1 |
|
|
! $Id: nuage.F90 4562 2023-06-07 13:33:57Z evignon $ |
2 |
|
|
|
3 |
|
|
SUBROUTINE nuage(paprs, pplay, t, pqlwp,picefra, pclc, pcltau, pclemi, pch, pcl, pcm, & |
4 |
|
|
pct, pctlwp, ok_aie, mass_solu_aero, mass_solu_aero_pi, bl95_b0, bl95_b1, distcltop, & |
5 |
|
|
cldtaupi, re, fl) |
6 |
|
|
USE dimphy |
7 |
|
|
USE lscp_tools_mod, only: icefrac_lscp |
8 |
|
|
USE icefrac_lsc_mod ! computes ice fraction (JBM 3/14) |
9 |
|
|
USE lscp_ini_mod, only : iflag_t_glace |
10 |
|
|
USE phys_local_var_mod, ONLY: ptconv |
11 |
|
|
IMPLICIT NONE |
12 |
|
|
! ====================================================================== |
13 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
14 |
|
|
! Objet: Calculer epaisseur optique et emmissivite des nuages |
15 |
|
|
! ====================================================================== |
16 |
|
|
! Arguments: |
17 |
|
|
! t-------input-R-temperature |
18 |
|
|
! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
19 |
|
|
! picefra--inout-R-fraction de glace dans les nuages (-) |
20 |
|
|
! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
21 |
|
|
! ok_aie--input-L-apply aerosol indirect effect or not |
22 |
|
|
! mass_solu_aero-----input-R-total mass concentration for all soluble |
23 |
|
|
! aerosols[ug/m^3] |
24 |
|
|
! mass_solu_aero_pi--input-R-dito, pre-industrial value |
25 |
|
|
! bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
26 |
|
|
! bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
27 |
|
|
|
28 |
|
|
! cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
29 |
|
|
! needed for the diagnostics of the aerosol indirect |
30 |
|
|
! radiative forcing (see radlwsw) |
31 |
|
|
! re------output-R-Cloud droplet effective radius multiplied by fl [um] |
32 |
|
|
! fl------output-R-Denominator to re, introduced to avoid problems in |
33 |
|
|
! the averaging of the output. fl is the fraction of liquid |
34 |
|
|
! water clouds within a grid cell |
35 |
|
|
|
36 |
|
|
! pcltau--output-R-epaisseur optique des nuages |
37 |
|
|
! pclemi--output-R-emissivite des nuages (0 a 1) |
38 |
|
|
! ====================================================================== |
39 |
|
|
|
40 |
|
|
include "YOMCST.h" |
41 |
|
|
include "nuage.h" ! JBM 3/14 |
42 |
|
|
include "clesphys.h" |
43 |
|
|
|
44 |
|
|
REAL paprs(klon, klev+1), pplay(klon, klev) |
45 |
|
|
REAL t(klon, klev) |
46 |
|
|
|
47 |
|
|
REAL pclc(klon, klev) |
48 |
|
|
REAL pqlwp(klon, klev), picefra(klon,klev) |
49 |
|
|
REAL pcltau(klon, klev), pclemi(klon, klev) |
50 |
|
|
|
51 |
|
|
REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
52 |
|
|
REAL distcltop(klon,klev) |
53 |
|
|
LOGICAL lo |
54 |
|
|
|
55 |
|
|
REAL cetahb, cetamb |
56 |
|
|
PARAMETER (cetahb=0.45, cetamb=0.80) |
57 |
|
|
|
58 |
|
|
INTEGER i, k |
59 |
|
|
REAL zflwp, zradef, zfice(klon), zmsac |
60 |
|
|
|
61 |
|
|
