1 |
|
|
|
2 |
|
|
! $Id: cv3p1_closure.F90 3671 2020-04-29 13:48:22Z jyg $ |
3 |
|
|
|
4 |
|
288 |
SUBROUTINE cv3p1_closure(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, & |
5 |
|
144 |
tvp, buoy, supmax, ok_inhib, ale, alp, omega,sig, w0, ptop2, cape, cin, m, & |
6 |
|
|
iflag, coef, plim1, plim2, asupmax, supmax0, asupmaxmin, cbmf, plfc, & |
7 |
|
|
wbeff) |
8 |
|
|
|
9 |
|
|
|
10 |
|
|
! ************************************************************** |
11 |
|
|
! * |
12 |
|
|
! CV3P1_CLOSURE * |
13 |
|
|
! Ale & Alp Closure of Convect3 * |
14 |
|
|
! * |
15 |
|
|
! written by : Kerry Emanuel * |
16 |
|
|
! vectorization: S. Bony * |
17 |
|
|
! modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
18 |
|
|
! Julie Frohwirth, 14/10/2005 17.44.22 * |
19 |
|
|
! ************************************************************** |
20 |
|
|
|
21 |
|
|
USE print_control_mod, ONLY: prt_level, lunout |
22 |
|
|
IMPLICIT NONE |
23 |
|
|
|
24 |
|
|
include "cvthermo.h" |
25 |
|
|
include "cv3param.h" |
26 |
|
|
include "YOMCST2.h" |
27 |
|
|
include "YOMCST.h" |
28 |
|
|
include "conema3.h" |
29 |
|
|
|
30 |
|
|
! input: |
31 |
|
|
INTEGER, INTENT (IN) :: ncum, nd, nloc |
32 |
|
|
INTEGER, DIMENSION (nloc), INTENT (IN) :: icb, inb |
33 |
|
|
REAL, DIMENSION (nloc), INTENT (IN) :: pbase, plcl |
34 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: p |
35 |
|
|
REAL, DIMENSION (nloc, nd+1), INTENT (IN) :: ph |
36 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: tv, tvp, buoy |
37 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: supmax |
38 |
|
|
LOGICAL, INTENT (IN) :: ok_inhib ! enable convection inhibition by dryness |
39 |
|
|
REAL, DIMENSION (nloc), INTENT (IN) :: ale, alp |
40 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: omega |
41 |
|
|
|
42 |
|
|
! input/output: |
43 |
|
|
INTEGER, DIMENSION (nloc), INTENT (INOUT) :: iflag |
44 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (INOUT) :: sig, w0 |
45 |
|
|
REAL, DIMENSION (nloc), INTENT (INOUT) :: ptop2 |
46 |
|
|
|
47 |
|
|
! output: |
48 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: cape, cin |
49 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (OUT) :: m |
50 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: plim1, plim2 |
51 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (OUT) :: asupmax |
52 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: supmax0 |
53 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: asupmaxmin |
54 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: cbmf, plfc |
55 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: wbeff |
56 |
|
|
|
57 |
|
|
! local variables: |
58 |
|
288 |
INTEGER il, i, j, k, icbmax, i0(nloc), klfc(nloc) |
59 |
|
|
REAL deltap, fac, w, amu |
60 |
|
|
REAL rhodp, dz |
61 |
|
|
REAL pbmxup |
62 |
|
288 |
REAL dtmin(nloc, nd), sigold(nloc, nd) |
63 |
|
288 |
REAL coefmix(nloc, nd) |
64 |
|
288 |
REAL pzero(nloc), ptop2old(nloc) |
65 |
|
288 |
REAL cina(nloc), cinb(nloc) |
66 |
|
|
INTEGER ibeg(nloc) |
67 |
|
288 |
INTEGER nsupmax(nloc) |
68 |
|
|
REAL supcrit, temp(nloc, nd) |
69 |
|
288 |
REAL p1(nloc), pmin(nloc) |
70 |
|
288 |
REAL asupmax0(nloc) |
71 |
|
288 |
LOGICAL ok(nloc) |
72 |
|
288 |
REAL siglim(nloc, nd), wlim(nloc, nd), mlim(nloc, nd) |
73 |
|
288 |
REAL wb2(nloc) |
74 |
|
288 |
REAL cbmflim(nloc), cbmf1(nloc), cbmfmax(nloc) |
75 |
|
288 |
REAL cbmflast(nloc) |
76 |
|
|
REAL coef(nloc) |
77 |
|
|
REAL xp(nloc), xq(nloc), xr(nloc), discr(nloc), b3(nloc), b4(nloc) |
78 |
|
|
REAL theta(nloc), bb(nloc) |
79 |
|
|
REAL term1, term2, term3 |
80 |
|
288 |
REAL alp2(nloc) ! Alp with offset |
81 |
|
|
!CR: variables for new erosion of adiabiatic ascent |
82 |
|
288 |
REAL mad(nloc, nd), me(nloc, nd), betalim(nloc, nd), beta_coef(nloc, nd) |
83 |
|
288 |
