1 |
|
|
! IM ctes ds clesphys.h SUBROUTINE SW(PSCT, RCO2, PRMU0, PFRAC, |
2 |
|
|
SUBROUTINE sw_lmdar4(psct, prmu0, pfrac, ppmb, pdp, ppsol, palbd, palbp, & |
3 |
|
|
ptave, pwv, pqs, pozon, paer, pcldsw, ptau, pomega, pcg, pheat, pheat0, & |
4 |
|
|
palbpla, ptopsw, psolsw, ptopsw0, psolsw0, zfsup, zfsdn, zfsup0, zfsdn0, & |
5 |
|
|
tauae, pizae, cgae, ptaua, pomegaa, ptopswad, psolswad, ptopswai, & |
6 |
|
|
psolswai, ok_ade, ok_aie) |
7 |
|
|
USE dimphy |
8 |
|
|
USE print_control_mod, ONLY: lunout |
9 |
|
|
IMPLICIT NONE |
10 |
|
|
|
11 |
|
|
include "YOMCST.h" |
12 |
|
|
|
13 |
|
|
! ------------------------------------------------------------------ |
14 |
|
|
|
15 |
|
|
! PURPOSE. |
16 |
|
|
! -------- |
17 |
|
|
|
18 |
|
|
! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
19 |
|
|
! SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
20 |
|
|
|
21 |
|
|
! METHOD. |
22 |
|
|
! ------- |
23 |
|
|
|
24 |
|
|
! 1. COMPUTES ABSORBER AMOUNTS (SWU) |
25 |
|
|
! 2. COMPUTES FLUXES IN 1ST SPECTRAL INTERVAL (SW1S) |
26 |
|
|
! 3. COMPUTES FLUXES IN 2ND SPECTRAL INTERVAL (SW2S) |
27 |
|
|
|
28 |
|
|
! REFERENCE. |
29 |
|
|
! ---------- |
30 |
|
|
|
31 |
|
|
! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
32 |
|
|
! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
33 |
|
|
|
34 |
|
|
! AUTHOR. |
35 |
|
|
! ------- |
36 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
37 |
|
|
|
38 |
|
|
! MODIFICATIONS. |
39 |
|
|
! -------------- |
40 |
|
|
! ORIGINAL : 89-07-14 |
41 |
|
|
! 95-01-01 J.-J. MORCRETTE Direct/Diffuse Albedo |
42 |
|
|
! 03-11-27 J. QUAAS Introduce aerosol forcings (based on BOUCHER) |
43 |
|
|
! ------------------------------------------------------------------ |
44 |
|
|
|
45 |
|
|
! * ARGUMENTS: |
46 |
|
|
|
47 |
|
|
REAL (KIND=8) psct ! constante solaire (valeur conseillee: 1370) |
48 |
|
|
! IM ctes ds clesphys.h REAL(KIND=8) RCO2 ! concentration CO2 (IPCC: |
49 |
|
|
! 353.E-06*44.011/28.97) |
50 |
|
|
include "clesphys.h" |
51 |
|
|
|
52 |
|
|
REAL (KIND=8) ppsol(kdlon) ! SURFACE PRESSURE (PA) |
53 |
|
|
REAL (KIND=8) pdp(kdlon, kflev) ! LAYER THICKNESS (PA) |
54 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF-LEVEL PRESSURE (MB) |
55 |
|
|
|
56 |
|
|
REAL (KIND=8) prmu0(kdlon) ! COSINE OF ZENITHAL ANGLE |
57 |
|
|
REAL (KIND=8) pfrac(kdlon) ! fraction de la journee |
58 |
|
|
|
59 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) ! LAYER TEMPERATURE (K) |
60 |
|
|
REAL (KIND=8) pwv(kdlon, kflev) ! SPECIFIC HUMIDITY (KG/KG) |
61 |
|
|
REAL (KIND=8) pqs(kdlon, kflev) ! SATURATED WATER VAPOUR (KG/KG) |
62 |
|
|
REAL (KIND=8) pozon(kdlon, kflev) ! OZONE CONCENTRATION (KG/KG) |
63 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) ! AEROSOLS' OPTICAL THICKNESS |
64 |
|
|
|
65 |
|
|
REAL (KIND=8) palbd(kdlon, 2) ! albedo du sol (lumiere diffuse) |
66 |
|
|
REAL (KIND=8) palbp(kdlon, 2) ! albedo du sol (lumiere parallele) |
67 |
|
|
|
68 |
|
|
REAL (KIND=8) pcldsw(kdlon, kflev) ! CLOUD FRACTION |
69 |
|
|
REAL (KIND=8) ptau(kdlon, 2, kflev) ! CLOUD OPTICAL THICKNESS |
70 |
|
|
REAL (KIND=8) pcg(kdlon, 2, kflev) ! ASYMETRY FACTOR |
71 |
|
|
REAL (KIND=8) pomega(kdlon, 2, kflev) ! SINGLE SCATTERING ALBEDO |
72 |
|
|
|
73 |
|
|
REAL (KIND=8) pheat(kdlon, kflev) ! SHORTWAVE HEATING (K/DAY) |
74 |
|
|
REAL (KIND=8) pheat0(kdlon, kflev) ! SHORTWAVE HEATING (K/DAY) clear-sky |
75 |
|
|
REAL (KIND=8) palbpla(kdlon) ! PLANETARY ALBEDO |
76 |
|
|
REAL (KIND=8) ptopsw(kdlon) ! SHORTWAVE FLUX AT T.O.A. |
77 |
|
|
REAL (KIND=8) psolsw(kdlon) ! SHORTWAVE FLUX AT SURFACE |
78 |
|
|
REAL (KIND=8) ptopsw0(kdlon) ! SHORTWAVE FLUX AT T.O.A. (CLEAR-SKY) |
79 |
|
|
REAL (KIND=8) psolsw0(kdlon) ! SHORTWAVE FLUX AT SURFACE (CLEAR-SKY) |
80 |
|
|
|
81 |
|
|
! * LOCAL VARIABLES: |
82 |
|
|
|
83 |
|
|
REAL, PARAMETER :: dobson_u = 2.1415E-05 ! Dobson unit, in kg m-2 |
84 |
|
|
|
85 |
|
|
REAL (KIND=8) zoz(kdlon, kflev) |
86 |
|
|
! column-density of ozone in layer, in kilo-Dobsons |
87 |
|
|
|
88 |
|
|
REAL (KIND=8) zaki(kdlon, 2) |
89 |
|
|
REAL (KIND=8) zcld(kdlon, kflev) |
90 |
|
|
REAL (KIND=8) zclear(kdlon) |
91 |
|
|
REAL (KIND=8) zdsig(kdlon, kflev) |
92 |
|
|
REAL (KIND=8) zfact(kdlon) |
93 |
|
|
REAL (KIND=8) zfd(kdlon, kflev+1) |
94 |
|
|
REAL (KIND=8) zfdown(kdlon, kflev+1) |
95 |
|
|
REAL (KIND=8) zfu(kdlon, kflev+1) |
96 |
|
|
REAL (KIND=8) zfup(kdlon, kflev+1) |
97 |
|
|
REAL (KIND=8) zrmu(kdlon) |
98 |
|
|
REAL (KIND=8) zsec(kdlon) |
99 |
|
|
REAL (KIND=8) zud(kdlon, 5, kflev+1) |
100 |
|
|
REAL (KIND=8) zcldsw0(kdlon, kflev) |
101 |
|
|
|
102 |
|
|
REAL (KIND=8) zfsup(kdlon, kflev+1) |
103 |
|
|
REAL (KIND=8) zfsdn(kdlon, kflev+1) |
104 |
|
|
REAL (KIND=8) zfsup0(kdlon, kflev+1) |
105 |
|
|
REAL (KIND=8) zfsdn0(kdlon, kflev+1) |
106 |
|
|
|
107 |
|
|
INTEGER inu, jl, jk, i, k, kpl1 |
108 |
|
|
|
109 |
|
|
INTEGER swpas ! Every swpas steps, sw is calculated |
110 |
|
|
PARAMETER (swpas=1) |
111 |
|
|
|
112 |
|
|
INTEGER itapsw |
113 |
|
|
LOGICAL appel1er |
114 |
|
|
DATA itapsw/0/ |
115 |
|
|
DATA appel1er/.TRUE./ |
116 |
|
|
SAVE itapsw, appel1er |
117 |
|
|
!$OMP THREADPRIVATE(appel1er) |
118 |
|
|
!$OMP THREADPRIVATE(itapsw) |
119 |
|
|
! jq-Introduced for aerosol forcings |
120 |
|
|
REAL (KIND=8) flag_aer |
121 |
|
|
LOGICAL ok_ade, ok_aie ! use aerosol forcings or not? |
122 |
|
|
REAL (KIND=8) tauae(kdlon, kflev, 2) ! aerosol optical properties |
123 |
|
|
REAL (KIND=8) pizae(kdlon, kflev, 2) ! (see aeropt.F) |
124 |
|
|
REAL (KIND=8) cgae(kdlon, kflev, 2) ! -"- |
125 |
|
|
REAL (KIND=8) ptaua(kdlon, 2, kflev) ! CLOUD OPTICAL THICKNESS (pre-industrial value) |
126 |
|
|
REAL (KIND=8) pomegaa(kdlon, 2, kflev) ! SINGLE SCATTERING ALBEDO |
127 |
|
|
REAL (KIND=8) ptopswad(kdlon) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL DIR) |
128 |
|
|
REAL (KIND=8) psolswad(kdlon) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL DIR) |
129 |
|
|
REAL (KIND=8) ptopswai(kdlon) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL IND) |
130 |
|
|
REAL (KIND=8) psolswai(kdlon) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL IND) |
131 |
|
|
! jq - Fluxes including aerosol effects |
132 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zfsupad(:, :) |
133 |
|
|
!$OMP THREADPRIVATE(ZFSUPAD) |
134 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zfsdnad(:, :) |
135 |
|
|
!$OMP THREADPRIVATE(ZFSDNAD) |
136 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zfsupai(:, :) |
137 |
|
|
!$OMP THREADPRIVATE(ZFSUPAI) |
138 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zfsdnai(:, :) |
139 |
|
|
!$OMP THREADPRIVATE(ZFSDNAI) |
140 |
|
|
LOGICAL initialized |
141 |
|
|
! ym SAVE ZFSUPAD, ZFSDNAD, ZFSUPAI, ZFSDNAI ! aerosol fluxes |
142 |
|
|
! rv |
143 |
|
|
SAVE flag_aer |
144 |
|
|
!$OMP THREADPRIVATE(flag_aer) |
145 |
|
|
DATA initialized/.FALSE./ |
146 |
|
|
SAVE initialized |
147 |
|
|
!$OMP THREADPRIVATE(initialized) |
148 |
|
|
! jq-end |
149 |
|
|
REAL tmp_ |
150 |
|
|
|
151 |
|
|
IF (.NOT. initialized) THEN |
152 |
|
|
flag_aer = 0. |
153 |
|
|
initialized = .TRUE. |
154 |
|
|
ALLOCATE (zfsupad(kdlon,kflev+1)) |
155 |
|
|
ALLOCATE (zfsdnad(kdlon,kflev+1)) |
156 |
|
|
ALLOCATE (zfsupai(kdlon,kflev+1)) |
157 |
|
|
ALLOCATE (zfsdnai(kdlon,kflev+1)) |
158 |
|
|
|
159 |
|
|
zfsupad(:, :) = 0. |
160 |
|
|
zfsdnad(:, :) = 0. |
161 |
|
|
zfsupai(:, :) = 0. |
162 |
|
|
zfsdnai(:, :) = 0. |
163 |
|
|
END IF |
164 |
|
|
|
165 |
|
|
IF (appel1er) THEN |
166 |
|
|
WRITE (lunout, *) 'SW calling frequency : ', swpas |
167 |
|
|
WRITE (lunout, *) ' In general, it should be 1' |
168 |
|
|
appel1er = .FALSE. |
169 |
|
|
END IF |
170 |
|
|
! ------------------------------------------------------------------ |
171 |
|
|
IF (mod(itapsw,swpas)==0) THEN |
172 |
|
|
|
173 |
|
|
tmp_ = 1./(dobson_u*1E3*rg) |
174 |
|
|
! cdir collapse |
175 |
|
|
DO jk = 1, kflev |
176 |
|
|
DO jl = 1, kdlon |
177 |
|
|
zcldsw0(jl, jk) = 0.0 |
178 |
|
|
zoz(jl, jk) = pozon(jl, jk)*tmp_*pdp(jl, jk) |
179 |
|
|
END DO |
180 |
|
|
END DO |
181 |
|
|
|
182 |
|
|
|
183 |
|
|
! clear-sky: |
184 |
|
|
! IM ctes ds clesphys.h CALL SWU(PSCT,RCO2,ZCLDSW0,PPMB,PPSOL, |
185 |
|
|
CALL swu_lmdar4(psct, zcldsw0, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
186 |
|
|
zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
187 |
|
|
inu = 1 |
188 |
|
|
CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
189 |
|
|
pcg, zcld, zclear, zcldsw0, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
190 |
|
|
zfd, zfu) |
191 |
|
|
inu = 2 |
192 |
|
|
CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
193 |
|
|
palbp, pcg, zcld, zclear, zcldsw0, zdsig, pomega, zoz, zrmu, zsec, & |
194 |
|
|
ptau, zud, pwv, pqs, zfdown, zfup) |
195 |
|
|
DO jk = 1, kflev + 1 |
196 |
|
|
DO jl = 1, kdlon |
197 |
|
|
zfsup0(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
198 |
|
|
zfsdn0(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
199 |
|
|
END DO |
200 |
|
|
END DO |
201 |
|
|
|
202 |
|
|
flag_aer = 0.0 |