REAL radius, rad_chaud |
62 |
|
|
! JBM (3/14) parameters already defined in nuage.h: |
63 |
|
|
! REAL rad_froid, rad_chau1, rad_chau2 |
64 |
|
|
! PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
65 |
|
|
! cc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
66 |
|
|
! sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
67 |
|
|
REAL coef, coef_froi, coef_chau |
68 |
|
|
PARAMETER (coef_chau=0.13, coef_froi=0.09) |
69 |
|
|
REAL seuil_neb |
70 |
|
|
PARAMETER (seuil_neb=0.001) |
71 |
|
|
! JBM (3/14) nexpo is replaced by exposant_glace |
72 |
|
|
! REAL nexpo ! exponentiel pour glace/eau |
73 |
|
|
! PARAMETER (nexpo=6.) |
74 |
|
|
REAL, PARAMETER :: t_glace_min_old = 258. |
75 |
|
|
INTEGER, PARAMETER :: exposant_glace_old = 6 |
76 |
|
|
|
77 |
|
|
|
78 |
|
|
! jq for the aerosol indirect effect |
79 |
|
|
! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
80 |
|
|
! jq |
81 |
|
|
LOGICAL ok_aie ! Apply AIE or not? |
82 |
|
|
|
83 |
|
|
REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols[ug m-3] |
84 |
|
|
REAL mass_solu_aero_pi(klon, klev) ! - " - pre-industrial value |
85 |
|
|
REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
86 |
|
|
REAL re(klon, klev) ! cloud droplet effective radius [um] |
87 |
|
|
REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
88 |
|
|
REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
89 |
|
|
|
90 |
|
|
REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds |
91 |
|
|
! within the grid cell) |
92 |
|
|
|
93 |
|
|
REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
94 |
|
|
|
95 |
|
|
REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
96 |
|
|
REAl dzfice(klon) |
97 |
|
|
! jq-end |
98 |
|
|
|
99 |
|
|
! cc PARAMETER (nexpo=1) |
100 |
|
|
|
101 |
|
|
! Calculer l'epaisseur optique et l'emmissivite des nuages |
102 |
|
|
|
103 |
|
|
DO k = 1, klev |
104 |
|
|
IF (iflag_t_glace.EQ.0) THEN |
105 |
|
|
DO i = 1, klon |
106 |
|
|
zfice(i) = 1.0 - (t(i,k)-t_glace_min_old)/(273.13-t_glace_min_old) |
107 |
|
|
zfice(i) = min(max(zfice(i),0.0), 1.0) |
108 |
|
|
zfice(i) = zfice(i)**exposant_glace_old |
109 |
|
|
ENDDO |
110 |
|
|
ELSE ! of IF (iflag_t_glace.EQ.0) |
111 |
|
|
! JBM: icefrac_lsc is now a function contained in icefrac_lsc_mod |
112 |
|
|
! zfice(i) = icefrac_lsc(t(i,k), t_glace_min, & |
113 |
|
|
! t_glace_max, exposant_glace) |
114 |
|
|
IF (ok_new_lscp) THEN |
115 |
|
|
CALL icefrac_lscp(klon,t(:,k),iflag_ice_thermo,distcltop(:,k),zfice(:),dzfice(:)) |
116 |
|
|
ELSE |
117 |
|
|
CALL icefrac_lsc(klon,t(:,k),pplay(:,k)/paprs(:,1),zfice(:)) |
118 |
|
|
|
119 |
|
|
ENDIF |
120 |
|
|
|
121 |
|
|
IF ((.NOT. ptconv(i,k)) .AND. ok_new_lscp .AND. ok_icefra_lscp) THEN |
122 |
|
|
! EV: take the ice fraction directly from the lscp code |
123 |
|
|
! consistent only for non convective grid points |
124 |
|
|
! critical for mixed phase clouds |