REAL med(nloc, nd), md(nloc,nd) |
84 |
|
|
!jyg< |
85 |
|
|
! coef_peel is now in the common cv3_param |
86 |
|
|
!! REAL coef_peel |
87 |
|
|
!! PARAMETER (coef_peel=0.25) |
88 |
|
|
!>jyg |
89 |
|
|
|
90 |
|
|
REAL sigmax |
91 |
|
|
PARAMETER (sigmax=0.1) |
92 |
|
|
|
93 |
|
|
CHARACTER (LEN=20) :: modname = 'cv3p1_closure' |
94 |
|
|
CHARACTER (LEN=80) :: abort_message |
95 |
|
|
|
96 |
|
|
! print *,' -> cv3p1_closure, Ale ',ale(1) |
97 |
|
|
|
98 |
|
|
|
99 |
|
|
! ------------------------------------------------------- |
100 |
|
|
! -- Initialization |
101 |
|
|
! ------------------------------------------------------- |
102 |
|
|
|
103 |
|
|
|
104 |
✓✓ |
69110 |
DO il = 1, ncum |
105 |
|
68966 |
alp2(il) = max(alp(il), 1.E-5) |
106 |
|
|
! IM |
107 |
|
69110 |
alp2(il) = max(alp(il), 1.E-12) |
108 |
|
|
END DO |
109 |
|
|
|
110 |
|
|
pbmxup = 50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
111 |
|
|
! exist (if any) |
112 |
|
|
|
113 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param nloc ncum nd icb inb nl', nloc, & |
114 |
|
|
ncum, nd, icb(nloc), inb(nloc), nl |
115 |
✓✓ |
5760 |
DO k = 1, nd !jyg: initialization up to nd |
116 |
✓✓ |
2695434 |
DO il = 1, ncum |
117 |
|
2695290 |
m(il, k) = 0.0 |
118 |
|
|
END DO |
119 |
|
|
END DO |
120 |
|
|
|
121 |
|
|
!CR: initializations for erosion of adiabatic ascent |
122 |
✓✓ |
5760 |
DO k = 1,nd !jyg: initialization up to nd |
123 |
✓✓ |
2695434 |
DO il = 1, ncum |
124 |
|
2689674 |
mad(il,k)=0. |
125 |
|
2689674 |
me(il,k)=0. |
126 |
|
2689674 |
betalim(il,k)=1. |
127 |
|
2695290 |
wlim(il,k)=0. |
128 |
|
|
ENDDO |
129 |
|
|
ENDDO |
130 |
|
|
|
131 |
|
|
! ------------------------------------------------------- |
132 |
|
|
! -- Reset sig(i) and w0(i) for i>inb and i<icb |
133 |
|
|
! ------------------------------------------------------- |
134 |
|
|
|
135 |
|
|
! update sig and w0 above LNB: |
136 |
|
|
|
137 |
✓✓ |
3888 |
DO k = 1, nl - 1 |
138 |
✓✓ |
1797004 |
DO il = 1, ncum |
139 |
✓✗✓✓
|
1796860 |
IF ((inb(il)<(nl-1)) .AND. (k>=(inb(il)+1))) THEN |
140 |
|
|
sig(il, k) = beta*sig(il, k) + 2.*alpha*buoy(il, inb(il))*abs(buoy(il & |
141 |
|
900445 |
,inb(il))) |
142 |
|
900445 |
sig(il, k) = amax1(sig(il,k), 0.0) |
143 |
|
900445 |
w0(il, k) = beta*w0(il, k) |
144 |
|
|
END IF |
145 |
|
|
END DO |
146 |
|
|
END DO |
147 |
|
|
|
148 |
|
|
! if(prt.level.GE.20) print*,'cv3p1_param apres 100' |
149 |
|
|
! compute icbmax: |
150 |
|
|
|
151 |
|
|
icbmax = 2 |
152 |
✓✓ |
69110 |
DO il = 1, ncum |
153 |
|
69110 |
icbmax = max(icbmax, icb(il)) |
154 |
|
|
END DO |
155 |
|
|
! if(prt.level.GE.20) print*,'cv3p1_param apres 200' |
156 |
|
|
|
157 |
|
|
! update sig and w0 below cloud base: |
158 |
|
|
|
159 |
✓✓ |
1601 |
DO k = 1, icbmax |
160 |
✓✓ |
698592 |
DO il = 1, ncum |
161 |
✓✓ |
698448 |
IF (k<=icb(il)) THEN |
162 |
|
|
sig(il, k) = beta*sig(il, k) - 2.*alpha*buoy(il, icb(il))*buoy(il, & |
163 |
|
374930 |
icb(il)) |
164 |
|
374930 |
sig(il, k) = amax1(sig(il,k), 0.0) |
165 |
|
374930 |
w0(il, k) = beta*w0(il, k) |
166 |
|
|
END IF |
167 |
|
|
END DO |
168 |
|
|
END DO |
169 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres 300' |
170 |
|
|
! ------------------------------------------------------------- |
171 |
|
|
! -- Reset fractional areas of updrafts and w0 at initial time |
172 |
|
|
! -- and after 10 time steps of no convection |
173 |
|
|
! ------------------------------------------------------------- |
174 |
|
|
|
175 |
✓✓ |
3888 |
DO k = 1, nl - 1 |
176 |
✓✓ |
1797004 |
DO il = 1, ncum |
177 |
✓✗✓✓
|
1796860 |
IF (sig(il,nd)<1.5 .OR. sig(il,nd)>12.0) THEN |
178 |
|
1181388 |
sig(il, k) = 0.0 |
179 |
|
1181388 |
w0(il, k) = 0.0 |
180 |
|
|
END IF |
181 |
|
|
END DO |
182 |
|
|
END DO |
183 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres 400' |