203 |
|
|
CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
204 |
|
|
zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
205 |
|
|
inu = 1 |
206 |
|
|
CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
207 |
|
|
pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
208 |
|
|
zfd, zfu) |
209 |
|
|
inu = 2 |
210 |
|
|
CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
211 |
|
|
palbp, pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, & |
212 |
|
|
zud, pwv, pqs, zfdown, zfup) |
213 |
|
|
|
214 |
|
|
! cloudy-sky: |
215 |
|
|
|
216 |
|
|
DO jk = 1, kflev + 1 |
217 |
|
|
DO jl = 1, kdlon |
218 |
|
|
zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
219 |
|
|
zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
220 |
|
|
END DO |
221 |
|
|
END DO |
222 |
|
|
|
223 |
|
|
|
224 |
|
|
IF (ok_ade) THEN |
225 |
|
|
|
226 |
|
|
! cloudy-sky + aerosol dir OB |
227 |
|
|
flag_aer = 1.0 |
228 |
|
|
CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
229 |
|
|
zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
230 |
|
|
inu = 1 |
231 |
|
|
CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
232 |
|
|
pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
233 |
|
|
zfd, zfu) |
234 |
|
|
inu = 2 |
235 |
|
|
CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
236 |
|
|
palbp, pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, & |
237 |
|
|
ptau, zud, pwv, pqs, zfdown, zfup) |
238 |
|
|
DO jk = 1, kflev + 1 |
239 |
|
|
DO jl = 1, kdlon |
240 |
|
|
zfsupad(jl, jk) = zfsup(jl, jk) |
241 |
|
|
zfsdnad(jl, jk) = zfsdn(jl, jk) |
242 |
|
|
zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
243 |
|
|
zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
244 |
|
|
END DO |
245 |
|
|
END DO |
246 |
|
|
|
247 |
|
|
END IF ! ok_ade |
248 |
|
|
|
249 |
|
|
IF (ok_aie) THEN |
250 |
|
|
|
251 |
|
|
! jq cloudy-sky + aerosol direct + aerosol indirect |
252 |
|
|
flag_aer = 1.0 |
253 |
|
|
CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
254 |
|
|
zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
255 |
|
|
inu = 1 |
256 |
|
|
CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
257 |
|
|
pcg, zcld, zclear, pcldsw, zdsig, pomegaa, zoz, zrmu, zsec, ptaua, & |
258 |
|
|
zud, zfd, zfu) |
259 |
|
|
inu = 2 |
260 |
|
|
CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
261 |
|
|
palbp, pcg, zcld, zclear, pcldsw, zdsig, pomegaa, zoz, zrmu, zsec, & |
262 |
|
|
ptaua, zud, pwv, pqs, zfdown, zfup) |
263 |
|
|
DO jk = 1, kflev + 1 |
264 |
|
|
DO jl = 1, kdlon |
265 |
|
|
zfsupai(jl, jk) = zfsup(jl, jk) |
266 |
|
|
zfsdnai(jl, jk) = zfsdn(jl, jk) |
267 |
|
|
zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
268 |
|
|
zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
269 |
|
|
END DO |
270 |
|
|
END DO |
271 |
|
|
END IF ! ok_aie |
272 |
|
|
! jq -end |
273 |
|
|
|
274 |
|
|
itapsw = 0 |
275 |
|
|
END IF |
276 |
|
|
itapsw = itapsw + 1 |
277 |
|
|
|
278 |
|
|
DO k = 1, kflev |
279 |
|
|
kpl1 = k + 1 |
280 |
|
|
DO i = 1, kdlon |
281 |
|
|
pheat(i, k) = -(zfsup(i,kpl1)-zfsup(i,k)) - (zfsdn(i,k)-zfsdn(i,kpl1)) |
282 |
|
|
pheat(i, k) = pheat(i, k)*rday*rg/rcpd/pdp(i, k) |
283 |
|
|
pheat0(i, k) = -(zfsup0(i,kpl1)-zfsup0(i,k)) - & |
284 |
|
|
(zfsdn0(i,k)-zfsdn0(i,kpl1)) |
285 |
|
|
pheat0(i, k) = pheat0(i, k)*rday*rg/rcpd/pdp(i, k) |
286 |
|
|
END DO |
287 |
|
|
END DO |
288 |
|
|
DO i = 1, kdlon |
289 |
|
|
palbpla(i) = zfsup(i, kflev+1)/(zfsdn(i,kflev+1)+1.0E-20) |
290 |
|
|
|
291 |
|
|
psolsw(i) = zfsdn(i, 1) - zfsup(i, 1) |
292 |
|
|
ptopsw(i) = zfsdn(i, kflev+1) - zfsup(i, kflev+1) |
293 |
|
|
|
294 |
|
|
psolsw0(i) = zfsdn0(i, 1) - zfsup0(i, 1) |
295 |
|
|
ptopsw0(i) = zfsdn0(i, kflev+1) - zfsup0(i, kflev+1) |
296 |
|
|
! -OB |
297 |
|
|
psolswad(i) = zfsdnad(i, 1) - zfsupad(i, 1) |
298 |
|
|
ptopswad(i) = zfsdnad(i, kflev+1) - zfsupad(i, kflev+1) |
299 |
|
|
|
300 |
|
|
psolswai(i) = zfsdnai(i, 1) - zfsupai(i, 1) |
301 |
|
|
ptopswai(i) = zfsdnai(i, kflev+1) - zfsupai(i, kflev+1) |
302 |
|
|
! -fin |
303 |
|
|
END DO |
304 |
|
|
|
305 |
|
|
RETURN |
306 |
|
|
END SUBROUTINE sw_lmdar4 |
307 |
|
|
|
308 |
|
|
! IM ctes ds clesphys.h SUBROUTINE SWU |
309 |
|
|
! (PSCT,RCO2,PCLDSW,PPMB,PPSOL,PRMU0,PFRAC, |
310 |
|
|
SUBROUTINE swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
311 |
|
|
paki, pcld, pclear, pdsig, pfact, prmu, psec, pud) |
312 |
|
|
USE dimphy |
313 |
|
|
USE radiation_ar4_param, ONLY: zpdh2o, zpdumg, zprh2o, zprumg, rtdh2o, & |
314 |
|
|
rtdumg, rth2o, rtumg |
315 |
|
|
IMPLICIT NONE |
316 |
|
|
include "radepsi.h" |
317 |
|
|
include "radopt.h" |
318 |
|
|
include "YOMCST.h" |
319 |
|
|
|
320 |
|
|
! * ARGUMENTS: |
321 |
|
|
|
322 |
|
|
REAL (KIND=8) psct |
323 |
|
|
! IM ctes ds clesphys.h REAL(KIND=8) RCO2 |
324 |
|
|
include "clesphys.h" |
325 |
|
|
REAL (KIND=8) pcldsw(kdlon, kflev) |
326 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) |
327 |
|
|
REAL (KIND=8) ppsol(kdlon) |
328 |
|
|
REAL (KIND=8) prmu0(kdlon) |
329 |
|
|
REAL (KIND=8) pfrac(kdlon) |
330 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) |
331 |
|
|
REAL (KIND=8) pwv(kdlon, kflev) |
332 |
|
|
|
333 |
|
|
REAL (KIND=8) paki(kdlon, 2) |
334 |
|
|
REAL (KIND=8) pcld(kdlon, kflev) |
335 |
|
|
REAL (KIND=8) pclear(kdlon) |
336 |
|
|
REAL (KIND=8) pdsig(kdlon, kflev) |
337 |
|
|
REAL (KIND=8) pfact(kdlon) |
338 |
|
|
REAL (KIND=8) prmu(kdlon) |
339 |
|
|
REAL (KIND=8) psec(kdlon) |
340 |
|
|
REAL (KIND=8) pud(kdlon, 5, kflev+1) |
341 |
|
|
|
342 |
|
|
! * LOCAL VARIABLES: |
343 |
|
|
|
344 |
|
|
INTEGER iind(2) |
345 |
|
|
REAL (KIND=8) zc1j(kdlon, kflev+1) |
346 |
|
|
REAL (KIND=8) zclear(kdlon) |
347 |
|
|
REAL (KIND=8) zcloud(kdlon) |
348 |
|
|
REAL (KIND=8) zn175(kdlon) |
349 |
|
|
REAL (KIND=8) zn190(kdlon) |
350 |
|
|
REAL (KIND=8) zo175(kdlon) |
351 |
|
|
REAL (KIND=8) zo190(kdlon) |
352 |
|
|
REAL (KIND=8) zsign(kdlon) |
353 |
|
|
REAL (KIND=8) zr(kdlon, 2) |
354 |
|
|
REAL (KIND=8) zsigo(kdlon) |
355 |
|
|
REAL (KIND=8) zud(kdlon, 2) |
356 |
|
|
REAL (KIND=8) zrth, zrtu, zwh2o, zdsco2, zdsh2o, zfppw |
357 |
|
|
INTEGER jl, jk, jkp1, jkl, jklp1, ja |
358 |
|
|
|
359 |
|
|
! ------------------------------------------------------------------ |
360 |
|
|
|
361 |
|
|
! * 1. COMPUTES AMOUNTS OF ABSORBERS |
362 |
|
|
! ----------------------------- |
363 |
|
|
|
364 |
|
|
|
365 |
|
|
iind(1) = 1 |
366 |
|
|
iind(2) = 2 |
367 |
|
|
|
368 |
|
|
! * 1.1 INITIALIZES QUANTITIES |
369 |
|
|
! ---------------------- |
370 |
|
|
|
371 |
|
|
|
372 |
|
|
DO jl = 1, kdlon |
373 |
|
|
pud(jl, 1, kflev+1) = 0. |
374 |
|
|
pud(jl, 2, kflev+1) = 0. |
375 |
|
|
pud(jl, 3, kflev+1) = 0. |
376 |
|
|
pud(jl, 4, kflev+1) = 0. |
377 |
|
|
pud(jl, 5, kflev+1) = 0. |
378 |
|
|
pfact(jl) = prmu0(jl)*pfrac(jl)*psct |
379 |
|
|
prmu(jl) = sqrt(1224.*prmu0(jl)*prmu0(jl)+1.)/35. |
380 |
|
|
psec(jl) = 1./prmu(jl) |
381 |
|
|
zc1j(jl, kflev+1) = 0. |
382 |
|
|
END DO |
383 |
|
|
|
384 |
|
|
! * 1.3 AMOUNTS OF ABSORBERS |
385 |
|
|
! -------------------- |
386 |
|
|
|
387 |
|
|
|
388 |
|
|
DO jl = 1, kdlon |
389 |
|
|
zud(jl, 1) = 0. |
390 |
|
|
zud(jl, 2) = 0. |
391 |
|
|
zo175(jl) = ppsol(jl)**(zpdumg+1.) |
392 |
|
|
zo190(jl) = ppsol(jl)**(zpdh2o+1.) |
393 |
|
|
zsigo(jl) = ppsol(jl) |
394 |
|
|
zclear(jl) = 1. |
395 |
|
|
zcloud(jl) = 0. |
396 |
|
|
END DO |
397 |
|
|
|
398 |
|
|
DO jk = 1, kflev |
399 |
|
|
jkp1 = jk + 1 |
400 |
|
|
jkl = kflev + 1 - jk |
401 |
|
|
jklp1 = jkl + 1 |
402 |
|
|
DO jl = 1, kdlon |
403 |
|
|
zrth = (rth2o/ptave(jl,jk))**rtdh2o |
404 |
|
|
zrtu = (rtumg/ptave(jl,jk))**rtdumg |
405 |
|
|
zwh2o = max(pwv(jl,jk), zepscq) |
406 |
|
|
zsign(jl) = 100.*ppmb(jl, jkp1) |
407 |
|
|
pdsig(jl, jk) = (zsigo(jl)-zsign(jl))/ppsol(jl) |
408 |
|
|
zn175(jl) = zsign(jl)**(zpdumg+1.) |
409 |
|
|
zn190(jl) = zsign(jl)**(zpdh2o+1.) |
410 |
|
|
zdsco2 = zo175(jl) - zn175(jl) |
411 |
|
|
zdsh2o = zo190(jl) - zn190(jl) |
412 |
|
|
pud(jl, 1, jk) = 1./(10.*rg*(zpdh2o+1.))/(zprh2o**zpdh2o)*zdsh2o*zwh2o* & |
413 |
|
|
zrth |
414 |
|
|
pud(jl, 2, jk) = 1./(10.*rg*(zpdumg+1.))/(zprumg**zpdumg)*zdsco2*rco2* & |
415 |
|
|
zrtu |
416 |
|
|
zfppw = 1.6078*zwh2o/(1.+0.608*zwh2o) |
417 |
|
|
pud(jl, 4, jk) = pud(jl, 1, jk)*zfppw |
418 |
|
|
pud(jl, 5, jk) = pud(jl, 1, jk)*(1.-zfppw) |
419 |
|
|
zud(jl, 1) = zud(jl, 1) + pud(jl, 1, jk) |
420 |
|
|
zud(jl, 2) = zud(jl, 2) + pud(jl, 2, jk) |
421 |
|
|
zsigo(jl) = zsign(jl) |
422 |
|
|
zo175(jl) = zn175(jl) |
423 |
|
|
zo190(jl) = zn190(jl) |
424 |
|
|
|
425 |
|
|
IF (novlp==1) THEN |
426 |
|
|
zclear(jl) = zclear(jl)*(1.-max(pcldsw(jl,jkl),zcloud(jl)))/(1.-min( & |
427 |
|
|
zcloud(jl),1.-zepsec)) |
428 |
|
|
zc1j(jl, jkl) = 1.0 - zclear(jl) |
429 |
|
|
zcloud(jl) = pcldsw(jl, jkl) |
430 |
|
|
ELSE IF (novlp==2) THEN |
431 |
|
|
zcloud(jl) = max(pcldsw(jl,jkl), zcloud(jl)) |
432 |
|
|
zc1j(jl, jkl) = zcloud(jl) |
433 |
|
|
ELSE IF (novlp==3) THEN |
434 |
|
|
zclear(jl) = zclear(jl)*(1.-pcldsw(jl,jkl)) |
435 |
|
|
zcloud(jl) = 1.0 - zclear(jl) |
436 |
|
|
