 1, ncum |
3219 |
|
|
vprecip1(idcum(i), k) = vprecip(i, k) |
3220 |
|
|
evap1(idcum(i), k) = evap(i, k) !<<< RomP |
3221 |
|
|
sig1(idcum(i), k) = sig(i, k) |
3222 |
|
|
w01(idcum(i), k) = w0(i, k) |
3223 |
|
|
ft1(idcum(i), k) = ft(i, k) |
3224 |
|
|
fq1(idcum(i), k) = fq(i, k) |
3225 |
|
|
fu1(idcum(i), k) = fu(i, k) |
3226 |
|
|
fv1(idcum(i), k) = fv(i, k) |
3227 |
|
|
ma1(idcum(i), k) = ma(i, k) |
3228 |
|
|
upwd1(idcum(i), k) = upwd(i, k) |
3229 |
|
|
dnwd1(idcum(i), k) = dnwd(i, k) |
3230 |
|
|
dnwd01(idcum(i), k) = dnwd0(i, k) |
3231 |
|
|
qcondc1(idcum(i), k) = qcondc(i, k) |
3232 |
|
|
da1(idcum(i), k) = da(i, k) |
3233 |
|
|
mp1(idcum(i), k) = mp(i, k) |
3234 |
|
|
! RomP >>> |
3235 |
|
|
ep1(idcum(i), k) = ep(i, k) |
3236 |
|
|
d1a1(idcum(i), k) = d1a(i, k) |
3237 |
|
|
dam1(idcum(i), k) = dam(i, k) |
3238 |
|
|
clw1(idcum(i), k) = clw(i, k) |
3239 |
|
|
eplamm1(idcum(i), k) = eplamm(i, k) |
3240 |
|
|
wdtraina1(idcum(i), k) = wdtraina(i, k) |
3241 |
|
|
wdtrainm1(idcum(i), k) = wdtrainm(i, k) |
3242 |
|
|
! RomP <<< |
3243 |
|
|
END DO |
3244 |
|
|
END DO |
3245 |
|
|
|
3246 |
|
|
DO i = 1, ncum |
3247 |
|
|
sig1(idcum(i), nd) = sig(i, nd) |
3248 |
|
|
END DO |
3249 |
|
|
|
3250 |
|
|
|
3251 |
|
|
! do 2100 j=1,ntra |
3252 |
|
|
! do 2110 k=1,nd ! oct3 |
3253 |
|
|
! do 2120 i=1,ncum |
3254 |
|
|
! ftra1(idcum(i),k,j)=ftra(i,k,j) |
3255 |
|
|
! 2120 continue |
3256 |
|
|
! 2110 continue |
3257 |
|
|
! 2100 continue |
3258 |
|
|
DO j = 1, nd |
3259 |
|
|
DO k = 1, nd |
3260 |
|
|
DO i = 1, ncum |
3261 |
|
|
sij1(idcum(i), k, j) = sij(i, k, j) |
3262 |
|
|
phi1(idcum(i), k, j) = phi(i, k, j) |
3263 |
|
|
phi21(idcum(i), k, j) = phi2(i, k, j) |
3264 |
|
|
elij1(idcum(i), k, j) = elij(i, k, j) |
3265 |
|
|
epmlmmm1(idcum(i), k, j) = epmlmmm(i, k, j) |
3266 |
|
|
END DO |
3267 |
|
|
END DO |
3268 |
|
|
END DO |
3269 |
|
|
|
3270 |
|
|
RETURN |
3271 |
|
|
END SUBROUTINE cv30_uncompress |
3272 |
|
|
|
3273 |
|
|
subroutine cv30_epmax_fn_cape(nloc,ncum,nd & |
3274 |
|
|
,cape,ep,hp,icb,inb,clw,nk,t,h,lv & |
3275 |
|
|
,epmax_diag) |
3276 |
|
|
implicit none |
3277 |
|
|
|
3278 |
|
|
! On fait varier epmax en fn de la cape |
3279 |
|
|
! Il faut donc recalculer ep, et hp qui a d�j� �t� calcul� et |
3280 |
|
|
! qui en d�pend |
3281 |
|
|
! Toutes les autres variables fn de ep sont calcul�es plus bas. |
3282 |
|
|
|
3283 |
|
|
INCLUDE "cvthermo.h" |
3284 |
|
|
INCLUDE "cv30param.h" |
3285 |
|
|
INCLUDE "conema3.h" |
3286 |
|
|
|
3287 |
|
|
! inputs: |
3288 |
|
|