184 |
|
|
|
185 |
|
|
! ------------------------------------------------------------- |
186 |
|
|
! jyg1 |
187 |
|
|
! -- Calculate adiabatic ascent top pressure (ptop) |
188 |
|
|
! ------------------------------------------------------------- |
189 |
|
|
|
190 |
|
|
|
191 |
|
|
! c 1. Start at first level where precipitations form |
192 |
✓✓ |
69110 |
DO il = 1, ncum |
193 |
|
69110 |
pzero(il) = plcl(il) - pbcrit |
194 |
|
|
END DO |
195 |
|
|
|
196 |
|
|
! c 2. Add offset |
197 |
✓✓ |
69110 |
DO il = 1, ncum |
198 |
|
69110 |
pzero(il) = pzero(il) - pbmxup |
199 |
|
|
END DO |
200 |
✓✓ |
69110 |
DO il = 1, ncum |
201 |
|
69110 |
ptop2old(il) = ptop2(il) |
202 |
|
|
END DO |
203 |
|
|
|
204 |
✓✓ |
69110 |
DO il = 1, ncum |
205 |
|
|
! CR:c est quoi ce 300?? |
206 |
|
69110 |
p1(il) = pzero(il) - 300. |
207 |
|
|
END DO |
208 |
|
|
|
209 |
|
|
! compute asupmax=abs(supmax) up to lnm+1 |
210 |
|
|
|
211 |
✓✓ |
69110 |
DO il = 1, ncum |
212 |
|
68966 |
ok(il) = .TRUE. |
213 |
|
69110 |
nsupmax(il) = inb(il) |
214 |
|
|
END DO |
215 |
|
|
|
216 |
✓✓ |
4032 |
DO i = 1, nl |
217 |
✓✓ |
1866114 |
DO il = 1, ncum |
218 |
✓✓✓✓
|
1865970 |
IF (i>icb(il) .AND. i<=inb(il)) THEN |
219 |
✓✓✓✓ ✓✓ |
517741 |
IF (p(il,i)<=pzero(il) .AND. supmax(il,i)<0 .AND. ok(il)) THEN |
220 |
|
42892 |
nsupmax(il) = i |
221 |
|
42892 |
ok(il) = .FALSE. |
222 |
|
|
END IF ! end IF (P(i) ... ) |
223 |
|
|
END IF ! end IF (icb+1 le i le inb) |
224 |
|
|
END DO |
225 |
|
|
END DO |
226 |
|
|
|
227 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres 2.' |
228 |
✓✓ |
4032 |
DO i = 1, nl |
229 |
✓✓ |
1866114 |
DO il = 1, ncum |
230 |
|
1865970 |
asupmax(il, i) = abs(supmax(il,i)) |
231 |
|
|
END DO |
232 |
|
|
END DO |
233 |
|
|
|
234 |
|
|
|
235 |
✓✓ |
69110 |
DO il = 1, ncum |
236 |
|
68966 |
asupmaxmin(il) = 10. |
237 |
|
68966 |
pmin(il) = 100. |
238 |
|
|
! IM ?? |
239 |
|
69110 |
asupmax0(il) = 0. |
240 |
|
|
END DO |
241 |
|
|
|
242 |
|
|
! c 3. Compute in which level is Pzero |
243 |
|
|
|
244 |
|
|
! IM bug i0 = 18 |
245 |
✓✓ |
69110 |
DO il = 1, ncum |
246 |
|
69110 |
i0(il) = nl |
247 |
|
|
END DO |
248 |
|
|
|
249 |
✓✓ |
4032 |
DO i = 1, nl |
250 |
✓✓ |
1866114 |
DO il = 1, ncum |
251 |
✓✓✓✓
|
1865970 |
IF (i>icb(il) .AND. i<=inb(il)) THEN |
252 |
✓✓✓✓
|
517741 |
IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
253 |
✓✗✓✓
|
148415 |
IF (pzero(il)>p(il,i) .AND. pzero(il)<p(il,i-1)) THEN |
254 |
|
51115 |
i0(il) = i |
255 |
|
|
END IF |
256 |
|
|
END IF |
257 |
|
|
END IF |
258 |
|
|
END DO |
259 |
|
|
END DO |
260 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres 3.' |
261 |
|
|
|
262 |
|
|
! c 4. Compute asupmax at Pzero |
263 |
|
|
|
264 |
✓✓ |
4032 |
DO i = 1, nl |
265 |
✓✓ |
1866114 |
DO il = 1, ncum |
266 |
✓✓✓✓
|
1865970 |
IF (i>icb(il) .AND. i<=inb(il)) THEN |
267 |
✓✓✓✓
|
517741 |
IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
268 |
|
|
asupmax0(il) = ((pzero(il)-p(il,i0(il)-1))*asupmax(il,i0(il))-( & |
269 |
|
|
pzero(il)-p(il,i0(il)))*asupmax(il,i0(il)-1))/(p(il,i0(il))-p(il, & |
270 |
|
148415 |
i0(il)-1)) |
271 |
|
|
END IF |
272 |
|
|
END IF |
273 |
|
|
END DO |
274 |
|
|
END DO |
275 |
|
|
|
276 |
|
|
|
277 |
✓✓ |
4032 |
DO i = 1, nl |
278 |
✓✓ |
1866114 |
DO il = 1, ncum |
279 |
✗✓ |
1865970 |
IF (p(il,i)==pzero(il)) THEN |
280 |
|
|
asupmax(i, il) = asupmax0(il) |
281 |
|
|
END IF |
282 |
|
|
END DO |
283 |
|
|
END DO |
284 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres 4.' |
285 |
|
|
|
286 |
|
|
! c 5. Compute asupmaxmin, minimum of asupmax |
287 |
|
|
|
288 |
✓✓ |
4032 |
DO i = 1, nl |
289 |
✓✓ |
1866114 |
DO il = 1, ncum |
290 |
✓✓✓✓
|
1865970 |
IF (i>icb(il) .AND. i<=inb(il)) THEN |
291 |
✓✓✓✓
|
517741 |
IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
292 |
✓✓ |
148415 |