zc1j(jl, jkl) = zcloud(jl) |
437 |
|
|
END IF |
438 |
|
|
END DO |
439 |
|
|
END DO |
440 |
|
|
DO jl = 1, kdlon |
441 |
|
|
pclear(jl) = 1. - zc1j(jl, 1) |
442 |
|
|
END DO |
443 |
|
|
DO jk = 1, kflev |
444 |
|
|
DO jl = 1, kdlon |
445 |
|
|
IF (pclear(jl)<1.) THEN |
446 |
|
|
pcld(jl, jk) = pcldsw(jl, jk)/(1.-pclear(jl)) |
447 |
|
|
ELSE |
448 |
|
|
pcld(jl, jk) = 0. |
449 |
|
|
END IF |
450 |
|
|
END DO |
451 |
|
|
END DO |
452 |
|
|
|
453 |
|
|
! * 1.4 COMPUTES CLEAR-SKY GREY ABSORPTION COEFFICIENTS |
454 |
|
|
! ----------------------------------------------- |
455 |
|
|
|
456 |
|
|
|
457 |
|
|
DO ja = 1, 2 |
458 |
|
|
DO jl = 1, kdlon |
459 |
|
|
zud(jl, ja) = zud(jl, ja)*psec(jl) |
460 |
|
|
END DO |
461 |
|
|
END DO |
462 |
|
|
|
463 |
|
|
CALL swtt1_lmdar4(2, 2, iind, zud, zr) |
464 |
|
|
|
465 |
|
|
DO ja = 1, 2 |
466 |
|
|
DO jl = 1, kdlon |
467 |
|
|
paki(jl, ja) = -log(zr(jl,ja))/zud(jl, ja) |
468 |
|
|
END DO |
469 |
|
|
END DO |
470 |
|
|
|
471 |
|
|
|
472 |
|
|
! ------------------------------------------------------------------ |
473 |
|
|
|
474 |
|
|
RETURN |
475 |
|
|
END SUBROUTINE swu_lmdar4 |
476 |
|
|
SUBROUTINE sw1s_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
477 |
|
|
pcg, pcld, pclear, pcldsw, pdsig, pomega, poz, prmu, psec, ptau, pud, & |
478 |
|
|
pfd, pfu) |
479 |
|
|
USE dimphy |
480 |
|
|
USE radiation_ar4_param, ONLY: rsun, rray |
481 |
|
|
USE infotrac_phy, ONLY: type_trac |
482 |
|
|
#ifdef REPROBUS |
483 |
|
|
USE chem_rep, ONLY: rsuntime, ok_suntime |
484 |
|
|
USE print_control_mod, ONLY: lunout |
485 |
|
|
#endif |
486 |
|
|
|
487 |
|
|
IMPLICIT NONE |
488 |
|
|
|
489 |
|
|
! ------------------------------------------------------------------ |
490 |
|
|
! PURPOSE. |
491 |
|
|
! -------- |
492 |
|
|
|
493 |
|
|
! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
494 |
|
|
! SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
495 |
|
|
|
496 |
|
|
! METHOD. |
497 |
|
|
! ------- |
498 |
|
|
|
499 |
|
|
! 1. COMPUTES UPWARD AND DOWNWARD FLUXES CORRESPONDING TO |
500 |
|
|
! CONTINUUM SCATTERING |
501 |
|
|
! 2. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
502 |
|
|
|
503 |
|
|
! REFERENCE. |
504 |
|
|
! ---------- |
505 |
|
|
|
506 |
|
|
! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
507 |
|
|
! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
508 |
|
|
|
509 |
|
|
! AUTHOR. |
510 |
|
|
! ------- |
511 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
512 |
|
|
|
513 |
|
|
! MODIFICATIONS. |
514 |
|
|
! -------------- |
515 |
|
|
! ORIGINAL : 89-07-14 |
516 |
|
|
! 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
517 |
|
|
! ------------------------------------------------------------------ |
518 |
|
|
|
519 |
|
|
! * ARGUMENTS: |
520 |
|
|
|
521 |
|
|
INTEGER knu |
522 |
|
|
! -OB |
523 |
|
|
REAL (KIND=8) flag_aer |
524 |
|
|
REAL (KIND=8) tauae(kdlon, kflev, 2) |
525 |
|
|
REAL (KIND=8) pizae(kdlon, kflev, 2) |
526 |
|
|
REAL (KIND=8) cgae(kdlon, kflev, 2) |
527 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) |
528 |
|
|
REAL (KIND=8) palbd(kdlon, 2) |
529 |
|
|
REAL (KIND=8) palbp(kdlon, 2) |
530 |
|
|
REAL (KIND=8) pcg(kdlon, 2, kflev) |
531 |
|
|
REAL (KIND=8) pcld(kdlon, kflev) |
532 |
|
|
REAL (KIND=8) pcldsw(kdlon, kflev) |
533 |
|
|
REAL (KIND=8) pclear(kdlon) |
534 |
|
|
REAL (KIND=8) pdsig(kdlon, kflev) |
535 |
|
|
REAL (KIND=8) pomega(kdlon, 2, kflev) |
536 |
|
|
REAL (KIND=8) poz(kdlon, kflev) |
537 |
|
|
REAL (KIND=8) prmu(kdlon) |
538 |
|
|
REAL (KIND=8) psec(kdlon) |
539 |
|
|
REAL (KIND=8) ptau(kdlon, 2, kflev) |
540 |
|
|
REAL (KIND=8) pud(kdlon, 5, kflev+1) |
541 |
|
|
|
542 |
|
|
REAL (KIND=8) pfd(kdlon, kflev+1) |
543 |
|
|
REAL (KIND=8) pfu(kdlon, kflev+1) |
544 |
|
|
|
545 |
|
|
! * LOCAL VARIABLES: |
546 |
|
|
|
547 |
|
|
INTEGER iind(4) |
548 |
|
|
|
549 |
|
|
REAL (KIND=8) zcgaz(kdlon, kflev) |
550 |
|
|
REAL (KIND=8) zdiff(kdlon) |
551 |
|
|
REAL (KIND=8) zdirf(kdlon) |
552 |
|
|
REAL (KIND=8) zpizaz(kdlon, kflev) |
553 |
|
|
REAL (KIND=8) zrayl(kdlon) |
554 |
|
|
REAL (KIND=8) zray1(kdlon, kflev+1) |
555 |
|
|
REAL (KIND=8) zray2(kdlon, kflev+1) |
556 |
|
|
REAL (KIND=8) zrefz(kdlon, 2, kflev+1) |
557 |
|
|
REAL (KIND=8) zrj(kdlon, 6, kflev+1) |
558 |
|
|
REAL (KIND=8) zrj0(kdlon, 6, kflev+1) |
559 |
|
|
REAL (KIND=8) zrk(kdlon, 6, kflev+1) |
560 |
|
|
REAL (KIND=8) zrk0(kdlon, 6, kflev+1) |
561 |
|
|
REAL (KIND=8) zrmue(kdlon, kflev+1) |
562 |
|
|
REAL (KIND=8) zrmu0(kdlon, kflev+1) |
563 |
|
|
REAL (KIND=8) zr(kdlon, 4) |
564 |
|
|
REAL (KIND=8) ztauaz(kdlon, kflev) |
565 |
|
|
REAL (KIND=8) ztra1(kdlon, kflev+1) |
566 |
|
|
REAL (KIND=8) ztra2(kdlon, kflev+1) |
567 |
|
|
REAL (KIND=8) zw(kdlon, 4) |
568 |
|
|
|
569 |
|
|
INTEGER jl, jk, k, jaj, ikm1, ikl |
570 |
|
|
|
571 |
|
|
! If running with Reporbus, overwrite default values of RSUN. |
572 |
|
|
! Otherwise keep default values from radiation_AR4_param module. |
573 |
|
|
IF (type_trac=='repr') THEN |
574 |
|
|
#ifdef REPROBUS |
575 |
|
|
IF (ok_suntime) THEN |
576 |
|
|
rsun(1) = rsuntime(1) |
577 |
|
|
rsun(2) = rsuntime(2) |
578 |
|
|
END IF |
579 |
|
|
WRITE (lunout, *) 'RSUN(1): ', rsun(1) |
580 |
|
|
#endif |
581 |
|
|
END IF |
582 |
|
|
|
583 |
|
|
! ------------------------------------------------------------------ |
584 |
|
|
|
585 |
|
|
! * 1. FIRST SPECTRAL INTERVAL (0.25-0.68 MICRON) |
586 |
|
|
! ----------------------- ------------------ |
587 |
|
|
|
588 |
|
|
|
589 |
|
|
|
590 |
|
|
! * 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
591 |
|
|
! ----------------------------------------- |
592 |
|
|
|
593 |
|
|
|
594 |
|
|
DO jl = 1, kdlon |
595 |
|
|
zrayl(jl) = rray(knu, 1) + prmu(jl)*(rray(knu,2)+prmu(jl)*(rray(knu, & |
596 |
|
|
3)+prmu(jl)*(rray(knu,4)+prmu(jl)*(rray(knu,5)+prmu(jl)*rray(knu,6))))) |
597 |
|
|
END DO |
598 |
|
|
|
599 |
|
|
|
600 |
|
|
! ------------------------------------------------------------------ |
601 |
|
|
|
602 |
|
|
! * 2. CONTINUUM SCATTERING CALCULATIONS |
603 |
|
|
! --------------------------------- |
604 |
|
|
|
605 |
|
|
|
606 |
|
|
! * 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
607 |
|
|
! -------------------------------- |
608 |
|
|
|
609 |
|
|
|
610 |
|
|
CALL swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, pdsig, & |
611 |
|
|
zrayl, psec, zcgaz, zpizaz, zray1, zray2, zrefz, zrj0, zrk0, zrmu0, & |
612 |
|
|
ztauaz, ztra1, ztra2) |
613 |
|
|
|
614 |
|
|
! * 2.2 CLOUDY FRACTION OF THE COLUMN |
615 |
|
|
! ----------------------------- |
616 |
|
|
|
617 |
|
|
|
618 |
|
|
CALL swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, zrayl, psec, ptau, & |
619 |
|
|
zcgaz, zpizaz, zray1, zray2, zrefz, zrj, zrk, zrmue, ztauaz, ztra1, & |
620 |
|
|
ztra2) |
621 |
|
|
|
622 |
|
|
! ------------------------------------------------------------------ |
623 |
|
|
|
624 |
|
|
! * 3. OZONE ABSORPTION |
625 |
|
|
! ---------------- |
626 |
|
|
|
627 |
|
|
|
628 |
|
|
iind(1) = 1 |
629 |
|
|
iind(2) = 3 |
630 |
|
|
iind(3) = 1 |
631 |
|
|
iind(4) = 3 |
632 |
|
|
|
633 |
|
|
! * 3.1 DOWNWARD FLUXES |
634 |
|
|
! --------------- |
635 |
|
|
|
636 |
|
|
|
637 |
|
|
jaj = 2 |
638 |
|
|
|
639 |
|
|
DO jl = 1, kdlon |
640 |
|
|
zw(jl, 1) = 0. |
641 |
|
|
zw(jl, 2) = 0. |
642 |
|
|
zw(jl, 3) = 0. |
643 |
|
|
zw(jl, 4) = 0. |
644 |
|
|
pfd(jl, kflev+1) = ((1.-pclear(jl))*zrj(jl,jaj,kflev+1)+pclear(jl)*zrj0( & |
645 |
|
|
jl,jaj,kflev+1))*rsun(knu) |
646 |
|
|
END DO |
647 |
|
|
DO jk = 1, kflev |
648 |
|
|
ikl = kflev + 1 - jk |
649 |
|
|
DO jl = 1, kdlon |
650 |
|
|
zw(jl, 1) = zw(jl, 1) + pud(jl, 1, ikl)/zrmue(jl, ikl) |
651 |
|
|
zw(jl, 2) = zw(jl, 2) + poz(jl, ikl)/zrmue(jl, ikl) |
652 |
|
|
zw(jl, 3) = zw(jl, 3) + pud(jl, 1, ikl)/zrmu0(jl, ikl) |
653 |
|
|
zw(jl, 4) = zw(jl, 4) + poz(jl, ikl)/zrmu0(jl, ikl) |
654 |
|
|
END DO |
655 |
|
|
|
656 |
|
|
CALL swtt1_lmdar4(knu, 4, iind, zw, zr) |
657 |
|
|
|
658 |
|
|
DO jl = 1, kdlon |
659 |
|
|
zdiff(jl) = zr(jl, 1)*zr(jl, 2)*zrj(jl, jaj, ikl) |
660 |
|
|
zdirf(jl) = zr(jl, 3)*zr(jl, 4)*zrj0(jl, jaj, ikl) |
661 |
|
|
pfd(jl, ikl) = ((1.-pclear(jl))*zdiff(jl)+pclear(jl)*zdirf(jl))* & |
662 |
|
|
rsun(knu) |
663 |
|
|
END DO |
664 |
|
|
END DO |
665 |
|
|
|
666 |
|
|
! * 3.2 UPWARD FLUXES |
667 |
|
|
! ------------- |
668 |
|
|
|
669 |
|
|
|
670 |
|
|
DO jl = 1, kdlon |
671 |
|
|
pfu(jl, 1) = ((1.-pclear(jl))*zdiff(jl)*palbd(jl,knu)+pclear(jl)*zdirf(jl & |
672 |
|
|
)*palbp(jl,knu))*rsun(knu) |
673 |
|
|
END DO |
674 |
|
|
|
675 |
|
|
DO jk = 2, kflev + 1 |
676 |
|
|
ikm1 = jk - 1 |
677 |
|
|
DO jl = 1, kdlon |
678 |
|
|
zw(jl, 1) = zw(jl, 1) + pud(jl, 1, ikm1)*1.66 |
679 |
|
|
zw(jl, 2) = zw(jl, 2) + poz(jl, ikm1)*1.66 |
680 |
|
|
zw(jl, 3) = zw(jl, 3) + pud(jl, 1, ikm1)*1.66 |
681 |
|
|
zw(jl, 4) = zw(jl, 4) + poz(jl, ikm1)*1.66 |
682 |
|
|
END DO |
683 |
|
|
|
684 |
|
|
CALL swtt1_lmdar4(knu, 4, iind, zw, zr) |
685 |
|
|
|
686 |
|
|
DO jl = 1, kdlon |
687 |
|
|
zdiff(jl) = zr(jl, 1)*zr(jl, 2)*zrk(jl, jaj, jk) |
688 |
|
|
