1 |
|
|
|
2 |
|
|
|
3 |
|
|
SUBROUTINE cv3p2_closure(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, & |
4 |
|
|
tvp, buoy, supmax, ok_inhib, ale, alp, omega,sig, w0, ptop2, cape, cin, m, & |
5 |
|
|
iflag, coef, plim1, plim2, asupmax, supmax0, asupmaxmin, cbmflast, plfc, & |
6 |
|
|
wbeff) |
7 |
|
|
|
8 |
|
|
|
9 |
|
|
! ************************************************************** |
10 |
|
|
! * |
11 |
|
|
! CV3P2_CLOSURE * |
12 |
|
|
! Ale & Alp Closure of Convect3 * |
13 |
|
|
! * |
14 |
|
|
! written by : Kerry Emanuel * |
15 |
|
|
! vectorization: S. Bony * |
16 |
|
|
! modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
17 |
|
|
! Julie Frohwirth, 14/10/2005 17.44.22 * |
18 |
|
|
! ************************************************************** |
19 |
|
|
|
20 |
|
|
USE print_control_mod, ONLY: prt_level, lunout |
21 |
|
|
IMPLICIT NONE |
22 |
|
|
|
23 |
|
|
include "cvthermo.h" |
24 |
|
|
include "cv3param.h" |
25 |
|
|
include "cvflag.h" |
26 |
|
|
include "YOMCST2.h" |
27 |
|
|
include "YOMCST.h" |
28 |
|
|
include "conema3.h" |
29 |
|
|
|
30 |
|
|
! input: |
31 |
|
|
INTEGER, INTENT (IN) :: ncum, nd, nloc |
32 |
|
|
INTEGER, DIMENSION (nloc), INTENT (IN) :: icb, inb |
33 |
|
|
REAL, DIMENSION (nloc), INTENT (IN) :: pbase, plcl |
34 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: p |
35 |
|
|
REAL, DIMENSION (nloc, nd+1), INTENT (IN) :: ph |
36 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: tv, tvp, buoy |
37 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: supmax |
38 |
|
|
LOGICAL, INTENT (IN) :: ok_inhib ! enable convection inhibition by dryness |
39 |
|
|
REAL, DIMENSION (nloc), INTENT (IN) :: ale, alp |
40 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (IN) :: omega |
41 |
|
|
|
42 |
|
|
! input/output: |
43 |
|
|
INTEGER, DIMENSION (nloc), INTENT (INOUT) :: iflag |
44 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (INOUT) :: sig, w0 |
45 |
|
|
REAL, DIMENSION (nloc), INTENT (INOUT) :: ptop2 |
46 |
|
|
|
47 |
|
|
! output: |
48 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: cape, cin |
49 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (OUT) :: m |
50 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: plim1, plim2 |
51 |
|
|
REAL, DIMENSION (nloc, nd), INTENT (OUT) :: asupmax |
52 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: supmax0 |
53 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: asupmaxmin |
54 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: cbmflast, plfc |
55 |
|
|
REAL, DIMENSION (nloc), INTENT (OUT) :: wbeff |
56 |
|
|
|
57 |
|
|
! local variables: |
58 |
|
|
INTEGER :: il, i, j, k, icbmax |
59 |
|
|
INTEGER, DIMENSION (nloc) :: i0, klfc |
60 |
|
|
REAL :: deltap, fac, w, amu |
61 |
|
|
REAL, DIMENSION (nloc, nd) :: rhodp ! Factor such that m=rhodp*sig*w |
62 |
|
|
REAL :: dz |
63 |
|
|
REAL :: pbmxup |
64 |
|
|
REAL, DIMENSION (nloc, nd) :: dtmin, sigold |
65 |
|
|
REAL, DIMENSION (nloc, nd) :: coefmix |
66 |
|
|
REAL, DIMENSION (nloc) :: dtminmax |
67 |
|
|
REAL, DIMENSION (nloc) :: pzero, ptop2old |
68 |
|
|
REAL, DIMENSION (nloc) :: cina, cinb |
69 |
|
|
INTEGER, DIMENSION (nloc) :: ibeg |
70 |
|
|
INTEGER, DIMENSION (nloc) :: nsupmax |
71 |
|
|
REAL :: supcrit |
72 |
|
|
REAL, DIMENSION (nloc, nd) :: temp |
73 |
|
|
REAL, DIMENSION (nloc) :: p1, pmin |
74 |
|
|
REAL, DIMENSION (nloc) :: asupmax0 |
75 |
|
|
LOGICAL, DIMENSION (nloc) :: ok |
76 |
|
|
REAL, DIMENSION (nloc, nd) :: siglim, wlim, mlim |
77 |
|
|
REAL, DIMENSION (nloc) :: wb2 |
78 |
|
|
REAL, DIMENSION (nloc) :: cbmf0 ! initial cloud base mass flux |
79 |
|
|
REAL, DIMENSION (nloc) :: cbmflim ! cbmf given by Cape closure |
80 |
|
|
REAL, DIMENSION (nloc) :: cbmfalp ! cbmf given by Alp closure |
81 |
|
|
REAL, DIMENSION (nloc) :: cbmfalpb ! bounded cbmf given by Alp closure |
82 |
|
|
REAL, DIMENSION (nloc) :: cbmfmax ! upper bound on cbmf |
83 |
|
|
REAL, DIMENSION (nloc) :: coef |
84 |
|
|
REAL, DIMENSION (nloc) :: xp, xq, xr, discr, b3, b4 |
85 |
|
|
REAL, DIMENSION (nloc) :: theta, bb |
86 |
|
|