IF (asupmax(il,i)<asupmaxmin(il)) THEN |
293 |
|
99479 |
asupmaxmin(il) = asupmax(il, i) |
294 |
|
99479 |
pmin(il) = p(il, i) |
295 |
|
|
END IF |
296 |
|
|
END IF |
297 |
|
|
END IF |
298 |
|
|
END DO |
299 |
|
|
END DO |
300 |
|
|
|
301 |
✓✓ |
69110 |
DO il = 1, ncum |
302 |
|
|
! IM |
303 |
✗✓ |
68966 |
IF (prt_level>=20) THEN |
304 |
|
|
PRINT *, 'cv3p1_closure il asupmax0 asupmaxmin', il, asupmax0(il), & |
305 |
|
|
asupmaxmin(il), pzero(il), pmin(il) |
306 |
|
|
END IF |
307 |
✓✓ |
69110 |
IF (asupmax0(il)<asupmaxmin(il)) THEN |
308 |
|
22612 |
asupmaxmin(il) = asupmax0(il) |
309 |
|
22612 |
pmin(il) = pzero(il) |
310 |
|
|
END IF |
311 |
|
|
END DO |
312 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres 5.' |
313 |
|
|
|
314 |
|
|
|
315 |
|
|
! Compute Supmax at Pzero |
316 |
|
|
|
317 |
✓✗ |
1296 |
DO i = 1, nl |
318 |
✓✓ |
554039 |
DO il = 1, ncum |
319 |
✓✓✓✓
|
554039 |
IF (i>icb(il) .AND. i<=inb(il)) THEN |
320 |
✓✓ |
170736 |
IF (p(il,i)<=pzero(il)) THEN |
321 |
|
|
supmax0(il) = ((p(il,i)-pzero(il))*asupmax(il,i-1)-(p(il, & |
322 |
|
144 |
i-1)-pzero(il))*asupmax(il,i))/(p(il,i)-p(il,i-1)) |
323 |
|
144 |
GO TO 425 |
324 |
|
|
END IF ! end IF (P(i) ... ) |
325 |
|
|
END IF ! end IF (icb+1 le i le inb) |
326 |
|
|
END DO |
327 |
|
|
END DO |
328 |
|
|
|
329 |
|
|
425 CONTINUE |
330 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres 425.' |
331 |
|
|
|
332 |
|
|
! c 6. Calculate ptop2 |
333 |
|
|
|
334 |
✓✓ |
69110 |
DO il = 1, ncum |
335 |
✓✓ |
68966 |
IF (asupmaxmin(il)<supcrit1) THEN |
336 |
|
43046 |
ptop2(il) = pmin(il) |
337 |
|
|
END IF |
338 |
|
|
|
339 |
✓✓✓✓
|
68966 |
IF (asupmaxmin(il)>supcrit1 .AND. asupmaxmin(il)<supcrit2) THEN |
340 |
|
2646 |
ptop2(il) = ptop2old(il) |
341 |
|
|
END IF |
342 |
|
|
|
343 |
✓✓ |
69110 |
IF (asupmaxmin(il)>supcrit2) THEN |
344 |
|
23274 |
ptop2(il) = ph(il, inb(il)) |
345 |
|
|
END IF |
346 |
|
|
END DO |
347 |
|
|
|
348 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres 6.' |
349 |
|
|
|
350 |
|
|
! c 7. Compute multiplying factor for adiabatic updraught mass flux |
351 |
|
|
|
352 |
|
|
|
353 |
✗✓ |
144 |
IF (ok_inhib) THEN |
354 |
|
|
|
355 |
|
|
DO i = 1, nl |
356 |
|
|
DO il = 1, ncum |
357 |
|
|
IF (i<=nl) THEN |
358 |
|
|
coefmix(il, i) = (min(ptop2(il),ph(il,i))-ph(il,i))/(ph(il,i+1)-ph( & |
359 |
|
|
il,i)) |
360 |
|
|
coefmix(il, i) = min(coefmix(il,i), 1.) |
361 |
|
|
END IF |
362 |
|
|
END DO |
363 |
|
|
END DO |
364 |
|
|
|
365 |
|
|
|
366 |
|
|
ELSE ! when inhibition is not taken into account, coefmix=1 |
367 |
|
|
|
368 |
|
|
|
369 |
|
|
|
370 |
✓✓ |
4032 |
DO i = 1, nl |
371 |
✓✓ |
1866114 |
DO il = 1, ncum |
372 |
|
3888 |
IF (i<=nl) THEN |
373 |
|
1862082 |
coefmix(il, i) = 1. |
374 |
|
|
END IF |
375 |
|
|
END DO |
376 |
|
|
END DO |
377 |
|
|
|
378 |
|
|
END IF ! ok_inhib |
379 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres 7.' |
380 |
|
|
! ------------------------------------------------------------------- |
381 |
|
|
! ------------------------------------------------------------------- |
382 |
|
|
|
383 |
|
|
|
384 |
|
|
! jyg2 |
385 |
|
|
|
386 |
|
|
! ========================================================================== |
387 |
|
|
|
388 |
|
|
|
389 |
|
|
! ------------------------------------------------------------- |
390 |
|
|
! -- Calculate convective inhibition (CIN) |
391 |
|
|
! ------------------------------------------------------------- |
392 |
|
|
|
393 |
|
|
! do i=1,nloc |
394 |
|
|
! print*,'avant cine p',pbase(i),plcl(i) |
395 |
|
|
! enddo |
396 |
|
|
! do j=1,nd |
397 |
|
|
! do i=1,nloc |
398 |
|
|
! print*,'avant cine t',tv(i),tvp(i) |
399 |
|
|
! enddo |
400 |
|
|
! enddo |
401 |
|
|
CALL cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, cina, & |
402 |
|
144 |
cinb, plfc) |
403 |
|
|
|