zdirf(jl) = zr(jl, 3)*zr(jl, 4)*zrk0(jl, jaj, jk) |
689 |
|
|
pfu(jl, jk) = ((1.-pclear(jl))*zdiff(jl)+pclear(jl)*zdirf(jl))* & |
690 |
|
|
rsun(knu) |
691 |
|
|
END DO |
692 |
|
|
END DO |
693 |
|
|
|
694 |
|
|
! ------------------------------------------------------------------ |
695 |
|
|
|
696 |
|
|
RETURN |
697 |
|
|
END SUBROUTINE sw1s_lmdar4 |
698 |
|
|
SUBROUTINE sw2s_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, paki, palbd, & |
699 |
|
|
palbp, pcg, pcld, pclear, pcldsw, pdsig, pomega, poz, prmu, psec, ptau, & |
700 |
|
|
pud, pwv, pqs, pfdown, pfup) |
701 |
|
|
USE dimphy |
702 |
|
|
USE radiation_ar4_param, ONLY: rsun, rray |
703 |
|
|
USE infotrac_phy, ONLY: type_trac |
704 |
|
|
#ifdef REPROBUS |
705 |
|
|
USE chem_rep, ONLY: rsuntime, ok_suntime |
706 |
|
|
#endif |
707 |
|
|
|
708 |
|
|
IMPLICIT NONE |
709 |
|
|
include "radepsi.h" |
710 |
|
|
|
711 |
|
|
! ------------------------------------------------------------------ |
712 |
|
|
! PURPOSE. |
713 |
|
|
! -------- |
714 |
|
|
|
715 |
|
|
! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN THE |
716 |
|
|
! SECOND SPECTRAL INTERVAL FOLLOWING FOUQUART AND BONNEL (1980). |
717 |
|
|
|
718 |
|
|
! METHOD. |
719 |
|
|
! ------- |
720 |
|
|
|
721 |
|
|
! 1. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING TO |
722 |
|
|
! CONTINUUM SCATTERING |
723 |
|
|
! 2. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING FOR |
724 |
|
|
! A GREY MOLECULAR ABSORPTION |
725 |
|
|
! 3. LAPLACE TRANSFORM ON THE PREVIOUS TO GET EFFECTIVE AMOUNTS |
726 |
|
|
! OF ABSORBERS |
727 |
|
|
! 4. APPLY H2O AND U.M.G. TRANSMISSION FUNCTIONS |
728 |
|
|
! 5. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
729 |
|
|
|
730 |
|
|
! REFERENCE. |
731 |
|
|
! ---------- |
732 |
|
|
|
733 |
|
|
! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
734 |
|
|
! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
735 |
|
|
|
736 |
|
|
! AUTHOR. |
737 |
|
|
! ------- |
738 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
739 |
|
|
|
740 |
|
|
! MODIFICATIONS. |
741 |
|
|
! -------------- |
742 |
|
|
! ORIGINAL : 89-07-14 |
743 |
|
|
! 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
744 |
|
|
! ------------------------------------------------------------------ |
745 |
|
|
! * ARGUMENTS: |
746 |
|
|
|
747 |
|
|
INTEGER knu |
748 |
|
|
! -OB |
749 |
|
|
REAL (KIND=8) flag_aer |
750 |
|
|
REAL (KIND=8) tauae(kdlon, kflev, 2) |
751 |
|
|
REAL (KIND=8) pizae(kdlon, kflev, 2) |
752 |
|
|
REAL (KIND=8) cgae(kdlon, kflev, 2) |
753 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) |
754 |
|
|
REAL (KIND=8) paki(kdlon, 2) |
755 |
|
|
REAL (KIND=8) palbd(kdlon, 2) |
756 |
|
|
REAL (KIND=8) palbp(kdlon, 2) |
757 |
|
|
REAL (KIND=8) pcg(kdlon, 2, kflev) |
758 |
|
|
REAL (KIND=8) pcld(kdlon, kflev) |
759 |
|
|
REAL (KIND=8) pcldsw(kdlon, kflev) |
760 |
|
|
REAL (KIND=8) pclear(kdlon) |
761 |
|
|
REAL (KIND=8) pdsig(kdlon, kflev) |
762 |
|
|
REAL (KIND=8) pomega(kdlon, 2, kflev) |
763 |
|
|
REAL (KIND=8) poz(kdlon, kflev) |
764 |
|
|
REAL (KIND=8) pqs(kdlon, kflev) |
765 |
|
|
REAL (KIND=8) prmu(kdlon) |
766 |
|
|
REAL (KIND=8) psec(kdlon) |
767 |
|
|
REAL (KIND=8) ptau(kdlon, 2, kflev) |
768 |
|
|
REAL (KIND=8) pud(kdlon, 5, kflev+1) |
769 |
|
|
REAL (KIND=8) pwv(kdlon, kflev) |
770 |
|
|
|
771 |
|
|
REAL (KIND=8) pfdown(kdlon, kflev+1) |
772 |
|
|
REAL (KIND=8) pfup(kdlon, kflev+1) |
773 |
|
|
|
774 |
|
|
! * LOCAL VARIABLES: |
775 |
|
|
|
776 |
|
|
INTEGER iind2(2), iind3(3) |
777 |
|
|
REAL (KIND=8) zcgaz(kdlon, kflev) |
778 |
|
|
REAL (KIND=8) zfd(kdlon, kflev+1) |
779 |
|
|
REAL (KIND=8) zfu(kdlon, kflev+1) |
780 |
|
|
REAL (KIND=8) zg(kdlon) |
781 |
|
|
REAL (KIND=8) zgg(kdlon) |
782 |
|
|
REAL (KIND=8) zpizaz(kdlon, kflev) |
783 |
|
|
REAL (KIND=8) zrayl(kdlon) |
784 |
|
|
REAL (KIND=8) zray1(kdlon, kflev+1) |
785 |
|
|
REAL (KIND=8) zray2(kdlon, kflev+1) |
786 |
|
|
REAL (KIND=8) zref(kdlon) |
787 |
|
|
REAL (KIND=8) zrefz(kdlon, 2, kflev+1) |
788 |
|
|
REAL (KIND=8) zre1(kdlon) |
789 |
|
|
REAL (KIND=8) zre2(kdlon) |
790 |
|
|
REAL (KIND=8) zrj(kdlon, 6, kflev+1) |
791 |
|
|
REAL (KIND=8) zrj0(kdlon, 6, kflev+1) |
792 |
|
|
REAL (KIND=8) zrk(kdlon, 6, kflev+1) |
793 |
|
|
REAL (KIND=8) zrk0(kdlon, 6, kflev+1) |
794 |
|
|
REAL (KIND=8) zrl(kdlon, 8) |
795 |
|
|
REAL (KIND=8) zrmue(kdlon, kflev+1) |
796 |
|
|
REAL (KIND=8) zrmu0(kdlon, kflev+1) |
797 |
|
|
REAL (KIND=8) zrmuz(kdlon) |
798 |
|
|
REAL (KIND=8) zrneb(kdlon) |
799 |
|
|
REAL (KIND=8) zruef(kdlon, 8) |
800 |
|
|
REAL (KIND=8) zr1(kdlon) |
801 |
|
|
REAL (KIND=8) zr2(kdlon, 2) |
802 |
|
|
REAL (KIND=8) zr3(kdlon, 3) |
803 |
|
|
REAL (KIND=8) zr4(kdlon) |
804 |
|
|
REAL (KIND=8) zr21(kdlon) |
805 |
|
|
REAL (KIND=8) zr22(kdlon) |
806 |
|
|
REAL (KIND=8) zs(kdlon) |
807 |
|
|
REAL (KIND=8) ztauaz(kdlon, kflev) |
808 |
|
|
REAL (KIND=8) zto1(kdlon) |
809 |
|
|
REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
810 |
|
|
REAL (KIND=8) ztra1(kdlon, kflev+1) |
811 |
|
|
REAL (KIND=8) ztra2(kdlon, kflev+1) |
812 |
|
|
REAL (KIND=8) ztr1(kdlon) |
813 |
|
|
REAL (KIND=8) ztr2(kdlon) |
814 |
|
|
REAL (KIND=8) zw(kdlon) |
815 |
|
|
REAL (KIND=8) zw1(kdlon) |
816 |
|
|
REAL (KIND=8) zw2(kdlon, 2) |
817 |
|
|
REAL (KIND=8) zw3(kdlon, 3) |
818 |
|
|
REAL (KIND=8) zw4(kdlon) |
819 |
|
|
REAL (KIND=8) zw5(kdlon) |
820 |
|
|
|
821 |
|
|
INTEGER jl, jk, k, jaj, ikm1, ikl, jn, jabs, jkm1 |
822 |
|
|
INTEGER jref, jkl, jklp1, jajp, jkki, jkkp4, jn2j, iabs |
823 |
|
|
REAL (KIND=8) zrmum1, zwh2o, zcneb, zaa, zbb, zrki, zre11 |
824 |
|
|
|
825 |
|
|
! If running with Reporbus, overwrite default values of RSUN. |
826 |
|
|
! Otherwise keep default values from radiation_AR4_param module. |
827 |
|
|
IF (type_trac=='repr') THEN |
828 |
|
|
#ifdef REPROBUS |
829 |
|
|
IF (ok_suntime) THEN |
830 |
|
|
rsun(1) = rsuntime(1) |
831 |
|
|
rsun(2) = rsuntime(2) |
832 |
|
|
END IF |
833 |
|
|
#endif |
834 |
|
|
END IF |
835 |
|
|
|
836 |
|
|
! ------------------------------------------------------------------ |
837 |
|
|
|
838 |
|
|
! * 1. SECOND SPECTRAL INTERVAL (0.68-4.00 MICRON) |
839 |
|
|
! ------------------------------------------- |
840 |
|
|
|
841 |
|
|
|
842 |
|
|
|
843 |
|
|
! * 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
844 |
|
|
! ----------------------------------------- |
845 |
|
|
|
846 |
|
|
|
847 |
|
|
DO jl = 1, kdlon |
848 |
|
|
zrmum1 = 1. - prmu(jl) |
849 |
|
|
zrayl(jl) = rray(knu, 1) + zrmum1*(rray(knu,2)+zrmum1*(rray(knu, & |
850 |
|
|
3)+zrmum1*(rray(knu,4)+zrmum1*(rray(knu,5)+zrmum1*rray(knu,6))))) |
851 |
|
|
END DO |
852 |
|
|
|
853 |
|
|
! ------------------------------------------------------------------ |
854 |
|
|
|
855 |
|
|
! * 2. CONTINUUM SCATTERING CALCULATIONS |
856 |
|
|
! --------------------------------- |
857 |
|
|
|
858 |
|
|
|
859 |
|
|
! * 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
860 |
|
|
! -------------------------------- |
861 |
|
|
|
862 |
|
|
|
863 |
|
|
CALL swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, pdsig, & |
864 |
|
|
zrayl, psec, zcgaz, zpizaz, zray1, zray2, zrefz, zrj0, zrk0, zrmu0, & |
865 |
|
|
ztauaz, ztra1, ztra2) |
866 |
|
|
|
867 |
|
|
! * 2.2 CLOUDY FRACTION OF THE COLUMN |
868 |
|
|
! ----------------------------- |
869 |
|
|
|
870 |
|
|
|
871 |
|
|
CALL swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, zrayl, psec, ptau, & |
872 |
|
|
zcgaz, zpizaz, zray1, zray2, zrefz, zrj, zrk, zrmue, ztauaz, ztra1, & |
873 |
|
|
ztra2) |
874 |
|
|
|
875 |
|
|
! ------------------------------------------------------------------ |
876 |
|
|
|
877 |
|
|
! * 3. SCATTERING CALCULATIONS WITH GREY MOLECULAR ABSORPTION |
878 |
|
|
! ------------------------------------------------------ |
879 |
|
|
|
880 |
|
|
|
881 |
|
|
jn = 2 |
882 |
|
|
|
883 |
|
|
DO jabs = 1, 2 |
884 |
|
|
! * 3.1 SURFACE CONDITIONS |
885 |
|
|
! ------------------ |
886 |
|
|
|
887 |
|
|
|
888 |
|
|
DO jl = 1, kdlon |
889 |
|
|
zrefz(jl, 2, 1) = palbd(jl, knu) |
890 |
|
|
zrefz(jl, 1, 1) = palbd(jl, knu) |
891 |
|
|
END DO |
892 |
|
|
|
893 |
|
|
! * 3.2 INTRODUCING CLOUD EFFECTS |
894 |
|
|
! ------------------------- |
895 |
|
|
|
896 |
|
|
|
897 |
|
|
DO jk = 2, kflev + 1 |
898 |
|
|
jkm1 = jk - 1 |
899 |
|
|
ikl = kflev + 1 - jkm1 |
900 |
|
|
DO jl = 1, kdlon |
901 |
|
|
zrneb(jl) = pcld(jl, jkm1) |
902 |
|
|
IF (jabs==1 .AND. zrneb(jl)>2.*zeelog) THEN |
903 |
|
|
zwh2o = max(pwv(jl,jkm1), zeelog) |
904 |
|
|
zcneb = max(zeelog, min(zrneb(jl),1.-zeelog)) |
905 |
|
|
zbb = pud(jl, jabs, jkm1)*pqs(jl, jkm1)/zwh2o |
906 |
|
|
zaa = max((pud(jl,jabs,jkm1)-zcneb*zbb)/(1.-zcneb), zeelog) |
907 |
|
|
ELSE |
908 |
|
|
zaa = pud(jl, jabs, jkm1) |
909 |
|
|
zbb = zaa |
910 |
|
|
END IF |
911 |
|
|
zrki = paki(jl, jabs) |
912 |
|
|
zs(jl) = exp(-zrki*zaa*1.66) |
913 |
|
|
zg(jl) = exp(-zrki*zaa/zrmue(jl,jk)) |
914 |
|
|
ztr1(jl) = 0. |
915 |
|
|
zre1(jl) = 0. |
916 |
|
|
ztr2(jl) = 0. |
917 |
|
|
zre2(jl) = 0. |
918 |
|
|
|
919 |
|
|
zw(jl) = pomega(jl, knu, jkm1) |