REAL :: term1, term2, term3 |
87 |
|
|
REAL, DIMENSION (nloc) :: alp2 ! Alp with offset |
88 |
|
|
|
89 |
|
|
!CR: variables for new erosion of adiabiatic ascent |
90 |
|
|
REAL, DIMENSION (nloc, nd) :: mad, me, betalim, beta_coef |
91 |
|
|
REAL, DIMENSION (nloc, nd) :: med, md |
92 |
|
|
!jyg< |
93 |
|
|
! coef_peel is now in the common cv3_param |
94 |
|
|
!! REAL :: coef_peel |
95 |
|
|
!! PARAMETER (coef_peel=0.25) |
96 |
|
|
!>jyg |
97 |
|
|
|
98 |
|
|
REAL :: sigmax |
99 |
|
|
PARAMETER (sigmax=0.1) |
100 |
|
|
!! PARAMETER (sigmax=10.) |
101 |
|
|
|
102 |
|
|
CHARACTER (LEN=20) :: modname = 'cv3p2_closure' |
103 |
|
|
CHARACTER (LEN=80) :: abort_message |
104 |
|
|
|
105 |
|
|
INTEGER,SAVE :: igout=1 |
106 |
|
|
!$OMP THREADPRIVATE(igout) |
107 |
|
|
|
108 |
|
|
IF (prt_level>=20) print *,' -> cv3p2_closure, Ale ',ale(igout) |
109 |
|
|
|
110 |
|
|
|
111 |
|
|
! ------------------------------------------------------- |
112 |
|
|
! -- Initialization |
113 |
|
|
! ------------------------------------------------------- |
114 |
|
|
|
115 |
|
|
|
116 |
|
|
DO il = 1, ncum |
117 |
|
|
alp2(il) = max(alp(il), 1.E-5) |
118 |
|
|
! IM |
119 |
|
|
alp2(il) = max(alp(il), 1.E-12) |
120 |
|
|
END DO |
121 |
|
|
|
122 |
|
|
pbmxup = 50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
123 |
|
|
! exist (if any) |
124 |
|
|
|
125 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure nloc ncum nd icb inb nl', nloc, & |
126 |
|
|
ncum, nd, icb(nloc), inb(nloc), nl |
127 |
|
|
DO k = 1, nl |
128 |
|
|
DO il = 1, ncum |
129 |
|
|
rhodp(il,k) = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
130 |
|
|
END DO |
131 |
|
|
END DO |
132 |
|
|
|
133 |
|
|
!CR+jyg: initializations (up to nd) for erosion of adiabatic ascent and of m and wlim |
134 |
|
|
DO k = 1,nd |
135 |
|
|
DO il = 1, ncum |
136 |
|
|
mad(il,k)=0. |
137 |
|
|
me(il,k)=0. |
138 |
|
|
betalim(il,k)=1. |
139 |
|
|
wlim(il,k)=0. |
140 |
|
|
m(il, k) = 0.0 |
141 |
|
|
ENDDO |
142 |
|
|
ENDDO |
143 |
|
|
|
144 |
|
|
! ------------------------------------------------------- |
145 |
|
|
! -- Reset sig(i) and w0(i) for i>inb and i<icb |
146 |
|
|
! ------------------------------------------------------- |
147 |
|
|
|
148 |
|
|
! update sig and w0 above LNB: |
149 |
|
|
|
150 |
|
|
DO k = 1, nl - 1 |
151 |
|
|
DO il = 1, ncum |
152 |
|
|
IF ((inb(il)<(nl-1)) .AND. (k>=(inb(il)+1))) THEN |
153 |
|
|
sig(il, k) = beta*sig(il, k) + 2.*alpha*buoy(il, inb(il))*abs(buoy(il,inb(il))) |
154 |
|
|
sig(il, k) = amax1(sig(il,k), 0.0) |
155 |
|
|
w0(il, k) = beta*w0(il, k) |
156 |
|
|
END IF |
157 |
|
|
END DO |
158 |
|
|
END DO |
159 |
|
|
|
160 |
|
|
! if(prt.level.GE.20) print*,'cv3p2_closure apres 100' |
161 |
|
|
! compute icbmax: |
162 |
|
|
|
163 |
|
|
icbmax = 2 |
164 |
|
|
DO il = 1, ncum |
165 |
|
|
icbmax = max(icbmax, icb(il)) |
166 |
|
|
END DO |
167 |
|
|
! if(prt.level.GE.20) print*,'cv3p2_closure apres 200' |
168 |
|
|
|
169 |
|
|
! update sig and w0 below cloud base: |
170 |
|
|
|
171 |
|
|
DO k = 1, icbmax |
172 |
|
|
DO il = 1, ncum |
173 |
|
|
IF (k<=icb(il)) THEN |
174 |
|
|
sig(il, k) = beta*sig(il, k) - 2.*alpha*buoy(il, icb(il))*buoy(il,icb(il)) |
175 |
|
|
sig(il, k) = amax1(sig(il,k), 0.0) |
176 |
|
|
w0(il, k) = beta*w0(il, k) |
177 |
|
|
END IF |
178 |
|
|
END DO |
179 |
|
|
END DO |
180 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 300' |
181 |
|
|
|
182 |
|
|
! ------------------------------------------------------------- |
183 |
|
|
! -- Reset fractional areas of updrafts and w0 at initial time |
184 |
|
|
! -- and after 10 time steps of no convection |
185 |
|
|
! ------------------------------------------------------------- |
186 |
|
|
|
187 |
|
|
!jyg< |
188 |
|
|
IF (ok_convstop) THEN |
189 |
|
|
DO k = 1, nl - 1 |
190 |
|
|
DO il = 1, ncum |
191 |
|
|
IF (sig(il,nd)<1.5 .OR. sig(il,nd)>noconv_stop) THEN |
192 |
|
|
sig(il, k) = 0.0 |
193 |
|
|
w0(il, k) = 0.0 |
194 |
|
|
END IF |
195 |
|
|
END DO |
196 |
|
|
END DO |
197 |
|
|
ELSE |
198 |
|
|
DO k = 1, nl - 1 |
199 |
|
|
DO il = 1, ncum |
200 |
|
|