125 |
|
|
DO i=1,klon |
126 |
|
|
zfice(i)=picefra(i,k) |
127 |
|
|
ENDDO |
128 |
|
|
ENDIF |
129 |
|
|
|
130 |
|
|
|
131 |
|
|
ENDIF |
132 |
|
|
|
133 |
|
|
DO i = 1, klon |
134 |
|
|
rad_chaud = rad_chau1 |
135 |
|
|
IF (k<=3) rad_chaud = rad_chau2 |
136 |
|
|
|
137 |
|
|
pclc(i, k) = max(pclc(i,k), seuil_neb) |
138 |
|
|
zflwp = 1000.*pqlwp(i, k)/rg/pclc(i, k)*(paprs(i,k)-paprs(i,k+1)) |
139 |
|
|
|
140 |
|
|
IF (ok_aie) THEN |
141 |
|
|
! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
142 |
|
|
! |
143 |
|
|
cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & |
144 |
|
|
1.E-4))/log(10.))*1.E6 !-m-3 |
145 |
|
|
! Cloud droplet number concentration (CDNC) is restricted |
146 |
|
|
! to be within [20, 1000 cm^3] |
147 |
|
|
! |
148 |
|
|
cdnc(i, k) = min(1000.E6, max(20.E6,cdnc(i,k))) |
149 |
|
|
cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & |
150 |
|
|
1.E-4))/log(10.))*1.E6 !-m-3 |
151 |
|
|
cdnc_pi(i, k) = min(1000.E6, max(20.E6,cdnc_pi(i,k))) |
152 |
|
|
! |
153 |
|
|
! |
154 |
|
|
! air density: pplay(i,k) / (RD * zT(i,k)) |
155 |
|
|
! factor 1.1: derive effective radius from volume-mean radius |
156 |
|
|
! factor 1000 is the water density |
157 |
|
|
! _chaud means that this is the CDR for liquid water clouds |
158 |
|
|
! |
159 |
|
|
rad_chaud = 1.1*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3.*rpi*1000. & |
160 |
|
|
*cdnc(i,k)))**(1./3.) |
161 |
|
|
! |
162 |
|
|
! Convert to um. CDR shall be at least 3 um. |
163 |
|
|
! |
164 |
|
|
rad_chaud = max(rad_chaud*1.E6, 3.) |
165 |
|
|
|
166 |
|
|
! For output diagnostics |
167 |
|
|
! |
168 |
|
|
! Cloud droplet effective radius [um] |
169 |
|
|
! |
170 |
|
|
! we multiply here with f * xl (fraction of liquid water |
171 |
|
|
! clouds in the grid cell) to avoid problems in the |
172 |
|
|
! averaging of the output. |
173 |
|
|
! In the output of IOIPSL, derive the real cloud droplet |
174 |
|
|
! effective radius as re/fl |
175 |
|
|
! |
176 |
|
|
fl(i, k) = pclc(i, k)*(1.-zfice(i)) |
177 |
|
|
re(i, k) = rad_chaud*fl(i, k) |
178 |
|
|
|
179 |
|
|
! Pre-industrial cloud opt thickness |
180 |
|
|
! |
181 |
|
|
! "radius" is calculated as rad_chaud above (plus the |
182 |
|
|
! ice cloud contribution) but using cdnc_pi instead of |
183 |
|
|
! cdnc. |
184 |
|
|
radius = max(1.1E6*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3.*rpi* & |
185 |
|
|
1000.*cdnc_pi(i,k)))**(1./3.), 3.)*(1.-zfice(i)) + rad_froid*zfice(i) |
186 |
|
|
cldtaupi(i, k) = 3.0/2.0*zflwp/radius |
187 |
|
|
END IF ! ok_aie |
188 |
|
|
|
189 |
|
|
radius = rad_chaud*(1.-zfice(i)) + rad_froid*zfice(i) |
190 |
|
|
coef = coef_chau*(1.-zfice(i)) + coef_froi*zfice(i) |
191 |
|
|
pcltau(i, k) = 3.0/2.0*zflwp/radius |
192 |
|
|
pclemi(i, k) = 1.0 - exp(-coef*zflwp) |
193 |
|
|
lo = (pclc(i,k)<=seuil_neb) |
194 |
|
|
IF (lo) pclc(i, k) = 0.0 |
195 |