920 |
|
|
zto1(jl) = ptau(jl, knu, jkm1)/zw(jl) + ztauaz(jl, jkm1)/zpizaz(jl, & |
921 |
|
|
jkm1) + zbb*zrki |
922 |
|
|
|
923 |
|
|
zr21(jl) = ptau(jl, knu, jkm1) + ztauaz(jl, jkm1) |
924 |
|
|
zr22(jl) = ptau(jl, knu, jkm1)/zr21(jl) |
925 |
|
|
zgg(jl) = zr22(jl)*pcg(jl, knu, jkm1) + (1.-zr22(jl))*zcgaz(jl, jkm1) |
926 |
|
|
zw(jl) = zr21(jl)/zto1(jl) |
927 |
|
|
zref(jl) = zrefz(jl, 1, jkm1) |
928 |
|
|
zrmuz(jl) = zrmue(jl, jk) |
929 |
|
|
END DO |
930 |
|
|
|
931 |
|
|
CALL swde_lmdar4(zgg, zref, zrmuz, zto1, zw, zre1, zre2, ztr1, ztr2) |
932 |
|
|
|
933 |
|
|
DO jl = 1, kdlon |
934 |
|
|
|
935 |
|
|
zrefz(jl, 2, jk) = (1.-zrneb(jl))*(zray1(jl,jkm1)+zrefz(jl,2,jkm1)* & |
936 |
|
|
ztra1(jl,jkm1)*ztra2(jl,jkm1))*zg(jl)*zs(jl) + zrneb(jl)*zre1(jl) |
937 |
|
|
|
938 |
|
|
ztr(jl, 2, jkm1) = zrneb(jl)*ztr1(jl) + (ztra1(jl,jkm1))*zg(jl)*(1.- & |
939 |
|
|
zrneb(jl)) |
940 |
|
|
|
941 |
|
|
zrefz(jl, 1, jk) = (1.-zrneb(jl))*(zray1(jl,jkm1)+zrefz(jl,1,jkm1)* & |
942 |
|
|
ztra1(jl,jkm1)*ztra2(jl,jkm1)/(1.-zray2(jl,jkm1)*zrefz(jl,1, & |
943 |
|
|
jkm1)))*zg(jl)*zs(jl) + zrneb(jl)*zre2(jl) |
944 |
|
|
|
945 |
|
|
ztr(jl, 1, jkm1) = zrneb(jl)*ztr2(jl) + (ztra1(jl,jkm1)/(1.-zray2(jl, & |
946 |
|
|
jkm1)*zrefz(jl,1,jkm1)))*zg(jl)*(1.-zrneb(jl)) |
947 |
|
|
|
948 |
|
|
END DO |
949 |
|
|
END DO |
950 |
|
|
|
951 |
|
|
! * 3.3 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
952 |
|
|
! ------------------------------------------------- |
953 |
|
|
|
954 |
|
|
|
955 |
|
|
DO jref = 1, 2 |
956 |
|
|
|
957 |
|
|
jn = jn + 1 |
958 |
|
|
|
959 |
|
|
DO jl = 1, kdlon |
960 |
|
|
zrj(jl, jn, kflev+1) = 1. |
961 |
|
|
zrk(jl, jn, kflev+1) = zrefz(jl, jref, kflev+1) |
962 |
|
|
END DO |
963 |
|
|
|
964 |
|
|
DO jk = 1, kflev |
965 |
|
|
jkl = kflev + 1 - jk |
966 |
|
|
jklp1 = jkl + 1 |
967 |
|
|
DO jl = 1, kdlon |
968 |
|
|
zre11 = zrj(jl, jn, jklp1)*ztr(jl, jref, jkl) |
969 |
|
|
zrj(jl, jn, jkl) = zre11 |
970 |
|
|
zrk(jl, jn, jkl) = zre11*zrefz(jl, jref, jkl) |
971 |
|
|
END DO |
972 |
|
|
END DO |
973 |
|
|
END DO |
974 |
|
|
END DO |
975 |
|
|
|
976 |
|
|
! ------------------------------------------------------------------ |
977 |
|
|
|
978 |
|
|
! * 4. INVERT GREY AND CONTINUUM FLUXES |
979 |
|
|
! -------------------------------- |
980 |
|
|
|
981 |
|
|
|
982 |
|
|
|
983 |
|
|
! * 4.1 UPWARD (ZRK) AND DOWNWARD (ZRJ) PSEUDO-FLUXES |
984 |
|
|
! --------------------------------------------- |
985 |
|
|
|
986 |
|
|
|
987 |
|
|
DO jk = 1, kflev + 1 |
988 |
|
|
DO jaj = 1, 5, 2 |
989 |
|
|
jajp = jaj + 1 |
990 |
|
|
DO jl = 1, kdlon |
991 |
|
|
zrj(jl, jaj, jk) = zrj(jl, jaj, jk) - zrj(jl, jajp, jk) |
992 |
|
|
zrk(jl, jaj, jk) = zrk(jl, jaj, jk) - zrk(jl, jajp, jk) |
993 |
|
|
zrj(jl, jaj, jk) = max(zrj(jl,jaj,jk), zeelog) |
994 |
|
|
zrk(jl, jaj, jk) = max(zrk(jl,jaj,jk), zeelog) |
995 |
|
|
END DO |
996 |
|
|
END DO |
997 |
|
|
END DO |
998 |
|
|
|
999 |
|
|
DO jk = 1, kflev + 1 |
1000 |
|
|
DO jaj = 2, 6, 2 |
1001 |
|
|
DO jl = 1, kdlon |
1002 |
|
|
zrj(jl, jaj, jk) = max(zrj(jl,jaj,jk), zeelog) |
1003 |
|
|
zrk(jl, jaj, jk) = max(zrk(jl,jaj,jk), zeelog) |
1004 |
|
|
END DO |
1005 |
|
|
END DO |
1006 |
|
|
END DO |
1007 |
|
|
|
1008 |
|
|
! * 4.2 EFFECTIVE ABSORBER AMOUNTS BY INVERSE LAPLACE |
1009 |
|
|
! --------------------------------------------- |
1010 |
|
|
|
1011 |
|
|
|
1012 |
|
|
DO jk = 1, kflev + 1 |
1013 |
|
|
jkki = 1 |
1014 |
|
|
DO jaj = 1, 2 |
1015 |
|
|
iind2(1) = jaj |
1016 |
|
|
iind2(2) = jaj |
1017 |
|
|
DO jn = 1, 2 |
1018 |
|
|
jn2j = jn + 2*jaj |
1019 |
|
|
jkkp4 = jkki + 4 |
1020 |
|
|
|
1021 |
|
|
! * 4.2.1 EFFECTIVE ABSORBER AMOUNTS |
1022 |
|
|
! -------------------------- |
1023 |
|
|
|
1024 |
|
|
|
1025 |
|
|
DO jl = 1, kdlon |
1026 |
|
|
zw2(jl, 1) = log(zrj(jl,jn,jk)/zrj(jl,jn2j,jk))/paki(jl, jaj) |
1027 |
|
|
zw2(jl, 2) = log(zrk(jl,jn,jk)/zrk(jl,jn2j,jk))/paki(jl, jaj) |
1028 |
|
|
END DO |
1029 |
|
|
|
1030 |
|
|
! * 4.2.2 TRANSMISSION FUNCTION |
1031 |
|
|
! --------------------- |
1032 |
|
|
|
1033 |
|
|
|
1034 |
|
|
CALL swtt1_lmdar4(knu, 2, iind2, zw2, zr2) |
1035 |
|
|
|
1036 |
|
|
DO jl = 1, kdlon |
1037 |
|
|
zrl(jl, jkki) = zr2(jl, 1) |
1038 |
|
|
zruef(jl, jkki) = zw2(jl, 1) |
1039 |
|
|
zrl(jl, jkkp4) = zr2(jl, 2) |
1040 |
|
|
zruef(jl, jkkp4) = zw2(jl, 2) |
1041 |
|
|
END DO |
1042 |
|
|
|
1043 |
|
|
jkki = jkki + 1 |
1044 |
|
|
END DO |
1045 |
|
|
END DO |
1046 |
|
|
|
1047 |
|
|
! * 4.3 UPWARD AND DOWNWARD FLUXES WITH H2O AND UMG ABSORPTION |
1048 |
|
|
! ------------------------------------------------------ |
1049 |
|
|
|
1050 |
|
|
|
1051 |
|
|
DO jl = 1, kdlon |
1052 |
|
|
pfdown(jl, jk) = zrj(jl, 1, jk)*zrl(jl, 1)*zrl(jl, 3) + & |
1053 |
|
|
zrj(jl, 2, jk)*zrl(jl, 2)*zrl(jl, 4) |
1054 |
|
|
pfup(jl, jk) = zrk(jl, 1, jk)*zrl(jl, 5)*zrl(jl, 7) + & |
1055 |
|
|
zrk(jl, 2, jk)*zrl(jl, 6)*zrl(jl, 8) |
1056 |
|
|
END DO |
1057 |
|
|
END DO |
1058 |
|
|
|
1059 |
|
|
! ------------------------------------------------------------------ |
1060 |
|
|
|
1061 |
|
|
! * 5. MOLECULAR ABSORPTION ON CLEAR-SKY FLUXES |
1062 |
|
|
! ---------------------------------------- |
1063 |
|
|
|
1064 |
|
|
|
1065 |
|
|
|
1066 |
|
|
! * 5.1 DOWNWARD FLUXES |
1067 |
|
|
! --------------- |
1068 |
|
|
|
1069 |
|
|
|
1070 |
|
|
jaj = 2 |
1071 |
|
|
iind3(1) = 1 |
1072 |
|
|
iind3(2) = 2 |
1073 |
|
|
iind3(3) = 3 |
1074 |
|
|
|
1075 |
|
|
DO jl = 1, kdlon |
1076 |
|
|
zw3(jl, 1) = 0. |
1077 |
|
|
zw3(jl, 2) = 0. |
1078 |
|
|
zw3(jl, 3) = 0. |
1079 |
|
|
zw4(jl) = 0. |
1080 |
|
|
zw5(jl) = 0. |
1081 |
|
|
zr4(jl) = 1. |
1082 |
|
|
zfd(jl, kflev+1) = zrj0(jl, jaj, kflev+1) |
1083 |
|
|
END DO |
1084 |
|
|
DO jk = 1, kflev |
1085 |
|
|
ikl = kflev + 1 - jk |
1086 |
|
|
DO jl = 1, kdlon |
1087 |
|
|
zw3(jl, 1) = zw3(jl, 1) + pud(jl, 1, ikl)/zrmu0(jl, ikl) |
1088 |
|
|
zw3(jl, 2) = zw3(jl, 2) + pud(jl, 2, ikl)/zrmu0(jl, ikl) |
1089 |
|
|
zw3(jl, 3) = zw3(jl, 3) + poz(jl, ikl)/zrmu0(jl, ikl) |
1090 |
|
|
zw4(jl) = zw4(jl) + pud(jl, 4, ikl)/zrmu0(jl, ikl) |
1091 |
|
|
zw5(jl) = zw5(jl) + pud(jl, 5, ikl)/zrmu0(jl, ikl) |
1092 |
|
|
END DO |
1093 |
|
|
|
1094 |
|
|
CALL swtt1_lmdar4(knu, 3, iind3, zw3, zr3) |
1095 |
|
|
|
1096 |
|
|
DO jl = 1, kdlon |
1097 |
|
|
! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
1098 |
|
|
zfd(jl, ikl) = zr3(jl, 1)*zr3(jl, 2)*zr3(jl, 3)*zr4(jl)* & |
1099 |
|
|
zrj0(jl, jaj, ikl) |
1100 |
|
|
END DO |
1101 |
|
|
END DO |
1102 |
|
|
|
1103 |
|
|
! * 5.2 UPWARD FLUXES |
1104 |
|
|
! ------------- |
1105 |
|
|
|
1106 |
|
|
|
1107 |
|
|
DO jl = 1, kdlon |
1108 |
|
|
zfu(jl, 1) = zfd(jl, 1)*palbp(jl, knu) |
1109 |
|
|
END DO |
1110 |
|
|
|
1111 |
|
|
DO jk = 2, kflev + 1 |
1112 |
|
|
ikm1 = jk - 1 |
1113 |
|
|
DO jl = 1, kdlon |
1114 |
|
|
zw3(jl, 1) = zw3(jl, 1) + pud(jl, 1, ikm1)*1.66 |
1115 |
|
|
zw3(jl, 2) = zw3(jl, 2) + pud(jl, 2, ikm1)*1.66 |
1116 |
|
|
zw3(jl, 3) = zw3(jl, 3) + poz(jl, ikm1)*1.66 |
1117 |
|
|
zw4(jl) = zw4(jl) + pud(jl, 4, ikm1)*1.66 |
1118 |
|
|
zw5(jl) = zw5(jl) + pud(jl, 5, ikm1)*1.66 |
1119 |
|
|
END DO |
1120 |
|
|
|
1121 |
|
|
CALL swtt1_lmdar4(knu, 3, iind3, zw3, zr3) |
1122 |
|
|
|
1123 |
|
|
DO jl = 1, kdlon |
1124 |
|
|
! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
1125 |
|
|
zfu(jl, jk) = zr3(jl, 1)*zr3(jl, 2)*zr3(jl, 3)*zr4(jl)* & |
1126 |
|
|
zrk0(jl, jaj, jk) |
1127 |
|
|
END DO |
1128 |
|
|
END DO |
1129 |
|
|
|
1130 |
|
|
! ------------------------------------------------------------------ |
1131 |
|
|
|
1132 |
|
|
! * 6. INTRODUCTION OF OZONE AND H2O CONTINUUM ABSORPTION |
1133 |
|
|
! -------------------------------------------------- |
1134 |
|
|
|
1135 |
|
|
iabs = 3 |
1136 |
|
|
|
1137 |
|
|
! * 6.1 DOWNWARD FLUXES |
1138 |
|
|
! --------------- |
1139 |
|
|
|
1140 |
|
|
DO jl = 1, kdlon |
1141 |
|
|
zw1(jl) = 0. |
1142 |
|
|
zw4(jl) = 0. |
1143 |
|
|
zw5(jl) = 0. |
1144 |
|
|
zr1(jl) = 0. |
1145 |
|
|
pfdown(jl, kflev+1) = ((1.-pclear(jl))*pfdown(jl,kflev+1)+pclear(jl)*zfd( & |
1146 |
|
|
jl,kflev+1))*rsun(knu) |
1147 |
|
|
END DO |
1148 |
|
|
|
1149 |
|
|
DO jk = 1, kflev |
1150 |
|
|
ikl = kflev + 1 - jk |
1151 |
|
|
DO jl = 1, kdlon |
1152 |
|
|
zw1(jl) = zw1(jl) + poz(jl, ikl)/zrmue(jl, ikl) |
1153 |
|
|
zw4(jl) = zw4(jl) + pud(jl, 4, ikl)/zrmue(jl, ikl) |
1154 |
|
|
zw5(jl) = zw5(jl) + pud(jl, 5, ikl)/zrmue(jl, ikl) |
1155 |
|
|
! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
1156 |
|
|
END DO |
1157 |
|
|
|
1158 |
|
|
CALL swtt_lmdar4(knu, iabs, zw1, zr1) |
1159 |
|
|
|
1160 |
|
|
DO jl = 1, kdlon |
1161 |
|
|
pfdown(jl, ikl) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfdown(jl,ikl)+ & |
1162 |
|
|
pclear(jl)*zfd(jl,ikl))*rsun(knu) |
1163 |
|
|
END DO |
1164 |
|
|
END DO |
1165 |
|
|
|
1166 |
|
|
! * 6.2 UPWARD FLUXES |
1167 |
|
|
! ------------- |
1168 |
|
|
|
1169 |
|
|
DO jl = 1, kdlon |
1170 |
|
|
pfup(jl, 1) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfup(jl,1)+pclear(jl)*zfu( & |
1171 |
|
|
jl,1))*rsun(knu) |
1172 |
|
|
END DO |
1173 |
|
|
|
1174 |
|
|
DO jk = 2, kflev + 1 |
1175 |