IF (sig(il,nd)<1.5 .OR. sig(il,nd)>12.0) THEN |
201 |
|
|
sig(il, k) = 0.0 |
202 |
|
|
w0(il, k) = 0.0 |
203 |
|
|
END IF |
204 |
|
|
END DO |
205 |
|
|
END DO |
206 |
|
|
ENDIF ! (ok_convstop) |
207 |
|
|
!>jyg |
208 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 400' |
209 |
|
|
|
210 |
|
|
! ------------------------------------------------------- |
211 |
|
|
! -- Compute initial cloud base mass flux (Cbmf0) |
212 |
|
|
! ------------------------------------------------------- |
213 |
|
|
DO il = 1, ncum |
214 |
|
|
cbmf0(il) = 0.0 |
215 |
|
|
END DO |
216 |
|
|
|
217 |
|
|
DO k = 1, nl |
218 |
|
|
DO il = 1, ncum |
219 |
|
|
IF (k>=icb(il) .AND. k<=inb(il) & |
220 |
|
|
.AND. icb(il)+1<=inb(il)) THEN |
221 |
|
|
cbmf0(il) = cbmf0(il) + sig(il, k)*w0(il,k)*rhodp(il,k) |
222 |
|
|
END IF |
223 |
|
|
END DO |
224 |
|
|
END DO |
225 |
|
|
|
226 |
|
|
! ------------------------------------------------------------- |
227 |
|
|
! jyg1 |
228 |
|
|
! -- Calculate adiabatic ascent top pressure (ptop) |
229 |
|
|
! ------------------------------------------------------------- |
230 |
|
|
|
231 |
|
|
|
232 |
|
|
! c 1. Start at first level where precipitations form |
233 |
|
|
DO il = 1, ncum |
234 |
|
|
pzero(il) = plcl(il) - pbcrit |
235 |
|
|
END DO |
236 |
|
|
|
237 |
|
|
! c 2. Add offset |
238 |
|
|
DO il = 1, ncum |
239 |
|
|
pzero(il) = pzero(il) - pbmxup |
240 |
|
|
END DO |
241 |
|
|
DO il = 1, ncum |
242 |
|
|
ptop2old(il) = ptop2(il) |
243 |
|
|
END DO |
244 |
|
|
|
245 |
|
|
DO il = 1, ncum |
246 |
|
|
! CR:c est quoi ce 300?? |
247 |
|
|
p1(il) = pzero(il) - 300. |
248 |
|
|
END DO |
249 |
|
|
|
250 |
|
|
! compute asupmax=abs(supmax) up to lnm+1 |
251 |
|
|
|
252 |
|
|
DO il = 1, ncum |
253 |
|
|
ok(il) = .TRUE. |
254 |
|
|
nsupmax(il) = inb(il) |
255 |
|
|
END DO |
256 |
|
|
|
257 |
|
|
DO i = 1, nl |
258 |
|
|
DO il = 1, ncum |
259 |
|
|
IF (i>icb(il) .AND. i<=inb(il)) THEN |
260 |
|
|
IF (p(il,i)<=pzero(il) .AND. supmax(il,i)<0 .AND. ok(il)) THEN |
261 |
|
|
nsupmax(il) = i |
262 |
|
|
ok(il) = .FALSE. |
263 |
|
|
END IF ! end IF (P(i) ... ) |
264 |
|
|
END IF ! end IF (icb+1 le i le inb) |
265 |
|
|
END DO |
266 |
|
|
END DO |
267 |
|
|
|
268 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 2.' |
269 |
|
|
DO i = 1, nl |
270 |
|
|
DO il = 1, ncum |
271 |
|
|
asupmax(il, i) = abs(supmax(il,i)) |
272 |
|
|
END DO |
273 |
|
|
END DO |
274 |
|
|
|
275 |
|
|
|
276 |
|
|
DO il = 1, ncum |
277 |
|
|
asupmaxmin(il) = 10. |
278 |
|
|
pmin(il) = 100. |
279 |
|
|
! IM ?? |
280 |
|
|
asupmax0(il) = 0. |
281 |
|
|
END DO |
282 |
|
|
|
283 |
|
|
! c 3. Compute in which level is Pzero |
284 |
|
|
|
285 |
|
|
! IM bug i0 = 18 |
286 |
|
|
DO il = 1, ncum |
287 |
|
|
i0(il) = nl |
288 |
|
|
END DO |
289 |
|
|
|
290 |
|
|
DO i = 1, nl |
291 |
|
|
DO il = 1, ncum |
292 |
|
|
IF (i>icb(il) .AND. i<=inb(il)) THEN |
293 |
|
|
IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
294 |
|
|
IF (pzero(il)>p(il,i) .AND. pzero(il)<p(il,i-1)) THEN |
295 |
|
|
i0(il) = i |
296 |
|
|
END IF |
297 |
|
|
END IF |
298 |
|
|
END IF |
299 |
|
|
END DO |
300 |
|
|
END DO |
301 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 3.' |
302 |
|
|
|
303 |
|
|
! c 4. Compute asupmax at Pzero |
304 |
|
|
|
305 |
|
|
DO i = 1, nl |
306 |
|
|
DO il = 1, ncum |
307 |
|
|
IF (i>icb(il) .AND. i<=inb(il)) THEN |
308 |
|
|
IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
309 |
|
|
asupmax0(il) = ((pzero(il)-p(il,i0(il)-1))*asupmax(il,i0(il))- & |
310 |
|
|
(pzero(il)-p(il,i0(il)))*asupmax(il,i0(il)-1))/(p(il,i0(il))-p(il,i0(il)-1)) |
311 |
|
|
END IF |
312 |
|
|
END IF |
313 |
|
|
END DO |
314 |
|
|
END DO |
315 |
|
|
|
316 |
|
|
|
317 |
|
|
DO i = 1, nl |
318 |
|
|
DO il = 1, ncum |
319 |
|
|
IF (p(il,i)==pzero(il)) THEN |
320 |
|
|
asupmax(i, il) = asupmax0(il) |
321 |
|
|
END IF |
322 |
|
|
END DO |
323 |
|
|
END DO |
324 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 4.' |
325 |
|
|
|
326 |
|
|
! c 5. Compute asupmaxmin, minimum of asupmax |
327 |
|
|
|
328 |
|
|
DO i = 1, nl |
329 |
|
|