|
|
IF (lo) pcltau(i, k) = 0.0 |
196 |
|
|
IF (lo) pclemi(i, k) = 0.0 |
197 |
|
|
|
198 |
|
|
IF (.NOT. ok_aie) cldtaupi(i, k) = pcltau(i, k) |
199 |
|
|
END DO |
200 |
|
|
END DO |
201 |
|
|
! cc DO k = 1, klev |
202 |
|
|
! cc DO i = 1, klon |
203 |
|
|
! cc t(i,k) = t(i,k) |
204 |
|
|
! cc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
205 |
|
|
! cc lo = pclc(i,k) .GT. (2.*1.e-5) |
206 |
|
|
! cc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
207 |
|
|
! cc . /(rg*pclc(i,k)) |
208 |
|
|
! cc zradef = 10.0 + (1.-sigs(k))*45.0 |
209 |
|
|
! cc pcltau(i,k) = 1.5 * zflwp / zradef |
210 |
|
|
! cc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
211 |
|
|
! cc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
212 |
|
|
! cc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
213 |
|
|
! cc if (.NOT.lo) pclc(i,k) = 0.0 |
214 |
|
|
! cc if (.NOT.lo) pcltau(i,k) = 0.0 |
215 |
|
|
! cc if (.NOT.lo) pclemi(i,k) = 0.0 |
216 |
|
|
! cc ENDDO |
217 |
|
|
! cc ENDDO |
218 |
|
|
! ccccc print*, 'pas de nuage dans le rayonnement' |
219 |
|
|
! ccccc DO k = 1, klev |
220 |
|
|
! ccccc DO i = 1, klon |
221 |
|
|
! ccccc pclc(i,k) = 0.0 |
222 |
|
|
! ccccc pcltau(i,k) = 0.0 |
223 |
|
|
! ccccc pclemi(i,k) = 0.0 |
224 |
|
|
! ccccc ENDDO |
225 |
|
|
! ccccc ENDDO |
226 |
|
|
|
227 |
|
|
! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
228 |
|
|
|
229 |
|
|
DO i = 1, klon |
230 |
|
|
pct(i) = 1.0 |
231 |
|
|
pch(i) = 1.0 |
232 |
|
|
pcm(i) = 1.0 |
233 |
|
|
pcl(i) = 1.0 |
234 |
|
|
pctlwp(i) = 0.0 |
235 |
|
|
END DO |
236 |
|
|
|
237 |
|
|
DO k = klev, 1, -1 |
238 |
|
|
DO i = 1, klon |
239 |
|
|
pctlwp(i) = pctlwp(i) + pqlwp(i, k)*(paprs(i,k)-paprs(i,k+1))/rg |
240 |
|
|
pct(i) = pct(i)*(1.0-pclc(i,k)) |
241 |
|
|
IF (pplay(i,k)<=cetahb*paprs(i,1)) pch(i) = pch(i)*(1.0-pclc(i,k)) |
242 |
|
|
IF (pplay(i,k)>cetahb*paprs(i,1) .AND. pplay(i,k)<=cetamb*paprs(i,1)) & |
243 |
|
|
pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
244 |
|
|
IF (pplay(i,k)>cetamb*paprs(i,1)) pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
245 |
|
|
END DO |
246 |
|
|
END DO |
247 |
|
|
|
248 |
|
|
DO i = 1, klon |
249 |
|
|
pct(i) = 1. - pct(i) |
250 |
|
|
pch(i) = 1. - pch(i) |
251 |
|
|
pcm(i) = 1. - pcm(i) |
252 |
|
|
pcl(i) = 1. - pcl(i) |
253 |
|
|
END DO |
254 |
|
|
|
255 |
|
|
RETURN |
256 |
|
|
END SUBROUTINE nuage |
257 |
|
|
SUBROUTINE diagcld1(paprs, pplay, rain, snow, kbot, ktop, diafra, dialiq) |
258 |
|
|
USE dimphy |
259 |
|
|
IMPLICIT NONE |
260 |
|
|
|
261 |
|
|
! Laurent Li (LMD/CNRS), le 12 octobre 1998 |
262 |
|
|
! (adaptation du code ECMWF) |
263 |
|
|
|
264 |
|
|
! Dans certains cas, le schema pronostique des nuages n'est |
265 |
|
|
! pas suffisament performant. On a donc besoin de diagnostiquer |
266 |
|
|
! ces nuages. Je dois avouer que c'est une frustration. |
267 |
|
|
|
268 |
|
|
