GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: phylmd/o3_chem_m.F90 Lines: 0 27 0.0 %
Date: 2023-06-30 12:51:15 Branches: 0 92 0.0 %

Line Branch Exec Source
1
! $Id$
2
module o3_chem_m
3
4
  IMPLICIT none
5
6
  private o3_prod
7
8
contains
9
10
  subroutine o3_chem(julien, gmtime, t_seri, zmasse, pdtphys, rlat, rlon, q)
11
12
    ! This procedure evolves the ozone mass fraction through a time
13
    ! step taking only chemistry into account.
14
15
    ! All the 2-dimensional arrays are on the partial "physics" grid.
16
    ! Their shape is "(/klon, nbp_lev/)".
17
    ! Index "(i, :)" is for longitude "rlon(i)", latitude "rlat(i)".
18
19
    use assert_m, only: assert
20
    use dimphy, only: klon
21
    use regr_pr_comb_coefoz_m, only: c_Mob, a4_mass, a2, r_het_interm
22
    use mod_grid_phy_lmdz, only: nbp_lev
23
    use nrtype, only: pi
24
25
    integer, intent(in):: julien ! jour julien, 1 <= julien <= 360
26
    real, intent(in):: gmtime ! heure de la journ�e en fraction de jour
27
    real, intent(in):: t_seri(:, :) ! (klon, nbp_lev) temperature, in K
28
29
    real, intent(in):: zmasse(:, :) ! (klon, nbp_lev)
30
    ! (column-density of mass of air in a cell, in kg m-2)
31
    ! "zmasse(:, k)" is for layer "k".)
32
33
    real, intent(in):: pdtphys ! time step for physics, in s
34
35
    REAL, intent(in):: rlat(:), rlon(:)
36
    ! (longitude and latitude of each horizontal position, in degrees)
37
38
    real, intent(inout):: q(:, :) ! (klon, nbp_lev) mass fraction of ozone
39
    ! "q(:, k)" is at middle of layer "k".)
40
41
    ! Variables local to the procedure:
42
    ! (for "pi")
43
    integer k
44
45
    real c(klon, nbp_lev)
46
    ! (constant term during a time step in the net mass production
47
    ! rate of ozone by chemistry, per unit mass of air, in s-1)
48
    ! "c(:, k)" is at middle of layer "k".)
49
50
    real b(klon, nbp_lev)
51
    ! (coefficient of "q" in the net mass production
52
    ! rate of ozone by chemistry, per unit mass of air, in s-1)
53
    ! "b(:, k)" is at middle of layer "k".)
54
55
    real dq_o3_chem(klon, nbp_lev)
56
    ! (variation of ozone mass fraction due to chemistry during a time step)
57
    ! "dq_o3_chem(:, k)" is at middle of layer "k".)
58
59
    real earth_long
60
    ! (longitude vraie de la Terre dans son orbite solaire, par
61
    ! rapport au point vernal (21 mars), en degr�s)
62
63
    real pmu0(klon) ! mean of cosine of solar zenith angle during "pdtphys"
64
    real trash1
65
    real trash2(klon)
66
67
    !-------------------------------------------------------------
68
69
    call assert(klon == (/size(q, 1), size(t_seri, 1), size(zmasse, 1), &
70
         size(rlat), size(rlon)/), "o3_chem klon")
71
    call assert(nbp_lev == (/size(q, 2), size(t_seri, 2), size(zmasse, 2)/), &
72
         "o3_chem nbp_lev")
73
74
    c = c_Mob + a4_mass * t_seri
75
76
    ! Compute coefficient "b":
77
78
    ! Heterogeneous chemistry is only at low temperature:
79
    where (t_seri < 195.)
80
       b = r_het_interm
81
    elsewhere
82
       b = 0.
83
    end where
84
85
    ! Heterogeneous chemistry is only during daytime:
86
    call orbite(real(julien), earth_long, trash1)
87
    call zenang(earth_long, gmtime, 0., pdtphys, rlat, rlon, pmu0, trash2)
88
    forall (k = 1: nbp_lev)
89
       where (pmu0 <= cos(87. / 180. * pi)) b(:, k) = 0.
90
    end forall
91
92
    b = b + a2
93
94
    ! Midpoint method:
95
96
    ! Trial step to the midpoint:
97
    dq_o3_chem = o3_prod(q, zmasse, c, b) * pdtphys  / 2
98
    ! "Real" step across the whole interval:
99
    dq_o3_chem = o3_prod(q + dq_o3_chem, zmasse, c, b) * pdtphys
100
    q = q + dq_o3_chem
101
102
    ! Confine the mass fraction:
103
    q = min(max(q, 0.), .01)
104
105
  end subroutine o3_chem
106
107
  !*************************************************
108
109
  function o3_prod(q, zmasse, c, b)
110
111
    ! This function computes the production rate of ozone by chemistry.
112
113
    ! All the 2-dimensional arrays are on the partial "physics" grid.
114
    ! Their shape is "(/klon, nbp_lev/)".
115
    ! Index "(i, :)" is for longitude "rlon(i)", latitude "rlat(i)".
116
117
    use regr_pr_comb_coefoz_m, only: a6_mass
118
    use assert_m, only: assert
119
    use dimphy, only: klon
120
    use mod_grid_phy_lmdz, only: nbp_lev
121
122
    real, intent(in):: q(:, :) ! mass fraction of ozone
123
    ! "q(:, k)" is at middle of layer "k".)
124
125
    real, intent(in):: zmasse(:, :)
126
    ! (column-density of mass of air in a layer, in kg m-2)
127
    ! ("zmasse(:, k)" is for layer "k".)
128
129
    real, intent(in):: c(:, :)
130
    ! (constant term during a time step in the net mass production
131
    ! rate of ozone by chemistry, per unit mass of air, in s-1)
132
    ! "c(:, k)" is at middle of layer "k".)
133
134
    real, intent(in):: b(:, :)
135
    ! (coefficient of "q" in the net mass production rate of ozone by
136
    ! chemistry, per unit mass of air, in s-1)
137
    ! ("b(:, k)" is at middle of layer "k".)
138
139
    real o3_prod(klon, nbp_lev)
140
    ! (net mass production rate of ozone by chemistry, per unit mass
141
    ! of air, in s-1)
142
    ! ("o3_prod(:, k)" is at middle of layer "k".)
143
144
    ! Variables local to the procedure:
145
146
    real sigma_mass(klon, nbp_lev)
147
    ! (mass column-density of ozone above point, in kg m-2)
148
    ! ("sigma_mass(:, k)" is at middle of layer "k".)
149
150
    integer k
151
152
    !-------------------------------------------------------------------
153
154
    call assert(klon == (/size(q, 1), size(zmasse, 1), size(c, 1), &
155
         size(b, 1)/), "o3_prod 1")
156
    call assert(nbp_lev == (/size(q, 2), size(zmasse, 2), size(c, 2), &
157
         size(b, 2)/), "o3_prod 2")
158
159
    ! Compute the column-density above the base of layer
160
    ! "k", and, as a first approximation, take it as column-density
161
    ! above the middle of layer "k":
162
    sigma_mass(:, nbp_lev) = zmasse(:, nbp_lev) * q(:, nbp_lev) ! top layer
163
    do k =  nbp_lev - 1, 1, -1
164
       sigma_mass(:, k) = sigma_mass(:, k+1) + zmasse(:, k) * q(:, k)
165
    end do
166
167
    o3_prod = c + b * q + a6_mass * sigma_mass
168
169
  end function o3_prod
170
171
end module o3_chem_m