DO il = 1, ncum |
330 |
|
|
IF (i>icb(il) .AND. i<=inb(il)) THEN |
331 |
|
|
IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
332 |
|
|
IF (asupmax(il,i)<asupmaxmin(il)) THEN |
333 |
|
|
asupmaxmin(il) = asupmax(il, i) |
334 |
|
|
pmin(il) = p(il, i) |
335 |
|
|
END IF |
336 |
|
|
END IF |
337 |
|
|
END IF |
338 |
|
|
END DO |
339 |
|
|
END DO |
340 |
|
|
|
341 |
|
|
DO il = 1, ncum |
342 |
|
|
! IM |
343 |
|
|
IF (prt_level>=20) THEN |
344 |
|
|
PRINT *, 'cv3p2_closure il asupmax0 asupmaxmin', il, asupmax0(il), & |
345 |
|
|
asupmaxmin(il), pzero(il), pmin(il) |
346 |
|
|
END IF |
347 |
|
|
IF (asupmax0(il)<asupmaxmin(il)) THEN |
348 |
|
|
asupmaxmin(il) = asupmax0(il) |
349 |
|
|
pmin(il) = pzero(il) |
350 |
|
|
END IF |
351 |
|
|
END DO |
352 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 5.' |
353 |
|
|
|
354 |
|
|
|
355 |
|
|
! Compute Supmax at Pzero |
356 |
|
|
|
357 |
|
|
DO i = 1, nl |
358 |
|
|
DO il = 1, ncum |
359 |
|
|
IF (i>icb(il) .AND. i<=inb(il)) THEN |
360 |
|
|
IF (p(il,i)<=pzero(il)) THEN |
361 |
|
|
supmax0(il) = ((p(il,i)-pzero(il))*asupmax(il,i-1)- & |
362 |
|
|
(p(il,i-1)-pzero(il))*asupmax(il,i))/(p(il,i)-p(il,i-1)) |
363 |
|
|
GO TO 425 |
364 |
|
|
END IF ! end IF (P(i) ... ) |
365 |
|
|
END IF ! end IF (icb+1 le i le inb) |
366 |
|
|
END DO |
367 |
|
|
END DO |
368 |
|
|
|
369 |
|
|
425 CONTINUE |
370 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 425.' |
371 |
|
|
|
372 |
|
|
! c 6. Calculate ptop2 |
373 |
|
|
|
374 |
|
|
DO il = 1, ncum |
375 |
|
|
IF (asupmaxmin(il)<supcrit1) THEN |
376 |
|
|
ptop2(il) = pmin(il) |
377 |
|
|
END IF |
378 |
|
|
|
379 |
|
|
IF (asupmaxmin(il)>supcrit1 .AND. asupmaxmin(il)<supcrit2) THEN |
380 |
|
|
ptop2(il) = ptop2old(il) |
381 |
|
|
END IF |
382 |
|
|
|
383 |
|
|
IF (asupmaxmin(il)>supcrit2) THEN |
384 |
|
|
ptop2(il) = ph(il, inb(il)) |
385 |
|
|
END IF |
386 |
|
|
END DO |
387 |
|
|
|
388 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 6.' |
389 |
|
|
|
390 |
|
|
! c 7. Compute multiplying factor for adiabatic updraught mass flux |
391 |
|
|
|
392 |
|
|
|
393 |
|
|
IF (ok_inhib) THEN |
394 |
|
|
|
395 |
|
|
DO i = 1, nl |
396 |
|
|
DO il = 1, ncum |
397 |
|
|
IF (i<=nl) THEN |
398 |
|
|
coefmix(il, i) = (min(ptop2(il),ph(il,i))-ph(il,i))/(ph(il,i+1)-ph(il,i)) |
399 |
|
|
coefmix(il, i) = min(coefmix(il,i), 1.) |
400 |
|
|
END IF |
401 |
|
|
END DO |
402 |
|
|
END DO |
403 |
|
|
|
404 |
|
|
|
405 |
|
|
ELSE ! when inhibition is not taken into account, coefmix=1 |
406 |
|
|
|
407 |
|
|
|
408 |
|
|
|
409 |
|
|
DO i = 1, nl |
410 |
|
|
DO il = 1, ncum |
411 |
|
|
IF (i<=nl) THEN |
412 |
|
|
coefmix(il, i) = 1. |
413 |
|
|
END IF |
414 |
|
|
END DO |
415 |
|
|
END DO |
416 |
|
|
|
417 |
|
|
END IF ! ok_inhib |
418 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 7.' |
419 |
|
|
! ------------------------------------------------------------------- |
420 |
|
|
! ------------------------------------------------------------------- |
421 |
|
|
|
422 |
|
|
|
423 |
|
|
! jyg2 |
424 |
|
|
|
425 |
|
|
! ========================================================================== |
426 |
|
|
|
427 |
|
|
|
428 |
|
|
! ------------------------------------------------------------- |
429 |
|
|
! -- Calculate convective inhibition (CIN) |
430 |
|
|
! ------------------------------------------------------------- |
431 |
|
|
|
432 |
|
|
! do i=1,nloc |
433 |
|
|
! print*,'avant cine p',pbase(i),plcl(i) |
434 |
|
|
! enddo |
435 |
|
|
! do j=1,nd |
436 |
|
|
! do i=1,nloc |
437 |
|
|
! print*,'avant cine t',tv(i),tvp(i) |
438 |
|
|
! enddo |
439 |
|
|
! enddo |
440 |
|
|
CALL cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, cina, & |
441 |
|
|
cinb, plfc) |
442 |
|
|
|
443 |
|
|
DO il = 1, ncum |
444 |
|
|
cin(il) = cina(il) + cinb(il) |
445 |
|
|
END DO |
446 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure after cv3_cine: cina, cinb, cin ', & |
447 |
|
|
cina(igout), cinb(igout), cin(igout) |
448 |
|
|
! ------------------------------------------------------------- |
449 |
|
|