404 |
✓✓ |
69110 |
DO il = 1, ncum |
405 |
|
69110 |
cin(il) = cina(il) + cinb(il) |
406 |
|
|
END DO |
407 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres cv3_cine' |
408 |
|
|
! ------------------------------------------------------------- |
409 |
|
|
! --Update buoyancies to account for Ale |
410 |
|
|
! ------------------------------------------------------------- |
411 |
|
|
|
412 |
|
|
CALL cv3_buoy(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, ale, cin, tv, & |
413 |
|
144 |
tvp, buoy) |
414 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres cv3_buoy' |
415 |
|
|
|
416 |
|
|
! ------------------------------------------------------------- |
417 |
|
|
! -- Calculate convective available potential energy (cape), |
418 |
|
|
! -- vertical velocity (w), fractional area covered by |
419 |
|
|
! -- undilute updraft (sig), and updraft mass flux (m) |
420 |
|
|
! ------------------------------------------------------------- |
421 |
|
|
|
422 |
✓✓ |
69110 |
DO il = 1, ncum |
423 |
|
69110 |
cape(il) = 0.0 |
424 |
|
|
END DO |
425 |
|
|
|
426 |
|
|
! compute dtmin (minimum buoyancy between ICB and given level k): |
427 |
|
|
|
428 |
✓✓ |
4032 |
DO k = 1, nl |
429 |
✓✓ |
1866114 |
DO il = 1, ncum |
430 |
|
1865970 |
dtmin(il, k) = 100.0 |
431 |
|
|
END DO |
432 |
|
|
END DO |
433 |
|
|
|
434 |
✓✓ |
4032 |
DO k = 1, nl |
435 |
✓✓ |
109008 |
DO j = minorig, nl |
436 |
✓✓ |
50385078 |
DO il = 1, ncum |
437 |
✓✓✓✓ ✓✓✓✓
|
50276214 |
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (j>=icb(il)) .AND. (j<= & |
438 |
|
104976 |
(k-1))) THEN |
439 |
|
2960946 |
dtmin(il, k) = amin1(dtmin(il,k), buoy(il,j)) |
440 |
|
|
END IF |
441 |
|
|
END DO |
442 |
|
|
END DO |
443 |
|
|
END DO |
444 |
|
|
|
445 |
|
|
! the interval on which cape is computed starts at pbase : |
446 |
|
|
|
447 |
✓✓ |
4032 |
DO k = 1, nl |
448 |
✓✓ |
1866114 |
DO il = 1, ncum |
449 |
|
|
|
450 |
✓✓✓✓
|
1865970 |
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
451 |
✗✓ |
517741 |
IF (iflag_mix_adiab.eq.1) THEN |
452 |
|
|
!CR:computation of cape from LCL: keep flag or to modify in all cases? |
453 |
|
|
deltap = min(plcl(il), ph(il,k-1)) - min(plcl(il), ph(il,k)) |
454 |
|
|
ELSE |
455 |
|
517741 |
deltap = min(pbase(il), ph(il,k-1)) - min(pbase(il), ph(il,k)) |
456 |
|
|
ENDIF |
457 |
|
517741 |
cape(il) = cape(il) + rrd*buoy(il, k-1)*deltap/p(il, k-1) |
458 |
|
517741 |
cape(il) = amax1(0.0, cape(il)) |
459 |
|
517741 |
sigold(il, k) = sig(il, k) |
460 |
|
|
|
461 |
|
|
|
462 |
|
|
! jyg Coefficient coefmix limits convection to levels where a |
463 |
|
|
! sufficient |
464 |
|
|
! fraction of mixed draughts are ascending. |
465 |
|
517741 |
siglim(il, k) = coefmix(il, k)*alpha1*dtmin(il, k)*abs(dtmin(il,k)) |
466 |
|
517741 |
siglim(il, k) = amax1(siglim(il,k), 0.0) |
467 |
|
517741 |
siglim(il, k) = amin1(siglim(il,k), 0.01) |
468 |
|
|
! c fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
469 |
|
|
fac = 1. |
470 |
|
517741 |
wlim(il, k) = fac*sqrt(cape(il)) |
471 |
|
517741 |
amu = siglim(il, k)*wlim(il, k) |
472 |
|
517741 |
rhodp = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
473 |
|
517741 |
mlim(il, k) = amu*rhodp |
474 |
|
|
! print*, 'siglim ', k,siglim(1,k) |
475 |
|
|
END IF |
476 |
|
|
|
477 |
|
|
END DO |
478 |
|
|
END DO |
479 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres 600' |
480 |
|
|
|
481 |
✓✓ |
69110 |
DO il = 1, ncum |
482 |
|
|
! IM beg |
483 |
✗✓ |
68966 |
IF (prt_level>=20) THEN |
484 |
|
|
PRINT *, 'cv3p1_closure il icb mlim ph ph+1 ph+2', il, icb(il), & |
485 |
|
|
mlim(il, icb(il)+1), ph(il, icb(il)), ph(il, icb(il)+1), & |
486 |
|
|
ph(il, icb(il)+2) |
487 |
|
|
END IF |
488 |
|
|
|
489 |
✓✓ |
69110 |
IF (icb(il)+1<=inb(il)) THEN |
490 |
|
|
! IM end |
491 |
|
|