|
|
ikm1 = jk - 1 |
1176 |
|
|
DO jl = 1, kdlon |
1177 |
|
|
zw1(jl) = zw1(jl) + poz(jl, ikm1)*1.66 |
1178 |
|
|
zw4(jl) = zw4(jl) + pud(jl, 4, ikm1)*1.66 |
1179 |
|
|
zw5(jl) = zw5(jl) + pud(jl, 5, ikm1)*1.66 |
1180 |
|
|
! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
1181 |
|
|
END DO |
1182 |
|
|
|
1183 |
|
|
CALL swtt_lmdar4(knu, iabs, zw1, zr1) |
1184 |
|
|
|
1185 |
|
|
DO jl = 1, kdlon |
1186 |
|
|
pfup(jl, jk) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfup(jl,jk)+pclear(jl)* & |
1187 |
|
|
zfu(jl,jk))*rsun(knu) |
1188 |
|
|
END DO |
1189 |
|
|
END DO |
1190 |
|
|
|
1191 |
|
|
! ------------------------------------------------------------------ |
1192 |
|
|
|
1193 |
|
|
RETURN |
1194 |
|
|
END SUBROUTINE sw2s_lmdar4 |
1195 |
|
|
SUBROUTINE swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, & |
1196 |
|
|
pdsig, prayl, psec, pcgaz, ppizaz, pray1, pray2, prefz, prj, prk, prmu0, & |
1197 |
|
|
ptauaz, ptra1, ptra2) |
1198 |
|
|
USE dimphy |
1199 |
|
|
USE radiation_ar4_param, ONLY: taua, rpiza, rcga |
1200 |
|
|
IMPLICIT NONE |
1201 |
|
|
include "radepsi.h" |
1202 |
|
|
include "radopt.h" |
1203 |
|
|
|
1204 |
|
|
! ------------------------------------------------------------------ |
1205 |
|
|
! PURPOSE. |
1206 |
|
|
! -------- |
1207 |
|
|
! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
1208 |
|
|
! CLEAR-SKY COLUMN |
1209 |
|
|
|
1210 |
|
|
! REFERENCE. |
1211 |
|
|
! ---------- |
1212 |
|
|
|
1213 |
|
|
! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
1214 |
|
|
! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
1215 |
|
|
|
1216 |
|
|
! AUTHOR. |
1217 |
|
|
! ------- |
1218 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
1219 |
|
|
|
1220 |
|
|
! MODIFICATIONS. |
1221 |
|
|
! -------------- |
1222 |
|
|
! ORIGINAL : 94-11-15 |
1223 |
|
|
! ------------------------------------------------------------------ |
1224 |
|
|
! * ARGUMENTS: |
1225 |
|
|
|
1226 |
|
|
INTEGER knu |
1227 |
|
|
! -OB |
1228 |
|
|
REAL (KIND=8) flag_aer |
1229 |
|
|
REAL (KIND=8) tauae(kdlon, kflev, 2) |
1230 |
|
|
REAL (KIND=8) pizae(kdlon, kflev, 2) |
1231 |
|
|
REAL (KIND=8) cgae(kdlon, kflev, 2) |
1232 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) |
1233 |
|
|
REAL (KIND=8) palbp(kdlon, 2) |
1234 |
|
|
REAL (KIND=8) pdsig(kdlon, kflev) |
1235 |
|
|
REAL (KIND=8) prayl(kdlon) |
1236 |
|
|
REAL (KIND=8) psec(kdlon) |
1237 |
|
|
|
1238 |
|
|
REAL (KIND=8) pcgaz(kdlon, kflev) |
1239 |
|
|
REAL (KIND=8) ppizaz(kdlon, kflev) |
1240 |
|
|
REAL (KIND=8) pray1(kdlon, kflev+1) |
1241 |
|
|
REAL (KIND=8) pray2(kdlon, kflev+1) |
1242 |
|
|
REAL (KIND=8) prefz(kdlon, 2, kflev+1) |
1243 |
|
|
REAL (KIND=8) prj(kdlon, 6, kflev+1) |
1244 |
|
|
REAL (KIND=8) prk(kdlon, 6, kflev+1) |
1245 |
|
|
REAL (KIND=8) prmu0(kdlon, kflev+1) |
1246 |
|
|
REAL (KIND=8) ptauaz(kdlon, kflev) |
1247 |
|
|
REAL (KIND=8) ptra1(kdlon, kflev+1) |
1248 |
|
|
REAL (KIND=8) ptra2(kdlon, kflev+1) |
1249 |
|
|
|
1250 |
|
|
! * LOCAL VARIABLES: |
1251 |
|
|
|
1252 |
|
|
REAL (KIND=8) zc0i(kdlon, kflev+1) |
1253 |
|
|
REAL (KIND=8) zcle0(kdlon, kflev) |
1254 |
|
|
REAL (KIND=8) zclear(kdlon) |
1255 |
|
|
REAL (KIND=8) zr21(kdlon) |
1256 |
|
|
REAL (KIND=8) zr23(kdlon) |
1257 |
|
|
REAL (KIND=8) zss0(kdlon) |
1258 |
|
|
REAL (KIND=8) zscat(kdlon) |
1259 |
|
|
REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
1260 |
|
|
|
1261 |
|
|
INTEGER jl, jk, ja, jae, jkl, jklp1, jaj, jkm1, in |
1262 |
|
|
REAL (KIND=8) ztray, zgar, zratio, zff, zfacoa, zcorae |
1263 |
|
|
REAL (KIND=8) zmue, zgap, zww, zto, zden, zmu1, zden1 |
1264 |
|
|
REAL (KIND=8) zbmu0, zbmu1, zre11 |
1265 |
|
|
|
1266 |
|
|
! ------------------------------------------------------------------ |
1267 |
|
|
|
1268 |
|
|
! * 1. OPTICAL PARAMETERS FOR AEROSOLS AND RAYLEIGH |
1269 |
|
|
! -------------------------------------------- |
1270 |
|
|
|
1271 |
|
|
|
1272 |
|
|
! cdir collapse |
1273 |
|
|
DO jk = 1, kflev + 1 |
1274 |
|
|
DO ja = 1, 6 |
1275 |
|
|
DO jl = 1, kdlon |
1276 |
|
|
prj(jl, ja, jk) = 0. |
1277 |
|
|
prk(jl, ja, jk) = 0. |
1278 |
|
|
END DO |
1279 |
|
|
END DO |
1280 |
|
|
END DO |
1281 |
|
|
|
1282 |
|
|
DO jk = 1, kflev |
1283 |
|
|
! -OB |
1284 |
|
|
! DO 104 JL = 1, KDLON |
1285 |
|
|
! PCGAZ(JL,JK) = 0. |
1286 |
|
|
! PPIZAZ(JL,JK) = 0. |
1287 |
|
|
! PTAUAZ(JL,JK) = 0. |
1288 |
|
|
! 104 CONTINUE |
1289 |
|
|
! -OB |
1290 |
|
|
! DO 106 JAE=1,5 |
1291 |
|
|
! DO 105 JL = 1, KDLON |
1292 |
|
|
! PTAUAZ(JL,JK)=PTAUAZ(JL,JK) |
1293 |
|
|
! S +PAER(JL,JK,JAE)*TAUA(KNU,JAE) |
1294 |
|
|
! PPIZAZ(JL,JK)=PPIZAZ(JL,JK)+PAER(JL,JK,JAE) |
1295 |
|
|
! S * TAUA(KNU,JAE)*RPIZA(KNU,JAE) |
1296 |
|
|
! PCGAZ(JL,JK) = PCGAZ(JL,JK) +PAER(JL,JK,JAE) |
1297 |
|
|
! S * TAUA(KNU,JAE)*RPIZA(KNU,JAE)*RCGA(KNU,JAE) |
1298 |
|
|
! 105 CONTINUE |
1299 |
|
|
! 106 CONTINUE |
1300 |
|
|
! -OB |
1301 |
|
|
DO jl = 1, kdlon |
1302 |
|
|
ptauaz(jl, jk) = flag_aer*tauae(jl, jk, knu) |
1303 |
|
|
ppizaz(jl, jk) = flag_aer*pizae(jl, jk, knu) |
1304 |
|
|
pcgaz(jl, jk) = flag_aer*cgae(jl, jk, knu) |
1305 |
|
|
END DO |
1306 |
|
|
|
1307 |
|
|
IF (flag_aer>0) THEN |
1308 |
|
|
! -OB |
1309 |
|
|
DO jl = 1, kdlon |
1310 |
|
|
! PCGAZ(JL,JK)=PCGAZ(JL,JK)/PPIZAZ(JL,JK) |
1311 |
|
|
! PPIZAZ(JL,JK)=PPIZAZ(JL,JK)/PTAUAZ(JL,JK) |
1312 |
|
|
ztray = prayl(jl)*pdsig(jl, jk) |
1313 |
|
|
zratio = ztray/(ztray+ptauaz(jl,jk)) |
1314 |
|
|
zgar = pcgaz(jl, jk) |
1315 |
|
|
zff = zgar*zgar |
1316 |
|
|
ptauaz(jl, jk) = ztray + ptauaz(jl, jk)*(1.-ppizaz(jl,jk)*zff) |
1317 |
|
|
pcgaz(jl, jk) = zgar*(1.-zratio)/(1.+zgar) |
1318 |
|
|
ppizaz(jl, jk) = zratio + (1.-zratio)*ppizaz(jl, jk)*(1.-zff)/(1.- & |
1319 |
|
|
ppizaz(jl,jk)*zff) |
1320 |
|
|
END DO |
1321 |
|
|
ELSE |
1322 |
|
|
DO jl = 1, kdlon |
1323 |
|
|
ztray = prayl(jl)*pdsig(jl, jk) |
1324 |
|
|
ptauaz(jl, jk) = ztray |
1325 |
|
|
pcgaz(jl, jk) = 0. |
1326 |
|
|
ppizaz(jl, jk) = 1. - repsct |
1327 |
|
|
END DO |
1328 |
|
|
END IF ! check flag_aer |
1329 |
|
|
! 107 CONTINUE |
1330 |
|
|
! PRINT 9107,JK,((PAER(JL,JK,JAE),JAE=1,5) |
1331 |
|
|
! $ ,PTAUAZ(JL,JK),PPIZAZ(JL,JK),PCGAZ(JL,JK),JL=1,KDLON) |
1332 |
|
|
! 9107 FORMAT(1X,'SWCLR_107',I3,8E12.5) |
1333 |
|
|
|
1334 |
|
|
END DO |
1335 |
|
|
|
1336 |
|
|
! ------------------------------------------------------------------ |
1337 |
|
|
|
1338 |
|
|
! * 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
1339 |
|
|
! ---------------------------------------------- |
1340 |
|
|
|
1341 |
|
|
|
1342 |
|
|
DO jl = 1, kdlon |
1343 |
|
|
zr23(jl) = 0. |
1344 |
|
|
zc0i(jl, kflev+1) = 0. |
1345 |
|
|
zclear(jl) = 1. |
1346 |
|
|
zscat(jl) = 0. |
1347 |
|
|
END DO |
1348 |
|
|
|
1349 |
|
|
jk = 1 |
1350 |
|
|
jkl = kflev + 1 - jk |
1351 |
|
|
jklp1 = jkl + 1 |
1352 |
|
|
DO jl = 1, kdlon |
1353 |
|
|
zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
1354 |
|
|
zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
1355 |
|
|
zr21(jl) = exp(-zcorae) |
1356 |
|
|
zss0(jl) = 1. - zr21(jl) |
1357 |
|
|
zcle0(jl, jkl) = zss0(jl) |
1358 |
|
|
|
1359 |
|
|
IF (novlp==1) THEN |
1360 |
|
|
! * maximum-random |
1361 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(zss0(jl),zscat(jl)))/ & |
1362 |
|
|
(1.0-min(zscat(jl),1.-zepsec)) |
1363 |
|
|
zc0i(jl, jkl) = 1.0 - zclear(jl) |
1364 |
|
|
zscat(jl) = zss0(jl) |
1365 |
|
|
ELSE IF (novlp==2) THEN |
1366 |
|
|
! * maximum |
1367 |
|
|
zscat(jl) = max(zss0(jl), zscat(jl)) |
1368 |
|
|
zc0i(jl, jkl) = zscat(jl) |
1369 |
|
|
ELSE IF (novlp==3) THEN |
1370 |
|
|
! * random |
1371 |
|
|
zclear(jl) = zclear(jl)*(1.0-zss0(jl)) |
1372 |
|
|
zscat(jl) = 1.0 - zclear(jl) |
1373 |
|
|
zc0i(jl, jkl) = zscat(jl) |
1374 |
|
|
END IF |
1375 |
|
|
END DO |
1376 |
|
|
|
1377 |
|
|
DO jk = 2, kflev |
1378 |
|
|
jkl = kflev + 1 - jk |
1379 |
|
|
jklp1 = jkl + 1 |
1380 |
|
|
DO jl = 1, kdlon |
1381 |
|
|
zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
1382 |
|
|
zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
1383 |
|
|
zr21(jl) = exp(-zcorae) |
1384 |
|
|
zss0(jl) = 1. - zr21(jl) |
1385 |
|
|
zcle0(jl, jkl) = zss0(jl) |
1386 |
|
|
|
1387 |
|
|
IF (novlp==1) THEN |
1388 |
|
|
! * maximum-random |
1389 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(zss0(jl),zscat(jl)))/ & |
1390 |
|
|
(1.0-min(zscat(jl),1.-zepsec)) |
1391 |
|
|
zc0i(jl, jkl) = 1.0 - zclear(jl) |
1392 |
|
|
zscat(jl) = zss0(jl) |
1393 |
|
|
ELSE IF (novlp==2) THEN |
1394 |
|
|
! * maximum |
1395 |
|
|
zscat(jl) = max(zss0(jl), zscat(jl)) |
1396 |
|
|
zc0i(jl, jkl) = zscat(jl) |
1397 |
|
|
ELSE IF (novlp==3) THEN |
1398 |
|
|
! * random |
1399 |
|
|
zclear(jl) = zclear(jl)*(1.0-zss0(jl)) |
1400 |
|
|
zscat(jl) = 1.0 - zclear(jl) |
1401 |
|
|
zc0i(jl, jkl) = zscat(jl) |
1402 |
|
|
END IF |
1403 |
|
|
END DO |
1404 |
|
|
END DO |
1405 |
|
|
|
1406 |
|
|
! ------------------------------------------------------------------ |
1407 |
|
|
|
1408 |
|
|
! * 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
1409 |
|
|
! ----------------------------------------------- |