! --Update buoyancies to account for Ale |
450 |
|
|
! ------------------------------------------------------------- |
451 |
|
|
|
452 |
|
|
CALL cv3_buoy(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, ale, cin, tv, & |
453 |
|
|
tvp, buoy) |
454 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure after cv3_buoy' |
455 |
|
|
|
456 |
|
|
! ------------------------------------------------------------- |
457 |
|
|
! -- Calculate convective available potential energy (cape), |
458 |
|
|
! -- vertical velocity (w), fractional area covered by |
459 |
|
|
! -- undilute updraft (sig), and updraft mass flux (m) |
460 |
|
|
! ------------------------------------------------------------- |
461 |
|
|
|
462 |
|
|
DO il = 1, ncum |
463 |
|
|
cape(il) = 0.0 |
464 |
|
|
dtminmax(il) = -100. |
465 |
|
|
END DO |
466 |
|
|
|
467 |
|
|
! compute dtmin (minimum buoyancy between ICB and given level k): |
468 |
|
|
|
469 |
|
|
DO k = 1, nl |
470 |
|
|
DO il = 1, ncum |
471 |
|
|
dtmin(il, k) = 100.0 |
472 |
|
|
END DO |
473 |
|
|
END DO |
474 |
|
|
|
475 |
|
|
DO k = 1, nl |
476 |
|
|
DO j = minorig, nl |
477 |
|
|
DO il = 1, ncum |
478 |
|
|
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (j>=icb(il)) & |
479 |
|
|
.AND. (j<=(k-1))) THEN |
480 |
|
|
dtmin(il, k) = amin1(dtmin(il,k), buoy(il,j)) |
481 |
|
|
END IF |
482 |
|
|
END DO |
483 |
|
|
END DO |
484 |
|
|
END DO |
485 |
|
|
!jyg< |
486 |
|
|
! Store maximum of dtmin |
487 |
|
|
! C est pas terrible d avoir ce test sur Ale+Cin encore une fois ici. |
488 |
|
|
! A REVOIR ! |
489 |
|
|
DO k = 1, nl |
490 |
|
|
DO il = 1, ncum |
491 |
|
|
IF (k>=(icb(il)+1) .AND. k<=inb(il) .AND. ale(il)+cin(il)>0.) THEN |
492 |
|
|
dtminmax(il) = max(dtmin(il,k), dtminmax(il)) |
493 |
|
|
ENDIF |
494 |
|
|
END DO |
495 |
|
|
END DO |
496 |
|
|
! |
497 |
|
|
! prevent convection when ale+cin <= 0 |
498 |
|
|
DO k = 1, nl |
499 |
|
|
DO il = 1, ncum |
500 |
|
|
IF (k>=(icb(il)+1) .AND. k<=inb(il)) THEN |
501 |
|
|
dtmin(il,k) = min(dtmin(il,k), dtminmax(il)) |
502 |
|
|
ENDIF |
503 |
|
|
END DO |
504 |
|
|
END DO |
505 |
|
|
!>jyg |
506 |
|
|
! |
507 |
|
|
IF (prt_level >= 20) THEN |
508 |
|
|
print *,'cv3p2_closure: dtmin ', (k, dtmin(igout,k), k=1,nl) |
509 |
|
|
print *,'cv3p2_closure: dtminmax ', dtminmax(igout) |
510 |
|
|
ENDIF |
511 |
|
|
! |
512 |
|
|
! the interval on which cape is computed starts at pbase : |
513 |
|
|
|
514 |
|
|
DO k = 1, nl |
515 |
|
|
DO il = 1, ncum |
516 |
|
|
|
517 |
|
|
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
518 |
|
|
|
519 |
|
|
IF (iflag_mix_adiab.eq.1) THEN |
520 |
|
|
!CR:computation of cape from LCL: keep flag or to modify in all cases? |
521 |
|
|
deltap = min(plcl(il), ph(il,k-1)) - min(plcl(il), ph(il,k)) |
522 |
|
|
ELSE |
523 |
|
|
deltap = min(pbase(il), ph(il,k-1)) - min(pbase(il), ph(il,k)) |
524 |
|
|
ENDIF |
525 |
|
|
cape(il) = cape(il) + rrd*buoy(il, k-1)*deltap/p(il, k-1) |
526 |
|
|
cape(il) = amax1(0.0, cape(il)) |
527 |
|
|
sigold(il, k) = sig(il, k) |
528 |
|
|
|
529 |
|
|
|
530 |
|
|
! jyg Coefficient coefmix limits convection to levels where a |
531 |
|
|
! sufficient |
532 |
|
|
! fraction of mixed draughts are ascending. |
533 |
|
|
siglim(il, k) = coefmix(il, k)*alpha1*dtmin(il, k)*abs(dtmin(il,k)) |
534 |
|
|
siglim(il, k) = amax1(siglim(il,k), 0.0) |
535 |
|
|
siglim(il, k) = amin1(siglim(il,k), 0.01) |
536 |
|
|
! c fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
537 |
|
|
fac = 1. |
538 |
|
|
wlim(il, k) = fac*sqrt(cape(il)) |
539 |
|
|
amu = siglim(il, k)*wlim(il, k) |
540 |
|
|
!! rhodp(il,k) = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) !cor jyg : computed earlier |
541 |
|
|
mlim(il, k) = amu*rhodp(il,k) |
542 |
|
|
! print*, 'siglim ', k,siglim(1,k) |
543 |
|
|
END IF |
544 |
|
|
|
545 |
|
|
END DO |
546 |
|
|
END DO |
547 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 600' |
548 |
|
|
|
549 |
|
|
DO il = 1, ncum |
550 |
|
|
! IM beg |
551 |
|
|
IF (prt_level>=20) THEN |
552 |
|
|
PRINT *, 'cv3p2_closure il icb mlim ph ph+1 ph+2', il, icb(il), & |
553 |
|
|