mlim(il, icb(il)) = 0.5*mlim(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb( & |
492 |
|
64781 |
il)+1))/(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
493 |
|
|
! IM beg |
494 |
|
|
END IF !(icb(il.le.inb(il))) then |
495 |
|
|
! IM end |
496 |
|
|
END DO |
497 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres 700' |
498 |
|
|
|
499 |
|
|
! jyg1 |
500 |
|
|
! ------------------------------------------------------------------------ |
501 |
|
|
! c Correct mass fluxes so that power used to overcome CIN does not |
502 |
|
|
! c exceed Power Available for Lifting (PAL). |
503 |
|
|
! ------------------------------------------------------------------------ |
504 |
|
|
|
505 |
✓✓ |
69110 |
DO il = 1, ncum |
506 |
|
68966 |
cbmflim(il) = 0. |
507 |
|
69110 |
cbmf(il) = 0. |
508 |
|
|
END DO |
509 |
|
|
|
510 |
|
|
! c 1. Compute cloud base mass flux of elementary system (Cbmf0=Cbmflim) |
511 |
|
|
|
512 |
✓✓ |
4032 |
DO k = 1, nl |
513 |
✓✓ |
1866114 |
DO il = 1, ncum |
514 |
|
|
! old IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
515 |
|
|
! IM IF (k .ge. icb(il)+1 .and. k .le. inb(il)) THEN |
516 |
|
|
IF (k>=icb(il) .AND. k<=inb(il) & !cor jyg |
517 |
✓✓✓✓ ✓✓ |
1865970 |
.AND. icb(il)+1<=inb(il)) THEN !cor jyg |
518 |
|
582522 |
cbmflim(il) = cbmflim(il) + mlim(il, k) |
519 |
|
|
END IF |
520 |
|
|
END DO |
521 |
|
|
END DO |
522 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres cbmflim' |
523 |
|
|
|
524 |
|
|
! 1.5 Compute cloud base mass flux given by Alp closure (Cbmf1), maximum |
525 |
|
|
! allowed mass flux (Cbmfmax) and final target mass flux (Cbmf) |
526 |
|
|
! Cbmf is set to zero if Cbmflim (the mass flux of elementary cloud) |
527 |
|
|
! is exceedingly small. |
528 |
|
|
|
529 |
✓✓ |
69110 |
DO il = 1, ncum |
530 |
|
69110 |
wb2(il) = sqrt(2.*max(ale(il)+cin(il),0.)) |
531 |
|
|
END DO |
532 |
|
|
|
533 |
✓✓ |
69110 |
DO il = 1, ncum |
534 |
✓✓ |
69110 |
IF (plfc(il)<100.) THEN |
535 |
|
|
! This is an irealistic value for plfc => no calculation of wbeff |
536 |
|
4343 |
wbeff(il) = 100.1 |
537 |
|
|
ELSE |
538 |
|
|
! Calculate wbeff |
539 |
✗✓ |
64623 |
IF (NINT(flag_wb)==0) THEN |
540 |
|
|
wbeff(il) = wbmax |
541 |
✗✓ |
64623 |
ELSE IF (NINT(flag_wb)==1) THEN |
542 |
|
|
wbeff(il) = wbmax/(1.+500./(ph(il,1)-plfc(il))) |
543 |
✗✓ |
64623 |
ELSE IF (NINT(flag_wb)==2) THEN |
544 |
|
|
wbeff(il) = wbmax*(0.01*(ph(il,1)-plfc(il)))**2 |
545 |
|
|
ELSE ! Option provisoire ou le iflag_wb/10 est considere comme une vitesse |
546 |
|
64623 |
wbeff(il) = flag_wb*0.01+wbmax/(1.+500./(ph(il,1)-plfc(il))) |
547 |
|
|
END IF |
548 |
|
|
END IF |
549 |
|
|
END DO |
550 |
|
|
|
551 |
|
|
!CR:Compute k at plfc |
552 |
✓✓ |
69110 |
DO il=1,ncum |
553 |
|
69110 |
klfc(il)=nl |
554 |
|
|
ENDDO |
555 |
✓✓ |
4032 |
DO k=1,nl |
556 |
✓✓ |
1866114 |
DO il=1,ncum |
557 |
✓✓✓✓
|
1865970 |
if ((plfc(il).lt.ph(il,k)).and.(plfc(il).ge.ph(il,k+1))) then |
558 |
|
64623 |
klfc(il)=k |
559 |
|
|
endif |
560 |
|
|
ENDDO |
561 |
|
|
ENDDO |
562 |
|
|
!RC |
563 |
|
|
|
564 |
✓✓ |
69110 |
DO il = 1, ncum |
565 |
|
|
! jyg Modification du coef de wb*wb pour conformite avec papier Wake |
566 |
|
|
! c cbmf1(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
567 |
|
68966 |
cbmf1(il) = alp2(il)/(2.*wbeff(il)*wbeff(il)-cin(il)) |
568 |
|
|
!CR: Add large-scale component to the mass-flux |
569 |
|
|
!encore connu sous le nom "Experience du tube de dentifrice" |
570 |
✗✓✗✗
|
68966 |
if ((coef_clos_ls.gt.0.).and.(plfc(il).gt.0.)) then |
571 |
|
|
cbmf1(il) = cbmf1(il) - coef_clos_ls*min(0.,1./RG*omega(il,klfc(il))) |
572 |
|
|
endif |
573 |
|
|
!RC |
574 |
✗✓✗✗
|
68966 |
IF (cbmf1(il)==0 .AND. alp2(il)/=0.) THEN |
575 |
|
|
WRITE (lunout, *) 'cv3p1_closure cbmf1=0 and alp NE 0 il alp2 alp cin ' & |
576 |
|
|
, il, alp2(il), alp(il), cin(il) |