1410 |
|
|
|
1411 |
|
|
|
1412 |
|
|
DO jl = 1, kdlon |
1413 |
|
|
pray1(jl, kflev+1) = 0. |
1414 |
|
|
pray2(jl, kflev+1) = 0. |
1415 |
|
|
prefz(jl, 2, 1) = palbp(jl, knu) |
1416 |
|
|
prefz(jl, 1, 1) = palbp(jl, knu) |
1417 |
|
|
ptra1(jl, kflev+1) = 1. |
1418 |
|
|
ptra2(jl, kflev+1) = 1. |
1419 |
|
|
END DO |
1420 |
|
|
|
1421 |
|
|
DO jk = 2, kflev + 1 |
1422 |
|
|
jkm1 = jk - 1 |
1423 |
|
|
DO jl = 1, kdlon |
1424 |
|
|
|
1425 |
|
|
! ------------------------------------------------------------------ |
1426 |
|
|
|
1427 |
|
|
! * 3.1 EQUIVALENT ZENITH ANGLE |
1428 |
|
|
! ----------------------- |
1429 |
|
|
|
1430 |
|
|
|
1431 |
|
|
zmue = (1.-zc0i(jl,jk))*psec(jl) + zc0i(jl, jk)*1.66 |
1432 |
|
|
prmu0(jl, jk) = 1./zmue |
1433 |
|
|
|
1434 |
|
|
! ------------------------------------------------------------------ |
1435 |
|
|
|
1436 |
|
|
! * 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
1437 |
|
|
! ---------------------------------------------------- |
1438 |
|
|
|
1439 |
|
|
|
1440 |
|
|
zgap = pcgaz(jl, jkm1) |
1441 |
|
|
zbmu0 = 0.5 - 0.75*zgap/zmue |
1442 |
|
|
zww = ppizaz(jl, jkm1) |
1443 |
|
|
zto = ptauaz(jl, jkm1) |
1444 |
|
|
zden = 1. + (1.-zww+zbmu0*zww)*zto*zmue + (1-zww)*(1.-zww+2.*zbmu0*zww) & |
1445 |
|
|
*zto*zto*zmue*zmue |
1446 |
|
|
pray1(jl, jkm1) = zbmu0*zww*zto*zmue/zden |
1447 |
|
|
ptra1(jl, jkm1) = 1./zden |
1448 |
|
|
|
1449 |
|
|
zmu1 = 0.5 |
1450 |
|
|
zbmu1 = 0.5 - 0.75*zgap*zmu1 |
1451 |
|
|
zden1 = 1. + (1.-zww+zbmu1*zww)*zto/zmu1 + (1-zww)*(1.-zww+2.*zbmu1*zww & |
1452 |
|
|
)*zto*zto/zmu1/zmu1 |
1453 |
|
|
pray2(jl, jkm1) = zbmu1*zww*zto/zmu1/zden1 |
1454 |
|
|
ptra2(jl, jkm1) = 1./zden1 |
1455 |
|
|
|
1456 |
|
|
|
1457 |
|
|
|
1458 |
|
|
prefz(jl, 1, jk) = (pray1(jl,jkm1)+prefz(jl,1,jkm1)*ptra1(jl,jkm1)* & |
1459 |
|
|
ptra2(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1,jkm1))) |
1460 |
|
|
|
1461 |
|
|
ztr(jl, 1, jkm1) = (ptra1(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1, & |
1462 |
|
|
jkm1))) |
1463 |
|
|
|
1464 |
|
|
prefz(jl, 2, jk) = (pray1(jl,jkm1)+prefz(jl,2,jkm1)*ptra1(jl,jkm1)* & |
1465 |
|
|
ptra2(jl,jkm1)) |
1466 |
|
|
|
1467 |
|
|
ztr(jl, 2, jkm1) = ptra1(jl, jkm1) |
1468 |
|
|
|
1469 |
|
|
END DO |
1470 |
|
|
END DO |
1471 |
|
|
DO jl = 1, kdlon |
1472 |
|
|
zmue = (1.-zc0i(jl,1))*psec(jl) + zc0i(jl, 1)*1.66 |
1473 |
|
|
prmu0(jl, 1) = 1./zmue |
1474 |
|
|
END DO |
1475 |
|
|
|
1476 |
|
|
! ------------------------------------------------------------------ |
1477 |
|
|
|
1478 |
|
|
! * 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
1479 |
|
|
! ------------------------------------------------- |
1480 |
|
|
|
1481 |
|
|
|
1482 |
|
|
IF (knu==1) THEN |
1483 |
|
|
jaj = 2 |
1484 |
|
|
DO jl = 1, kdlon |
1485 |
|
|
prj(jl, jaj, kflev+1) = 1. |
1486 |
|
|
prk(jl, jaj, kflev+1) = prefz(jl, 1, kflev+1) |
1487 |
|
|
END DO |
1488 |
|
|
|
1489 |
|
|
DO jk = 1, kflev |
1490 |
|
|
jkl = kflev + 1 - jk |
1491 |
|
|
jklp1 = jkl + 1 |
1492 |
|
|
DO jl = 1, kdlon |
1493 |
|
|
zre11 = prj(jl, jaj, jklp1)*ztr(jl, 1, jkl) |
1494 |
|
|
prj(jl, jaj, jkl) = zre11 |
1495 |
|
|
prk(jl, jaj, jkl) = zre11*prefz(jl, 1, jkl) |
1496 |
|
|
END DO |
1497 |
|
|
END DO |
1498 |
|
|
|
1499 |
|
|
ELSE |
1500 |
|
|
|
1501 |
|
|
DO jaj = 1, 2 |
1502 |
|
|
DO jl = 1, kdlon |
1503 |
|
|
prj(jl, jaj, kflev+1) = 1. |
1504 |
|
|
prk(jl, jaj, kflev+1) = prefz(jl, jaj, kflev+1) |
1505 |
|
|
END DO |
1506 |
|
|
|
1507 |
|
|
DO jk = 1, kflev |
1508 |
|
|
jkl = kflev + 1 - jk |
1509 |
|
|
jklp1 = jkl + 1 |
1510 |
|
|
DO jl = 1, kdlon |
1511 |
|
|
zre11 = prj(jl, jaj, jklp1)*ztr(jl, jaj, jkl) |
1512 |
|
|
prj(jl, jaj, jkl) = zre11 |
1513 |
|
|
prk(jl, jaj, jkl) = zre11*prefz(jl, jaj, jkl) |
1514 |
|
|
END DO |
1515 |
|
|
END DO |
1516 |
|
|
END DO |
1517 |
|
|
|
1518 |
|
|
END IF |
1519 |
|
|
|
1520 |
|
|
! ------------------------------------------------------------------ |
1521 |
|
|
|
1522 |
|
|
RETURN |
1523 |
|
|
END SUBROUTINE swclr_lmdar4 |
1524 |
|
|
SUBROUTINE swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, prayl, psec, & |
1525 |
|
|
ptau, pcgaz, ppizaz, pray1, pray2, prefz, prj, prk, prmue, ptauaz, ptra1, & |
1526 |
|
|
ptra2) |
1527 |
|
|
USE dimphy |
1528 |
|
|
IMPLICIT NONE |
1529 |
|
|
include "radepsi.h" |
1530 |
|
|
include "radopt.h" |
1531 |
|
|
|
1532 |
|
|
! ------------------------------------------------------------------ |
1533 |
|
|
! PURPOSE. |
1534 |
|
|
! -------- |
1535 |
|
|
! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
1536 |
|
|
! CONTINUUM SCATTERING |
1537 |
|
|
|
1538 |
|
|
! METHOD. |
1539 |
|
|
! ------- |
1540 |
|
|
|
1541 |
|
|
! 1. COMPUTES CONTINUUM FLUXES CORRESPONDING TO AEROSOL |
1542 |
|
|
! OR/AND RAYLEIGH SCATTERING (NO MOLECULAR GAS ABSORPTION) |
1543 |
|
|
|
1544 |
|
|
! REFERENCE. |
1545 |
|
|
! ---------- |
1546 |
|
|
|
1547 |
|
|
! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
1548 |
|
|
! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
1549 |
|
|
|
1550 |
|
|
! AUTHOR. |
1551 |
|
|
! ------- |
1552 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
1553 |
|
|
|
1554 |
|
|
! MODIFICATIONS. |
1555 |
|
|
! -------------- |
1556 |
|
|
! ORIGINAL : 89-07-14 |
1557 |
|
|
! ------------------------------------------------------------------ |
1558 |
|
|
! * ARGUMENTS: |
1559 |
|
|
|
1560 |
|
|
INTEGER knu |
1561 |
|
|
REAL (KIND=8) palbd(kdlon, 2) |
1562 |
|
|
REAL (KIND=8) pcg(kdlon, 2, kflev) |
1563 |
|
|
REAL (KIND=8) pcld(kdlon, kflev) |
1564 |
|
|
REAL (KIND=8) pdsig(kdlon, kflev) |
1565 |
|
|
REAL (KIND=8) pomega(kdlon, 2, kflev) |
1566 |
|
|
REAL (KIND=8) prayl(kdlon) |
1567 |
|
|
REAL (KIND=8) psec(kdlon) |
1568 |
|
|
REAL (KIND=8) ptau(kdlon, 2, kflev) |
1569 |
|
|
|
1570 |
|
|
REAL (KIND=8) pray1(kdlon, kflev+1) |
1571 |
|
|
REAL (KIND=8) pray2(kdlon, kflev+1) |
1572 |
|
|
REAL (KIND=8) prefz(kdlon, 2, kflev+1) |
1573 |
|
|
REAL (KIND=8) prj(kdlon, 6, kflev+1) |
1574 |
|
|
REAL (KIND=8) prk(kdlon, 6, kflev+1) |
1575 |
|
|
REAL (KIND=8) prmue(kdlon, kflev+1) |
1576 |
|
|
REAL (KIND=8) pcgaz(kdlon, kflev) |
1577 |
|
|
REAL (KIND=8) ppizaz(kdlon, kflev) |
1578 |
|
|
REAL (KIND=8) ptauaz(kdlon, kflev) |
1579 |
|
|
REAL (KIND=8) ptra1(kdlon, kflev+1) |
1580 |
|
|
REAL (KIND=8) ptra2(kdlon, kflev+1) |
1581 |
|
|
|
1582 |
|
|
! * LOCAL VARIABLES: |
1583 |
|
|
|
1584 |
|
|
REAL (KIND=8) zc1i(kdlon, kflev+1) |
1585 |
|
|
REAL (KIND=8) zcleq(kdlon, kflev) |
1586 |
|
|
REAL (KIND=8) zclear(kdlon) |
1587 |
|
|
REAL (KIND=8) zcloud(kdlon) |
1588 |
|
|
REAL (KIND=8) zgg(kdlon) |
1589 |
|
|
REAL (KIND=8) zref(kdlon) |
1590 |
|
|
REAL (KIND=8) zre1(kdlon) |
1591 |
|
|
REAL (KIND=8) zre2(kdlon) |
1592 |
|
|
REAL (KIND=8) zrmuz(kdlon) |
1593 |
|
|
REAL (KIND=8) zrneb(kdlon) |
1594 |
|
|
REAL (KIND=8) zr21(kdlon) |
1595 |
|
|
REAL (KIND=8) zr22(kdlon) |
1596 |
|
|
REAL (KIND=8) zr23(kdlon) |
1597 |
|
|
REAL (KIND=8) zss1(kdlon) |
1598 |
|
|
REAL (KIND=8) zto1(kdlon) |
1599 |
|
|
REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
1600 |
|
|
REAL (KIND=8) ztr1(kdlon) |
1601 |
|
|
REAL (KIND=8) ztr2(kdlon) |
1602 |
|
|
REAL (KIND=8) zw(kdlon) |
1603 |
|
|
|
1604 |
|
|
INTEGER jk, jl, ja, jkl, jklp1, jkm1, jaj |
1605 |
|
|
REAL (KIND=8) zfacoa, zfacoc, zcorae, zcorcd |
1606 |
|
|
REAL (KIND=8) zmue, zgap, zww, zto, zden, zden1 |
1607 |
|
|
REAL (KIND=8) zmu1, zre11, zbmu0, zbmu1 |
1608 |
|
|
|
1609 |
|
|
! ------------------------------------------------------------------ |
1610 |
|
|
|
1611 |
|
|
! * 1. INITIALIZATION |
1612 |
|
|
! -------------- |
1613 |
|
|
|
1614 |
|
|
|
1615 |
|
|
DO jk = 1, kflev + 1 |
1616 |
|
|
DO ja = 1, 6 |
1617 |
|
|
DO jl = 1, kdlon |
1618 |
|
|
prj(jl, ja, jk) = 0. |
1619 |
|
|
prk(jl, ja, jk) = 0. |
1620 |
|
|
END DO |
1621 |
|
|
END DO |
1622 |
|
|
END DO |
1623 |
|
|
|
1624 |
|
|
! ------------------------------------------------------------------ |
1625 |
|
|
|
1626 |
|
|
! * 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
1627 |
|
|
! ---------------------------------------------- |
1628 |
|
|
|
1629 |
|
|
|
1630 |
|
|
DO jl = 1, kdlon |
1631 |
|
|
zr23(jl) = 0. |
1632 |
|
|
zc1i(jl, kflev+1) = 0. |
1633 |
|
|
zclear(jl) = 1. |
1634 |
|
|
zcloud(jl) = 0. |
1635 |
|
|
END DO |
1636 |
|
|
|
1637 |
|
|
jk = 1 |
1638 |
|
|
jkl = kflev + 1 - jk |
1639 |
|
|
jklp1 = jkl + 1 |
1640 |
|
|
DO jl = 1, kdlon |
1641 |
|
|
zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
1642 |
|
|
zfacoc = 1. - pomega(jl, knu, jkl)*pcg(jl, knu, jkl)*pcg(jl, knu, jkl) |
1643 |
|
|
zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
1644 |
|
|
zcorcd = zfacoc*ptau(jl, knu, jkl)*psec(jl) |
1645 |
|
|
zr21(jl) = exp(-zcorae) |
1646 |
|
|
zr22(jl) = exp(-zcorcd) |
1647 |
|
|
zss1(jl) = pcld(jl, jkl)*(1.0-zr21(jl)*zr22(jl)) + & |
1648 |
|
|
(1.0-pcld(jl,jkl))*(1.0-zr21(jl)) |
1649 |
|
|
zcleq(jl, jkl) = zss1(jl) |
1650 |
|
|
|
1651 |
|
|
IF (novlp==1) THEN |
1652 |
|
|
! * maximum-random |
1653 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(zss1(jl),zcloud(jl)))/ & |