mlim(il, icb(il)+1), ph(il, icb(il)), ph(il, icb(il)+1), & |
554 |
|
|
ph(il, icb(il)+2) |
555 |
|
|
END IF |
556 |
|
|
|
557 |
|
|
IF (icb(il)+1<=inb(il)) THEN |
558 |
|
|
! IM end |
559 |
|
|
mlim(il, icb(il)) = 0.5*mlim(il,icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
560 |
|
|
(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
561 |
|
|
! IM beg |
562 |
|
|
END IF !(icb(il.le.inb(il))) then |
563 |
|
|
! IM end |
564 |
|
|
END DO |
565 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 700' |
566 |
|
|
|
567 |
|
|
! |
568 |
|
|
! ------------------------------------------------------------------------ |
569 |
|
|
! c Compute Cloud base mass flux given by Cape closure (cbmflim = cbmf of |
570 |
|
|
! c elementary systems), cbmf given by Alp closure (cbmfalp), cbmf given by Alp |
571 |
|
|
! c closure with an upper bound imposed (cbmfalpb) and cbmf resulting from |
572 |
|
|
! c time integration (cbmflast). |
573 |
|
|
! ------------------------------------------------------------------------ |
574 |
|
|
|
575 |
|
|
DO il = 1, ncum |
576 |
|
|
cbmflim(il) = 0. |
577 |
|
|
cbmfalp(il) = 0. |
578 |
|
|
cbmfalpb(il) = 0. |
579 |
|
|
cbmflast(il) = 0. |
580 |
|
|
END DO |
581 |
|
|
|
582 |
|
|
! c 1. Compute cloud base mass flux of elementary system (Cbmflim) |
583 |
|
|
|
584 |
|
|
DO k = 1, nl |
585 |
|
|
DO il = 1, ncum |
586 |
|
|
! old IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
587 |
|
|
! IM IF (k .ge. icb(il)+1 .and. k .le. inb(il)) THEN |
588 |
|
|
IF (k>=icb(il) .AND. k<=inb(il) & !cor jyg |
589 |
|
|
.AND. icb(il)+1<=inb(il)) THEN !cor jyg |
590 |
|
|
cbmflim(il) = cbmflim(il) + mlim(il, k) |
591 |
|
|
END IF |
592 |
|
|
END DO |
593 |
|
|
END DO |
594 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure after cbmflim: cbmflim ', cbmflim(igout) |
595 |
|
|
|
596 |
|
|
! 1.5 Compute cloud base mass flux given by Alp closure (Cbmfalp), maximum |
597 |
|
|
! allowed mass flux (Cbmfmax) and bounded mass flux (Cbmfalpb) |
598 |
|
|
! Cbmfalpb is set to zero if Cbmflim (the mass flux of elementary cloud) |
599 |
|
|
! is exceedingly small. |
600 |
|
|
|
601 |
|
|
DO il = 1, ncum |
602 |
|
|
wb2(il) = sqrt(2.*max(ale(il)+cin(il),0.)) |
603 |
|
|
END DO |
604 |
|
|
|
605 |
|
|
DO il = 1, ncum |
606 |
|
|
IF (plfc(il)<100.) THEN |
607 |
|
|
! This is an irealistic value for plfc => no calculation of wbeff |
608 |
|
|
wbeff(il) = 100.1 |
609 |
|
|
ELSE |
610 |
|
|
! Calculate wbeff |
611 |
|
|
IF (NINT(flag_wb)==0) THEN |
612 |
|
|
wbeff(il) = wbmax |
613 |
|
|
ELSE IF (NINT(flag_wb)==1) THEN |
614 |
|
|
wbeff(il) = wbmax/(1.+500./(ph(il,1)-plfc(il))) |
615 |
|
|
ELSE IF (NINT(flag_wb)==2) THEN |
616 |
|
|
wbeff(il) = wbmax*(0.01*(ph(il,1)-plfc(il)))**2 |
617 |
|
|
END IF |
618 |
|
|
END IF |
619 |
|
|
END DO |
620 |
|
|
|
621 |
|
|
!CR:Compute k at plfc |
622 |
|
|
DO il=1,ncum |
623 |
|
|
klfc(il)=nl |
624 |
|
|
ENDDO |
625 |
|
|
DO k=1,nl |
626 |
|
|
DO il=1,ncum |
627 |
|
|
if ((plfc(il).lt.ph(il,k)).and.(plfc(il).ge.ph(il,k+1))) then |
628 |
|
|
klfc(il)=k |
629 |
|
|
endif |
630 |
|
|
ENDDO |
631 |
|
|
ENDDO |
632 |
|
|
!RC |
633 |
|
|
|
634 |
|
|
DO il = 1, ncum |
635 |
|
|
! jyg Modification du coef de wb*wb pour conformite avec papier Wake |
636 |
|
|
! c cbmfalp(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
637 |
|
|
cbmfalp(il) = alp2(il)/(2.*wbeff(il)*wbeff(il)-cin(il)) |
638 |
|
|
!CR: Add large-scale component to the mass-flux |
639 |
|
|
!encore connu sous le nom "Experience du tube de dentifrice" |
640 |
|
|
if ((coef_clos_ls.gt.0.).and.(plfc(il).gt.0.)) then |
641 |
|
|
cbmfalp(il) = cbmfalp(il) - coef_clos_ls*min(0.,1./RG*omega(il,klfc(il))) |
642 |
|
|
endif |
643 |
|
|
!RC |
644 |
|
|
IF (cbmfalp(il)==0 .AND. alp2(il)/=0.) THEN |
645 |
|
|
WRITE (lunout, *) 'cv3p2_closure cbmfalp=0 and alp NE 0 il alp2 alp cin ' , & |
646 |
|
|
il, alp2(il), alp(il), cin(il) |
647 |
|
|
abort_message = '' |
648 |
|
|
CALL abort_physic(modname, abort_message, 1) |
649 |
|
|
END IF |
650 |
|
|
cbmfmax(il) = sigmax*wb2(il)*100.*p(il, icb(il))/(rrd*tv(il,icb(il))) |