577 |
|
|
abort_message = '' |
578 |
|
|
CALL abort_physic(modname, abort_message, 1) |
579 |
|
|
END IF |
580 |
|
69110 |
cbmfmax(il) = sigmax*wb2(il)*100.*p(il, icb(il))/(rrd*tv(il,icb(il))) |
581 |
|
|
END DO |
582 |
|
|
|
583 |
✓✓ |
69110 |
DO il = 1, ncum |
584 |
✓✓ |
69110 |
IF (cbmflim(il)>1.E-6) THEN |
585 |
|
|
! ATTENTION TEST CR |
586 |
|
|
! if (cbmfmax(il).lt.1.e-12) then |
587 |
|
39170 |
cbmf(il) = min(cbmf1(il), cbmfmax(il)) |
588 |
|
|
! else |
589 |
|
|
! cbmf(il) = cbmf1(il) |
590 |
|
|
! endif |
591 |
|
|
! print*,'cbmf',cbmf1(il),cbmfmax(il) |
592 |
|
|
END IF |
593 |
|
|
END DO |
594 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres cbmflim_testCR' |
595 |
|
|
|
596 |
|
|
! c 2. Compute coefficient and apply correction |
597 |
|
|
|
598 |
✓✓ |
69110 |
DO il = 1, ncum |
599 |
|
69110 |
coef(il) = (cbmf(il)+1.E-10)/(cbmflim(il)+1.E-10) |
600 |
|
|
END DO |
601 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres coef_plantePLUS' |
602 |
|
|
|
603 |
✓✓ |
4032 |
DO k = 1, nl |
604 |
✓✓ |
1866114 |
DO il = 1, ncum |
605 |
✓✓✓✓
|
1865970 |
IF (k>=icb(il)+1 .AND. k<=inb(il)) THEN |
606 |
|
|
amu = beta*sig(il, k)*w0(il, k) + (1.-beta)*coef(il)*siglim(il, k)* & |
607 |
|
517741 |
wlim(il, k) |
608 |
|
|
w0(il, k) = wlim(il, k) |
609 |
|
517741 |
w0(il, k) = max(w0(il,k), 1.E-10) |
610 |
|
517741 |
sig(il, k) = amu/w0(il, k) |
611 |
|
517741 |
sig(il, k) = min(sig(il,k), 1.) |
612 |
|
|
! c amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
613 |
|
517741 |
m(il, k) = amu*0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
614 |
|
|
END IF |
615 |
|
|
END DO |
616 |
|
|
END DO |
617 |
|
|
! jyg2 |
618 |
✓✓ |
69110 |
DO il = 1, ncum |
619 |
|
68966 |
w0(il, icb(il)) = 0.5*w0(il, icb(il)+1) |
620 |
|
|
m(il, icb(il)) = 0.5*m(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
621 |
|
68966 |
(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
622 |
|
68966 |
sig(il, icb(il)) = sig(il, icb(il)+1) |
623 |
|
69110 |
sig(il, icb(il)-1) = sig(il, icb(il)) |
624 |
|
|
END DO |
625 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres w0_sig_M' |
626 |
|
|
|
627 |
|
|
!CR: new erosion of adiabatic ascent: modification of m |
628 |
|
|
!computation of the sum of ascending fluxes |
629 |
✗✓ |
144 |
IF (iflag_mix_adiab.eq.1) THEN |
630 |
|
|
|
631 |
|
|
!Verification sum(me)=sum(m) |
632 |
|
|
DO k = 1,nd !jyg: initialization up to nd |
633 |
|
|
DO il = 1, ncum |
634 |
|
|
md(il,k)=0. |
635 |
|
|
med(il,k)=0. |
636 |
|
|
ENDDO |
637 |
|
|
ENDDO |
638 |
|
|
|
639 |
|
|
DO k = nl,1,-1 |
640 |
|
|
DO il = 1, ncum |
641 |
|
|
md(il,k)=md(il,k+1)+m(il,k+1) |
642 |
|
|
ENDDO |
643 |
|
|
ENDDO |
644 |
|
|
|
645 |
|
|
DO k = nl,1,-1 |
646 |
|
|
DO il = 1, ncum |
647 |
|
|
IF ((k>=(icb(il))) .AND. (k<=inb(il))) THEN |
648 |
|
|
mad(il,k)=mad(il,k+1)+m(il,k+1) |
649 |
|
|
ENDIF |
650 |
|
|
! print*,"mad",il,k,mad(il,k) |
651 |
|
|
ENDDO |
652 |
|
|
ENDDO |
653 |
|
|
|
654 |
|
|
!CR: erosion of each adiabatic ascent during its ascent |
655 |
|
|
|
656 |
|
|
!Computation of erosion coefficient beta_coef |
657 |
|
|
DO k = 1, nl |
658 |
|
|
DO il = 1, ncum |
659 |
|
|
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (mlim(il,k).gt.0.)) THEN |
660 |
|
|
! print*,"beta_coef",il,k,icb(il),inb(il),buoy(il,k),tv(il,k),wlim(il,k),wlim(il,k+1) |
661 |
|
|
beta_coef(il,k)=RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2 |
662 |
|
|
ELSE |
663 |
|
|
beta_coef(il,k)=0. |
664 |
|
|
ENDIF |
665 |
|
|
ENDDO |
666 |
|
|
ENDDO |
667 |
|
|
|
668 |
|
|
! print*,"apres beta_coef" |
669 |
|
|
|
670 |
|
|
DO k = 1, nl |
671 |
|
|
DO il = 1, ncum |
672 |
|
|
|
673 |
|
|
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
674 |
|
|
|
675 |
|
|
! print*,"dz",il,k,tv(il, k-1) |
676 |
|
|