include "YOMCST.h" |
269 |
|
|
|
270 |
|
|
! Arguments d'entree: |
271 |
|
|
REAL paprs(klon, klev+1) ! pression (Pa) a inter-couche |
272 |
|
|
REAL pplay(klon, klev) ! pression (Pa) au milieu de couche |
273 |
|
|
REAL t(klon, klev) ! temperature (K) |
274 |
|
|
REAL q(klon, klev) ! humidite specifique (Kg/Kg) |
275 |
|
|
REAL rain(klon) ! pluie convective (kg/m2/s) |
276 |
|
|
REAL snow(klon) ! neige convective (kg/m2/s) |
277 |
|
|
INTEGER ktop(klon) ! sommet de la convection |
278 |
|
|
INTEGER kbot(klon) ! bas de la convection |
279 |
|
|
|
280 |
|
|
! Arguments de sortie: |
281 |
|
|
REAL diafra(klon, klev) ! fraction nuageuse diagnostiquee |
282 |
|
|
REAL dialiq(klon, klev) ! eau liquide nuageuse |
283 |
|
|
|
284 |
|
|
! Constantes ajustables: |
285 |
|
|
REAL canva, canvb, canvh |
286 |
|
|
PARAMETER (canva=2.0, canvb=0.3, canvh=0.4) |
287 |
|
|
REAL cca, ccb, ccc |
288 |
|
|
PARAMETER (cca=0.125, ccb=1.5, ccc=0.8) |
289 |
|
|
REAL ccfct, ccscal |
290 |
|
|
PARAMETER (ccfct=0.400) |
291 |
|
|
PARAMETER (ccscal=1.0E+11) |
292 |
|
|
REAL cetahb, cetamb |
293 |
|
|
PARAMETER (cetahb=0.45, cetamb=0.80) |
294 |
|
|
REAL cclwmr |
295 |
|
|
PARAMETER (cclwmr=1.E-04) |
296 |
|
|
REAL zepscr |
297 |
|
|
PARAMETER (zepscr=1.0E-10) |
298 |
|
|
|
299 |
|
|
! Variables locales: |
300 |
|
|
INTEGER i, k |
301 |
|
|
REAL zcc(klon) |
302 |
|
|
|
303 |
|
|
! Initialisation: |
304 |
|
|
|
305 |
|
|
DO k = 1, klev |
306 |
|
|
DO i = 1, klon |
307 |
|
|
diafra(i, k) = 0.0 |
308 |
|
|
dialiq(i, k) = 0.0 |
309 |
|
|
END DO |
310 |
|
|
END DO |
311 |
|
|
|
312 |
|
|
DO i = 1, klon ! Calculer la fraction nuageuse |
313 |
|
|
zcc(i) = 0.0 |
314 |
|
|
IF ((rain(i)+snow(i))>0.) THEN |
315 |
|
|
zcc(i) = cca*log(max(zepscr,(rain(i)+snow(i))*ccscal)) - ccb |
316 |
|
|
zcc(i) = min(ccc, max(0.0,zcc(i))) |
317 |
|
|
END IF |
318 |
|
|
END DO |
319 |
|
|
|
320 |
|
|
DO i = 1, klon ! pour traiter les enclumes |
321 |
|
|
diafra(i, ktop(i)) = max(diafra(i,ktop(i)), zcc(i)*ccfct) |
322 |
|
|
IF ((zcc(i)>=canvh) .AND. (pplay(i,ktop(i))<=cetahb*paprs(i, & |
323 |
|
|
1))) diafra(i, ktop(i)) = max(diafra(i,ktop(i)), max(zcc( & |
324 |
|
|
i)*ccfct,canva*(zcc(i)-canvb))) |
325 |
|
|
dialiq(i, ktop(i)) = cclwmr*diafra(i, ktop(i)) |
326 |
|
|
END DO |
327 |
|
|
|
328 |
|
|
DO k = 1, klev ! nuages convectifs (sauf enclumes) |
329 |
|
|
DO i = 1, klon |
330 |
|
|
IF (k<ktop(i) .AND. k>=kbot(i)) THEN |
331 |
|
|
diafra(i, k) = max(diafra(i,k), zcc(i)*ccfct) |
332 |
|
|
dialiq(i, k) = cclwmr*diafra(i, k) |
333 |
|
|
END IF |
334 |
|
|
END DO |
335 |
|
|
END DO |
336 |
|
|
|
337 |
|
|
RETURN |
338 |
|
|
END SUBROUTINE diagcld1 |
339 |
|
|
SUBROUTINE diagcld2(paprs, pplay, t, q, diafra, dialiq) |
340 |
|
|
USE dimphy |
341 |
|
|
IMPLICIT NONE |
342 |
|
|
|
343 |
|
|
include "YOMCST.h" |
344 |
|
|
|
345 |
|
|
! Arguments d'entree: |
346 |
|
|