integer ncum, nd, nloc |
3289 |
|
|
integer icb(nloc), inb(nloc) |
3290 |
|
|
real cape(nloc) |
3291 |
|
|
real clw(nloc,nd),lv(nloc,nd),t(nloc,nd),h(nloc,nd) |
3292 |
|
|
integer nk(nloc) |
3293 |
|
|
! inouts: |
3294 |
|
|
real ep(nloc,nd) |
3295 |
|
|
real hp(nloc,nd) |
3296 |
|
|
! outputs ou local |
3297 |
|
|
real epmax_diag(nloc) |
3298 |
|
|
! locals |
3299 |
|
|
integer i,k |
3300 |
|
|
real hp_bak(nloc,nd) |
3301 |
|
|
CHARACTER (LEN=20) :: modname='cv30_epmax_fn_cape' |
3302 |
|
|
CHARACTER (LEN=80) :: abort_message |
3303 |
|
|
|
3304 |
|
|
! on recalcule ep et hp |
3305 |
|
|
|
3306 |
|
|
if (coef_epmax_cape.gt.1e-12) then |
3307 |
|
|
do i=1,ncum |
3308 |
|
|
epmax_diag(i)=epmax-coef_epmax_cape*sqrt(cape(i)) |
3309 |
|
|
do k=1,nl |
3310 |
|
|
ep(i,k)=ep(i,k)/epmax*epmax_diag(i) |
3311 |
|
|
ep(i,k)=amax1(ep(i,k),0.0) |
3312 |
|
|
ep(i,k)=amin1(ep(i,k),epmax_diag(i)) |
3313 |
|
|
enddo |
3314 |
|
|
enddo |
3315 |
|
|
|
3316 |
|
|
! On recalcule hp: |
3317 |
|
|
do k=1,nl |
3318 |
|
|
do i=1,ncum |
3319 |
|
|
hp_bak(i,k)=hp(i,k) |
3320 |
|
|
enddo |
3321 |
|
|
enddo |
3322 |
|
|
do k=1,nlp |
3323 |
|
|
do i=1,ncum |
3324 |
|
|
hp(i,k)=h(i,k) |
3325 |
|
|
enddo |
3326 |
|
|
enddo |
3327 |
|
|
do k=minorig+1,nl |
3328 |
|
|
do i=1,ncum |
3329 |
|
|
if((k.ge.icb(i)).and.(k.le.inb(i)))then |
3330 |
|
|
hp(i,k)=h(i,nk(i))+(lv(i,k)+(cpd-cpv)*t(i,k))*ep(i,k)*clw(i,k) |
3331 |
|
|
endif |
3332 |
|
|
enddo |
3333 |
|
|
enddo !do k=minorig+1,n |
3334 |
|
|
! write(*,*) 'cv30_routines 6218: hp(1,20)=',hp(1,20) |
3335 |
|
|
do i=1,ncum |
3336 |
|
|
do k=1,nl |
3337 |
|
|
if (abs(hp_bak(i,k)-hp(i,k)).gt.0.01) then |
3338 |
|
|
write(*,*) 'i,k=',i,k |
3339 |
|
|
write(*,*) 'coef_epmax_cape=',coef_epmax_cape |
3340 |
|
|
write(*,*) 'epmax_diag(i)=',epmax_diag(i) |
3341 |
|
|
write(*,*) 'ep(i,k)=',ep(i,k) |
3342 |
|
|
write(*,*) 'hp(i,k)=',hp(i,k) |
3343 |
|
|
write(*,*) 'hp_bak(i,k)=',hp_bak(i,k) |
3344 |
|
|
write(*,*) 'h(i,k)=',h(i,k) |
3345 |
|
|
write(*,*) 'nk(i)=',nk(i) |
3346 |
|
|
write(*,*) 'h(i,nk(i))=',h(i,nk(i)) |
3347 |
|
|
write(*,*) 'lv(i,k)=',lv(i,k) |
3348 |
|
|
write(*,*) 't(i,k)=',t(i,k) |
3349 |
|
|
write(*,*) 'clw(i,k)=',clw(i,k) |
3350 |
|
|
write(*,*) 'cpd,cpv=',cpd,cpv |
3351 |
|
|
CALL abort_physic(modname,abort_message,1) |
3352 |
|
|
endif |
3353 |
|
|
enddo !do k=1,nl |
3354 |
|
|
enddo !do i=1,ncum |
3355 |
|
|
endif !if (coef_epmax_cape.gt.1e-12) then |
3356 |
|
|
|
3357 |
|
|
return |
3358 |
|
|
end subroutine cv30_epmax_fn_cape |
3359 |
|
|
|
3360 |
|
|
|