dz = (ph(il,k-1)-ph(il,k))/(p(il, k-1)/(rrd*tv(il, k-1))*RG) |
677 |
|
|
betalim(il,k)=betalim(il,k-1)*exp(-1.*beta_coef(il,k-1)*dz) |
678 |
|
|
! betalim(il,k)=betalim(il,k-1)*exp(-RG*coef_peel*buoy(il,k-1)/tv(il,k-1)/5.**2*dz) |
679 |
|
|
! print*,"me",il,k,mlim(il,k),buoy(il,k),wlim(il,k),mad(il,k) |
680 |
|
|
dz = (ph(il,k)-ph(il,k+1))/(p(il, k)/(rrd*tv(il, k))*RG) |
681 |
|
|
! me(il,k)=betalim(il,k)*(m(il,k)+RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz*mad(il,k)) |
682 |
|
|
me(il,k)=betalim(il,k)*(m(il,k)+beta_coef(il,k)*dz*mad(il,k)) |
683 |
|
|
! print*,"B/w2",il,k,RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz |
684 |
|
|
|
685 |
|
|
END IF |
686 |
|
|
|
687 |
|
|
!Modification of m |
688 |
|
|
m(il,k)=me(il,k) |
689 |
|
|
END DO |
690 |
|
|
END DO |
691 |
|
|
|
692 |
|
|
! DO il = 1, ncum |
693 |
|
|
! dz = (ph(il,icb(il))-ph(il,icb(il)+1))/(p(il, icb(il))/(rrd*tv(il, icb(il)))*RG) |
694 |
|
|
! m(il,icb(il))=m(il,icb(il))+RG*coef_peel*buoy(il,icb(il))/tv(il,icb(il)) & |
695 |
|
|
! /((wlim(il,icb(il))+wlim(il,icb(il)+1))/2.)**2*dz*mad(il,icb(il)) |
696 |
|
|
! print*,"wlim(icb)",icb(il),wlim(il,icb(il)),m(il,icb(il)) |
697 |
|
|
! ENDDO |
698 |
|
|
|
699 |
|
|
!Verification sum(me)=sum(m) |
700 |
|
|
DO k = nl,1,-1 |
701 |
|
|
DO il = 1, ncum |
702 |
|
|
med(il,k)=med(il,k+1)+m(il,k+1) |
703 |
|
|
! print*,"somme(me),somme(m)",il,k,icb(il),med(il,k),md(il,k),me(il,k),m(il,k),wlim(il,k) |
704 |
|
|
ENDDO |
705 |
|
|
ENDDO |
706 |
|
|
|
707 |
|
|
|
708 |
|
|
ENDIF !(iflag_mix_adiab) |
709 |
|
|
!RC |
710 |
|
|
|
711 |
|
|
|
712 |
|
|
|
713 |
|
|
! c 3. Compute final cloud base mass flux and set iflag to 3 if |
714 |
|
|
! c cloud base mass flux is exceedingly small and is decreasing (i.e. if |
715 |
|
|
! c the final mass flux (cbmflast) is greater than the target mass flux |
716 |
|
|
! c (cbmf)). |
717 |
|
|
|
718 |
✓✓ |
69110 |
DO il = 1, ncum |
719 |
|
69110 |
cbmflast(il) = 0. |
720 |
|
|
END DO |
721 |
|
|
|
722 |
✓✓ |
4032 |
DO k = 1, nl |
723 |
✓✓ |
1866114 |
DO il = 1, ncum |
724 |
✓✓✓✓
|
1865970 |
IF (k>=icb(il) .AND. k<=inb(il)) THEN |
725 |
|
|
!IMpropo?? IF ((k.ge.(icb(il)+1)).and.(k.le.inb(il))) THEN |
726 |
|
586707 |
cbmflast(il) = cbmflast(il) + m(il, k) |
727 |
|
|
END IF |
728 |
|
|
END DO |
729 |
|
|
END DO |
730 |
|
|
|
731 |
✓✓ |
69110 |
DO il = 1, ncum |
732 |
✓✓✓✗
|
69110 |
IF (cbmflast(il)<1.E-6 .AND. cbmflast(il)>=cbmf(il)) THEN |
733 |
|
45947 |
iflag(il) = 3 |
734 |
|
|
END IF |
735 |
|
|
END DO |
736 |
|
|
|
737 |
✓✓ |
4032 |
DO k = 1, nl |
738 |
✓✓ |
1866114 |
DO il = 1, ncum |
739 |
✓✓ |
1865970 |
IF (iflag(il)>=3) THEN |
740 |
|
1240569 |
m(il, k) = 0. |
741 |
|
1240569 |
sig(il, k) = 0. |
742 |
|
1240569 |
w0(il, k) = 0. |
743 |
|
|
END IF |
744 |
|
|
END DO |
745 |
|
|
END DO |
746 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param apres iflag' |
747 |
|
|
|
748 |
|
|
! c 4. Introduce a correcting factor for coef, in order to obtain an |
749 |
|
|
! effective |
750 |
|
|
! c sigdz larger in the present case (using cv3p1_closure) than in the |
751 |
|
|
! old |
752 |
|
|
! c closure (using cv3_closure). |
753 |
|
|
IF (1==0) THEN |
754 |
|
|
DO il = 1, ncum |
755 |
|
|
! c coef(il) = 2.*coef(il) |
756 |
|
|
coef(il) = 5.*coef(il) |
757 |
|
|
END DO |
758 |
|
|
! version CVS du ..2008 |
759 |
|
|
ELSE |
760 |
✓✗ |
144 |
IF (iflag_cvl_sigd==0) THEN |
761 |
|
|
! test pour verifier qu on fait la meme chose qu avant: sid constant |
762 |
✓✓ |
69110 |
coef(1:ncum) = 1. |
763 |
|
|
ELSE |
764 |
|
|
coef(1:ncum) = min(2.*coef(1:ncum), 5.) |
765 |
|
|
coef(1:ncum) = max(2.*coef(1:ncum), 0.2) |
766 |
|
|
END IF |
767 |
|
|
END IF |
768 |
|
|
|
769 |
✗✓ |
144 |
IF (prt_level>=20) PRINT *, 'cv3p1_param FIN' |
770 |
|
144 |
RETURN |
771 |
|
|
END SUBROUTINE cv3p1_closure |
772 |
|
|
|
773 |
|
|
|