REAL paprs(klon, klev+1) ! pression (Pa) a inter-couche |
347 |
|
|
REAL pplay(klon, klev) ! pression (Pa) au milieu de couche |
348 |
|
|
REAL t(klon, klev) ! temperature (K) |
349 |
|
|
REAL q(klon, klev) ! humidite specifique (Kg/Kg) |
350 |
|
|
|
351 |
|
|
! Arguments de sortie: |
352 |
|
|
REAL diafra(klon, klev) ! fraction nuageuse diagnostiquee |
353 |
|
|
REAL dialiq(klon, klev) ! eau liquide nuageuse |
354 |
|
|
|
355 |
|
|
REAL cetamb |
356 |
|
|
PARAMETER (cetamb=0.80) |
357 |
|
|
REAL cloia, cloib, cloic, cloid |
358 |
|
|
PARAMETER (cloia=1.0E+02, cloib=-10.00, cloic=-0.6, cloid=5.0) |
359 |
|
|
! cc PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.9, CLOID=5.0) |
360 |
|
|
REAL rgammas |
361 |
|
|
PARAMETER (rgammas=0.05) |
362 |
|
|
REAL crhl |
363 |
|
|
PARAMETER (crhl=0.15) |
364 |
|
|
! cc PARAMETER (CRHL=0.70) |
365 |
|
|
REAL t_coup |
366 |
|
|
PARAMETER (t_coup=234.0) |
367 |
|
|
|
368 |
|
|
! Variables locales: |
369 |
|
|
INTEGER i, k, kb, invb(klon) |
370 |
|
|
REAL zqs, zrhb, zcll, zdthmin(klon), zdthdp |
371 |
|
|
REAL zdelta, zcor |
372 |
|
|
|
373 |
|
|
! Fonctions thermodynamiques: |
374 |
|
|
include "YOETHF.h" |
375 |
|
|
include "FCTTRE.h" |
376 |
|
|
|
377 |
|
|
! Initialisation: |
378 |
|
|
|
379 |
|
|
DO k = 1, klev |
380 |
|
|
DO i = 1, klon |
381 |
|
|
diafra(i, k) = 0.0 |
382 |
|
|
dialiq(i, k) = 0.0 |
383 |
|
|
END DO |
384 |
|
|
END DO |
385 |
|
|
|
386 |
|
|
DO i = 1, klon |
387 |
|
|
invb(i) = klev |
388 |
|
|
zdthmin(i) = 0.0 |
389 |
|
|
END DO |
390 |
|
|
|
391 |
|
|
DO k = 2, klev/2 - 1 |
392 |
|
|
DO i = 1, klon |
393 |
|
|
zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) - & |
394 |
|
|
rd*0.5*(t(i,k)+t(i,k+1))/rcpd/paprs(i, k+1) |
395 |
|
|
zdthdp = zdthdp*cloia |
396 |
|
|
IF (pplay(i,k)>cetamb*paprs(i,1) .AND. zdthdp<zdthmin(i)) THEN |
397 |
|
|
zdthmin(i) = zdthdp |
398 |
|
|
invb(i) = k |
399 |
|
|
END IF |
400 |
|
|
END DO |
401 |
|
|
END DO |
402 |
|
|
|
403 |
|
|
DO i = 1, klon |
404 |
|
|
kb = invb(i) |
405 |
|
|
IF (thermcep) THEN |
406 |
|
|
zdelta = max(0., sign(1.,rtt-t(i,kb))) |
407 |
|
|
zqs = r2es*foeew(t(i,kb), zdelta)/pplay(i, kb) |
408 |
|
|
zqs = min(0.5, zqs) |
409 |
|
|
zcor = 1./(1.-retv*zqs) |
410 |
|
|
zqs = zqs*zcor |
411 |
|
|
ELSE |
412 |
|
|
IF (t(i,kb)<t_coup) THEN |
413 |
|
|
zqs = qsats(t(i,kb))/pplay(i, kb) |
414 |
|
|
ELSE |
415 |
|
|
zqs = qsatl(t(i,kb))/pplay(i, kb) |
416 |
|
|
END IF |
417 |
|
|
END IF |
418 |
|
|
zcll = cloib*zdthmin(i) + cloic |
419 |
|
|
zcll = min(1.0, max(0.0,zcll)) |
420 |
|
|
zrhb = q(i, kb)/zqs |
421 |
|
|
IF (zcll>0.0 .AND. zrhb<crhl) zcll = zcll*(1.-(crhl-zrhb)*cloid) |
422 |
|
|
zcll = min(1.0, max(0.0,zcll)) |
423 |
|
|
diafra(i, kb) = max(diafra(i,kb), zcll) |
424 |
|
|
dialiq(i, kb) = diafra(i, kb)*rgammas*zqs |
425 |
|
|
END DO |
426 |
|
|
|
427 |
|
|
RETURN |
428 |
|
|
END SUBROUTINE diagcld2 |