651 |
|
|
END DO |
652 |
|
|
|
653 |
|
|
!jyg< |
654 |
|
|
IF (OK_intermittent) THEN |
655 |
|
|
DO il = 1, ncum |
656 |
|
|
IF (cbmflim(il)>1.E-6) THEN |
657 |
|
|
cbmfalpb(il) = min(cbmfalp(il), (cbmfmax(il)-beta*cbmf0(il))/(1.-beta)) |
658 |
|
|
! print*,'cbmfalpb',cbmfalpb(il),cbmfmax(il) |
659 |
|
|
END IF |
660 |
|
|
END DO |
661 |
|
|
ELSE |
662 |
|
|
!>jyg |
663 |
|
|
DO il = 1, ncum |
664 |
|
|
IF (cbmflim(il)>1.E-6) THEN |
665 |
|
|
! ATTENTION TEST CR |
666 |
|
|
! if (cbmfmax(il).lt.1.e-12) then |
667 |
|
|
cbmfalpb(il) = min(cbmfalp(il), cbmfmax(il)) |
668 |
|
|
! else |
669 |
|
|
! cbmfalpb(il) = cbmfalp(il) |
670 |
|
|
! endif |
671 |
|
|
! print*,'cbmfalpb',cbmfalp(il),cbmfmax(il) |
672 |
|
|
END IF |
673 |
|
|
END DO |
674 |
|
|
ENDIF !(OK_intermittent) |
675 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres cbmfalpb: cbmfalpb ',cbmfalpb(igout) |
676 |
|
|
|
677 |
|
|
! c 2. Compute coefficient and apply correction |
678 |
|
|
|
679 |
|
|
DO il = 1, ncum |
680 |
|
|
coef(il) = (cbmfalpb(il)+1.E-10)/(cbmflim(il)+1.E-10) |
681 |
|
|
END DO |
682 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres coef_plantePLUS' |
683 |
|
|
|
684 |
|
|
DO k = 1, nl |
685 |
|
|
DO il = 1, ncum |
686 |
|
|
IF (k>=icb(il)+1 .AND. k<=inb(il)) THEN |
687 |
|
|
amu = beta*sig(il, k)*w0(il, k) + (1.-beta)*coef(il)*siglim(il, k)*wlim(il, k) |
688 |
|
|
w0(il, k) = wlim(il, k) |
689 |
|
|
w0(il, k) = max(w0(il,k), 1.E-10) |
690 |
|
|
sig(il, k) = amu/w0(il, k) |
691 |
|
|
sig(il, k) = min(sig(il,k), 1.) |
692 |
|
|
! c amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
693 |
|
|
!jyg m(il, k) = amu*0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
694 |
|
|
m(il, k) = amu*rhodp(il,k) |
695 |
|
|
END IF |
696 |
|
|
END DO |
697 |
|
|
END DO |
698 |
|
|
! jyg2 |
699 |
|
|
DO il = 1, ncum |
700 |
|
|
w0(il, icb(il)) = 0.5*w0(il, icb(il)+1) |
701 |
|
|
m(il, icb(il)) = 0.5*m(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
702 |
|
|
(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
703 |
|
|
sig(il, icb(il)) = sig(il, icb(il)+1) |
704 |
|
|
sig(il, icb(il)-1) = sig(il, icb(il)) |
705 |
|
|
END DO |
706 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres w0_sig_M: w0, sig ', & |
707 |
|
|
(k,w0(igout,k),sig(igout,k), k=icb(igout),inb(igout)) |
708 |
|
|
|
709 |
|
|
!CR: new erosion of adiabatic ascent: modification of m |
710 |
|
|
!computation of the sum of ascending fluxes |
711 |
|
|
IF (iflag_mix_adiab.eq.1) THEN |
712 |
|
|
|
713 |
|
|
!Verification sum(me)=sum(m) |
714 |
|
|
DO k = 1,nd |
715 |
|
|
DO il = 1, ncum |
716 |
|
|
md(il,k)=0. |
717 |
|
|
med(il,k)=0. |
718 |
|
|
ENDDO |
719 |
|
|
ENDDO |
720 |
|
|
|
721 |
|
|
DO k = nl,1,-1 |
722 |
|
|
DO il = 1, ncum |
723 |
|
|
md(il,k)=md(il,k+1)+m(il,k+1) |
724 |
|
|
ENDDO |
725 |
|
|
ENDDO |
726 |
|
|
|
727 |
|
|
DO k = nl,1,-1 |
728 |
|
|
DO il = 1, ncum |
729 |
|
|
IF ((k>=(icb(il))) .AND. (k<=inb(il))) THEN |
730 |
|
|
mad(il,k)=mad(il,k+1)+m(il,k+1) |
731 |
|
|
ENDIF |
732 |
|
|
! print*,"mad",il,k,mad(il,k) |
733 |
|
|
ENDDO |
734 |
|
|
ENDDO |
735 |
|
|
|
736 |
|
|
!CR: erosion of each adiabatic ascent during its ascent |
737 |
|
|
|
738 |
|
|
!Computation of erosion coefficient beta_coef |
739 |
|
|
DO k = 1, nl |
740 |
|
|
DO il = 1, ncum |
741 |
|
|
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (mlim(il,k).gt.0.)) THEN |
742 |
|
|
! print*,"beta_coef",il,k,icb(il),inb(il),buoy(il,k),tv(il,k),wlim(il,k),wlim(il,k+1) |
743 |
|
|
beta_coef(il,k)=RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2 |
744 |
|
|
ELSE |
745 |
|
|
beta_coef(il,k)=0. |
746 |
|
|
ENDIF |
747 |
|
|
ENDDO |
748 |
|
|
ENDDO |
749 |
|
|
|
750 |
|
|
! print*,"apres beta_coef" |
751 |
|
|
|
752 |
|
|
DO k = 1, nl |
753 |
|
|
DO il = 1, ncum |
754 |
|
|
|
755 |
|
|
IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
756 |
|
|
|
757 |
|
|
! print*,"dz",il,k,tv(il, k-1) |
758 |
|
|
dz = (ph(il,k-1)-ph(il,k))/(p(il, k-1)/(rrd*tv(il, k-1))*RG) |
759 |
|
|
betalim(il,k)=betalim(il,k-1)*exp(-1.*beta_coef(il,k-1)*dz) |
760 |
|
|
! betalim(il,k)=betalim(il,k-1)*exp(-RG*coef_peel*buoy(il,k-1)/tv(il,k-1)/5.**2*dz) |
761 |
|
|
! print*,"me",il,k,mlim(il,k),buoy(il,k),wlim(il,k),mad(il,k) |
762 |
|
|
dz = (ph(il,k)-ph(il,k+1))/(p(il, k)/(rrd*tv(il, k))*RG) |
763 |
|
|
! me(il,k)=betalim(il,k)*(m(il,k)+RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz*mad(il,k)) |
764 |
|
|
me(il,k)=betalim(il,k)*(m(il,k)+beta_coef(il,k)*dz*mad(il,k)) |
765 |
|
|
! print*,"B/w2",il,k,RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz |
766 |
|
|
|
767 |
|
|
END IF |
768 |
|
|
|
769 |
|
|
!Modification of m |
770 |
|
|
m(il,k)=me(il,k) |
771 |
|
|
END DO |
772 |
|
|
END DO |
773 |
|
|
|
774 |
|
|
! DO il = 1, ncum |
775 |
|
|
! dz = (ph(il,icb(il))-ph(il,icb(il)+1))/(p(il, icb(il))/(rrd*tv(il, icb(il)))*RG) |
776 |
|
|
! m(il,icb(il))=m(il,icb(il))+RG*coef_peel*buoy(il,icb(il))/tv(il,icb(il)) & |
777 |
|
|
! /((wlim(il,icb(il))+wlim(il,icb(il)+1))/2.)**2*dz*mad(il,icb(il)) |
778 |
|
|
! print*,"wlim(icb)",icb(il),wlim(il,icb(il)),m(il,icb(il)) |
779 |
|
|
! ENDDO |
780 |
|
|
|
781 |
|
|
!Verification sum(me)=sum(m) |
782 |
|
|
DO k = nl,1,-1 |
783 |
|
|
DO il = 1, ncum |
784 |
|
|
med(il,k)=med(il,k+1)+m(il,k+1) |
785 |
|
|
! print*,"somme(me),somme(m)",il,k,icb(il),med(il,k),md(il,k),me(il,k),m(il,k),wlim(il,k) |
786 |
|
|
ENDDO |
787 |
|
|
ENDDO |
788 |
|
|
|
789 |
|
|
|
790 |
|
|
ENDIF !(iflag_mix_adiab) |
791 |
|
|
!RC |
792 |
|
|
|
793 |
|
|
! c 3. Compute final cloud base mass flux; |
794 |
|
|
! c set iflag to 3 if cloud base mass flux is exceedingly small and is |
795 |
|
|
! c decreasing (i.e. if the final mass flux (cbmflast) is greater than |
796 |
|
|
! c the target mass flux (cbmfalpb)). |
797 |
|
|
! c If(ok_convstop): set iflag to 4 if no positive buoyancy has been met |
798 |
|
|
|
799 |
|
|
!jyg DO il = 1, ncum |
800 |
|
|
!jyg cbmflast(il) = 0. |
801 |
|
|
!jyg END DO |
802 |
|
|
|
803 |
|
|
DO k = 1, nl |
804 |
|
|
DO il = 1, ncum |
805 |
|
|
IF (k>=icb(il) .AND. k<=inb(il)) THEN |
806 |
|
|
!IMpropo?? IF ((k.ge.(icb(il)+1)).and.(k.le.inb(il))) THEN |
807 |
|
|
cbmflast(il) = cbmflast(il) + m(il, k) |
808 |
|
|
END IF |
809 |
|
|
END DO |
810 |
|
|
END DO |
811 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure apres cbmflast: cbmflast ',cbmflast(igout) |
812 |
|
|
|
813 |
|
|
DO il = 1, ncum |
814 |
|
|
IF (cbmflast(il)<1.E-6 .AND. cbmflast(il)>=cbmfalpb(il)) THEN |
815 |
|
|
iflag(il) = 3 |
816 |
|
|
END IF |
817 |
|
|
END DO |
818 |
|
|
|
819 |
|
|
!jyg< |
820 |
|
|
IF (ok_convstop) THEN |
821 |
|
|
DO il = 1, ncum |
822 |
|
|
IF (dtminmax(il) .LE. 0.) THEN |
823 |
|
|
iflag(il) = 4 |
824 |
|
|
END IF |
825 |
|
|
END DO |
826 |
|
|
ELSE |
827 |
|
|
!>jyg |
828 |
|
|
DO k = 1, nl |
829 |
|
|
DO il = 1, ncum |
830 |
|
|
IF (iflag(il)>=3) THEN |
831 |
|
|
m(il, k) = 0. |
832 |
|
|
sig(il, k) = 0. |
833 |
|
|
w0(il, k) = 0. |
834 |
|
|
END IF |
835 |
|
|
END DO |
836 |
|
|
END DO |
837 |
|
|
ENDIF ! (ok_convstop) |
838 |
|
|
! |
839 |
|
|
IF (prt_level >= 10) THEN |
840 |
|
|
print *,'cv3p2_closure: iflag ',iflag(igout) |
841 |
|
|
ENDIF |
842 |
|
|
! |
843 |
|
|
|
844 |
|
|
! c 4. Introduce a correcting factor for coef, in order to obtain an |
845 |
|
|
! effective |
846 |
|
|
! c sigdz larger in the present case (using cv3p2_closure) than in the |
847 |
|
|
! old |
848 |
|
|
! c closure (using cv3_closure). |
849 |
|
|
IF (1==0) THEN |
850 |
|
|
DO il = 1, ncum |
851 |
|
|
! c coef(il) = 2.*coef(il) |
852 |
|
|
coef(il) = 5.*coef(il) |
853 |
|
|
END DO |
854 |
|
|
! version CVS du ..2008 |
855 |
|
|
ELSE |
856 |
|
|
IF (iflag_cvl_sigd==0) THEN |
857 |
|
|
! test pour verifier qu on fait la meme chose qu avant: sid constant |
858 |
|
|
coef(1:ncum) = 1. |
859 |
|
|
ELSE |
860 |
|
|
coef(1:ncum) = min(2.*coef(1:ncum), 5.) |
861 |
|
|
coef(1:ncum) = max(2.*coef(1:ncum), 0.2) |
862 |
|
|
END IF |
863 |
|
|
END IF |
864 |
|
|
|
865 |
|
|
IF (prt_level>=20) PRINT *, 'cv3p2_closure FIN' |
866 |
|
|
RETURN |
867 |
|
|
END SUBROUTINE cv3p2_closure |
868 |
|
|
|
869 |
|
|
|