1654 |
|
|
(1.0-min(zcloud(jl),1.-zepsec)) |
1655 |
|
|
zc1i(jl, jkl) = 1.0 - zclear(jl) |
1656 |
|
|
zcloud(jl) = zss1(jl) |
1657 |
|
|
ELSE IF (novlp==2) THEN |
1658 |
|
|
! * maximum |
1659 |
|
|
zcloud(jl) = max(zss1(jl), zcloud(jl)) |
1660 |
|
|
zc1i(jl, jkl) = zcloud(jl) |
1661 |
|
|
ELSE IF (novlp==3) THEN |
1662 |
|
|
! * random |
1663 |
|
|
zclear(jl) = zclear(jl)*(1.0-zss1(jl)) |
1664 |
|
|
zcloud(jl) = 1.0 - zclear(jl) |
1665 |
|
|
zc1i(jl, jkl) = zcloud(jl) |
1666 |
|
|
END IF |
1667 |
|
|
END DO |
1668 |
|
|
|
1669 |
|
|
DO jk = 2, kflev |
1670 |
|
|
jkl = kflev + 1 - jk |
1671 |
|
|
jklp1 = jkl + 1 |
1672 |
|
|
DO jl = 1, kdlon |
1673 |
|
|
zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
1674 |
|
|
zfacoc = 1. - pomega(jl, knu, jkl)*pcg(jl, knu, jkl)*pcg(jl, knu, jkl) |
1675 |
|
|
zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
1676 |
|
|
zcorcd = zfacoc*ptau(jl, knu, jkl)*psec(jl) |
1677 |
|
|
zr21(jl) = exp(-zcorae) |
1678 |
|
|
zr22(jl) = exp(-zcorcd) |
1679 |
|
|
zss1(jl) = pcld(jl, jkl)*(1.0-zr21(jl)*zr22(jl)) + & |
1680 |
|
|
(1.0-pcld(jl,jkl))*(1.0-zr21(jl)) |
1681 |
|
|
zcleq(jl, jkl) = zss1(jl) |
1682 |
|
|
|
1683 |
|
|
IF (novlp==1) THEN |
1684 |
|
|
! * maximum-random |
1685 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(zss1(jl),zcloud(jl)))/ & |
1686 |
|
|
(1.0-min(zcloud(jl),1.-zepsec)) |
1687 |
|
|
zc1i(jl, jkl) = 1.0 - zclear(jl) |
1688 |
|
|
zcloud(jl) = zss1(jl) |
1689 |
|
|
ELSE IF (novlp==2) THEN |
1690 |
|
|
! * maximum |
1691 |
|
|
zcloud(jl) = max(zss1(jl), zcloud(jl)) |
1692 |
|
|
zc1i(jl, jkl) = zcloud(jl) |
1693 |
|
|
ELSE IF (novlp==3) THEN |
1694 |
|
|
! * random |
1695 |
|
|
zclear(jl) = zclear(jl)*(1.0-zss1(jl)) |
1696 |
|
|
zcloud(jl) = 1.0 - zclear(jl) |
1697 |
|
|
zc1i(jl, jkl) = zcloud(jl) |
1698 |
|
|
END IF |
1699 |
|
|
END DO |
1700 |
|
|
END DO |
1701 |
|
|
|
1702 |
|
|
! ------------------------------------------------------------------ |
1703 |
|
|
|
1704 |
|
|
! * 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
1705 |
|
|
! ----------------------------------------------- |
1706 |
|
|
|
1707 |
|
|
|
1708 |
|
|
DO jl = 1, kdlon |
1709 |
|
|
pray1(jl, kflev+1) = 0. |
1710 |
|
|
pray2(jl, kflev+1) = 0. |
1711 |
|
|
prefz(jl, 2, 1) = palbd(jl, knu) |
1712 |
|
|
prefz(jl, 1, 1) = palbd(jl, knu) |
1713 |
|
|
ptra1(jl, kflev+1) = 1. |
1714 |
|
|
ptra2(jl, kflev+1) = 1. |
1715 |
|
|
END DO |
1716 |
|
|
|
1717 |
|
|
DO jk = 2, kflev + 1 |
1718 |
|
|
jkm1 = jk - 1 |
1719 |
|
|
DO jl = 1, kdlon |
1720 |
|
|
zrneb(jl) = pcld(jl, jkm1) |
1721 |
|
|
zre1(jl) = 0. |
1722 |
|
|
ztr1(jl) = 0. |
1723 |
|
|
zre2(jl) = 0. |
1724 |
|
|
ztr2(jl) = 0. |
1725 |
|
|
|
1726 |
|
|
! ------------------------------------------------------------------ |
1727 |
|
|
|
1728 |
|
|
! * 3.1 EQUIVALENT ZENITH ANGLE |
1729 |
|
|
! ----------------------- |
1730 |
|
|
|
1731 |
|
|
|
1732 |
|
|
zmue = (1.-zc1i(jl,jk))*psec(jl) + zc1i(jl, jk)*1.66 |
1733 |
|
|
prmue(jl, jk) = 1./zmue |
1734 |
|
|
|
1735 |
|
|
! ------------------------------------------------------------------ |
1736 |
|
|
|
1737 |
|
|
! * 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
1738 |
|
|
! ---------------------------------------------------- |
1739 |
|
|
|
1740 |
|
|
|
1741 |
|
|
zgap = pcgaz(jl, jkm1) |
1742 |
|
|
zbmu0 = 0.5 - 0.75*zgap/zmue |
1743 |
|
|
zww = ppizaz(jl, jkm1) |
1744 |
|
|
zto = ptauaz(jl, jkm1) |
1745 |
|
|
zden = 1. + (1.-zww+zbmu0*zww)*zto*zmue + (1-zww)*(1.-zww+2.*zbmu0*zww) & |
1746 |
|
|
*zto*zto*zmue*zmue |
1747 |
|
|
pray1(jl, jkm1) = zbmu0*zww*zto*zmue/zden |
1748 |
|
|
ptra1(jl, jkm1) = 1./zden |
1749 |
|
|
! PRINT *,' LOOP 342 ** 3 ** JL=',JL,PRAY1(JL,JKM1),PTRA1(JL,JKM1) |
1750 |
|
|
|
1751 |
|
|
zmu1 = 0.5 |
1752 |
|
|
zbmu1 = 0.5 - 0.75*zgap*zmu1 |
1753 |
|
|
zden1 = 1. + (1.-zww+zbmu1*zww)*zto/zmu1 + (1-zww)*(1.-zww+2.*zbmu1*zww & |
1754 |
|
|
)*zto*zto/zmu1/zmu1 |
1755 |
|
|
pray2(jl, jkm1) = zbmu1*zww*zto/zmu1/zden1 |
1756 |
|
|
ptra2(jl, jkm1) = 1./zden1 |
1757 |
|
|
|
1758 |
|
|
! ------------------------------------------------------------------ |
1759 |
|
|
|
1760 |
|
|
! * 3.3 EFFECT OF CLOUD LAYER |
1761 |
|
|
! --------------------- |
1762 |
|
|
|
1763 |
|
|
|
1764 |
|
|
zw(jl) = pomega(jl, knu, jkm1) |
1765 |
|
|
zto1(jl) = ptau(jl, knu, jkm1)/zw(jl) + ptauaz(jl, jkm1)/ppizaz(jl, & |
1766 |
|
|
jkm1) |
1767 |
|
|
zr21(jl) = ptau(jl, knu, jkm1) + ptauaz(jl, jkm1) |
1768 |
|
|
zr22(jl) = ptau(jl, knu, jkm1)/zr21(jl) |
1769 |
|
|
zgg(jl) = zr22(jl)*pcg(jl, knu, jkm1) + (1.-zr22(jl))*pcgaz(jl, jkm1) |
1770 |
|
|
! Modif PhD - JJM 19/03/96 pour erreurs arrondis |
1771 |
|
|
! machine |
1772 |
|
|
! PHD PROTECTION ZW(JL) = ZR21(JL) / ZTO1(JL) |
1773 |
|
|
IF (zw(jl)==1. .AND. ppizaz(jl,jkm1)==1.) THEN |
1774 |
|
|
zw(jl) = 1. |
1775 |
|
|
ELSE |
1776 |
|
|
zw(jl) = zr21(jl)/zto1(jl) |
1777 |
|
|
END IF |
1778 |
|
|
zref(jl) = prefz(jl, 1, jkm1) |
1779 |
|
|
zrmuz(jl) = prmue(jl, jk) |
1780 |
|
|
END DO |
1781 |
|
|
|
1782 |
|
|
CALL swde_lmdar4(zgg, zref, zrmuz, zto1, zw, zre1, zre2, ztr1, ztr2) |
1783 |
|
|
|
1784 |
|
|
DO jl = 1, kdlon |
1785 |
|
|
|
1786 |
|
|
prefz(jl, 1, jk) = (1.-zrneb(jl))*(pray1(jl,jkm1)+prefz(jl,1,jkm1)* & |
1787 |
|
|
ptra1(jl,jkm1)*ptra2(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1, & |
1788 |
|
|
jkm1))) + zrneb(jl)*zre2(jl) |
1789 |
|
|
|
1790 |
|
|
ztr(jl, 1, jkm1) = zrneb(jl)*ztr2(jl) + (ptra1(jl,jkm1)/(1.-pray2(jl, & |
1791 |
|
|
jkm1)*prefz(jl,1,jkm1)))*(1.-zrneb(jl)) |
1792 |
|
|
|
1793 |
|
|
prefz(jl, 2, jk) = (1.-zrneb(jl))*(pray1(jl,jkm1)+prefz(jl,2,jkm1)* & |
1794 |
|
|
ptra1(jl,jkm1)*ptra2(jl,jkm1)) + zrneb(jl)*zre1(jl) |
1795 |
|
|
|
1796 |
|
|
ztr(jl, 2, jkm1) = zrneb(jl)*ztr1(jl) + ptra1(jl, jkm1)*(1.-zrneb(jl)) |
1797 |
|
|
|
1798 |
|
|
END DO |
1799 |
|
|
END DO |
1800 |
|
|
DO jl = 1, kdlon |
1801 |
|
|
zmue = (1.-zc1i(jl,1))*psec(jl) + zc1i(jl, 1)*1.66 |
1802 |
|
|
prmue(jl, 1) = 1./zmue |
1803 |
|
|
END DO |
1804 |
|
|
|
1805 |
|
|
! ------------------------------------------------------------------ |
1806 |
|
|
|
1807 |
|
|
! * 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
1808 |
|
|
! ------------------------------------------------- |
1809 |
|
|
|
1810 |
|
|
|
1811 |
|
|
IF (knu==1) THEN |
1812 |
|
|
jaj = 2 |
1813 |
|
|
DO jl = 1, kdlon |
1814 |
|
|
prj(jl, jaj, kflev+1) = 1. |
1815 |
|
|
prk(jl, jaj, kflev+1) = prefz(jl, 1, kflev+1) |
1816 |
|
|
END DO |
1817 |
|
|
|
1818 |
|
|
DO jk = 1, kflev |
1819 |
|
|
jkl = kflev + 1 - jk |
1820 |
|
|
jklp1 = jkl + 1 |
1821 |
|
|
DO jl = 1, kdlon |
1822 |
|
|
zre11 = prj(jl, jaj, jklp1)*ztr(jl, 1, jkl) |
1823 |
|
|
prj(jl, jaj, jkl) = zre11 |
1824 |
|
|
prk(jl, jaj, jkl) = zre11*prefz(jl, 1, jkl) |
1825 |
|
|
END DO |
1826 |
|
|
END DO |
1827 |
|
|
|
1828 |
|
|
ELSE |
1829 |
|
|
|
1830 |
|
|
DO jaj = 1, 2 |
1831 |
|
|
DO jl = 1, kdlon |
1832 |
|
|
prj(jl, jaj, kflev+1) = 1. |
1833 |
|
|
prk(jl, jaj, kflev+1) = prefz(jl, jaj, kflev+1) |
1834 |
|
|
END DO |
1835 |
|
|
|
1836 |
|
|
DO jk = 1, kflev |
1837 |
|
|
jkl = kflev + 1 - jk |
1838 |
|
|
jklp1 = jkl + 1 |
1839 |
|
|
DO jl = 1, kdlon |
1840 |
|
|
zre11 = prj(jl, jaj, jklp1)*ztr(jl, jaj, jkl) |
1841 |
|
|
prj(jl, jaj, jkl) = zre11 |
1842 |
|
|
prk(jl, jaj, jkl) = zre11*prefz(jl, jaj, jkl) |
1843 |
|
|
END DO |
1844 |
|
|
END DO |
1845 |
|
|
END DO |
1846 |
|
|
|
1847 |
|
|
END IF |
1848 |
|
|
|
1849 |
|
|
! ------------------------------------------------------------------ |
1850 |
|
|
|
1851 |
|
|
RETURN |
1852 |
|
|
END SUBROUTINE swr_lmdar4 |
1853 |
|
|
SUBROUTINE swde_lmdar4(pgg, pref, prmuz, pto1, pw, pre1, pre2, ptr1, ptr2) |
1854 |
|
|
USE dimphy |
1855 |
|
|
IMPLICIT NONE |
1856 |
|
|
|
1857 |
|
|
! ------------------------------------------------------------------ |
1858 |
|
|
! PURPOSE. |
1859 |
|
|
! -------- |
1860 |
|
|
! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY OF A CLOUDY |
1861 |
|
|
! LAYER USING THE DELTA-EDDINGTON'S APPROXIMATION. |
1862 |
|
|
|
1863 |
|
|
! METHOD. |
1864 |
|
|
! ------- |
1865 |
|
|
|
1866 |
|
|
! STANDARD DELTA-EDDINGTON LAYER CALCULATIONS. |
1867 |
|
|
|
1868 |
|
|
! REFERENCE. |
1869 |
|
|
! ---------- |
1870 |
|
|
|
1871 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
1872 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
1873 |
|
|
|
1874 |
|
|
! AUTHOR. |
1875 |
|
|
! ------- |
1876 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
1877 |
|
|
|
1878 |
|
|
! MODIFICATIONS. |
1879 |
|
|
! -------------- |
1880 |
|
|
! ORIGINAL : 88-12-15 |
1881 |
|
|
! ------------------------------------------------------------------ |
1882 |
|
|
! * ARGUMENTS: |
1883 |
|
|
|
1884 |
|
|
REAL (KIND=8) pgg(kdlon) ! ASSYMETRY FACTOR |
1885 |
|
|
REAL (KIND=8) pref(kdlon) ! REFLECTIVITY OF THE UNDERLYING LAYER |
1886 |
|
|
REAL (KIND=8) prmuz(kdlon) ! COSINE OF SOLAR ZENITH ANGLE |
1887 |
|
|
REAL (KIND=8) pto1(kdlon) ! OPTICAL THICKNESS |
1888 |
|
|
REAL (KIND=8) pw(kdlon) ! SINGLE SCATTERING ALBEDO |
1889 |
|
|
REAL (KIND=8) pre1(kdlon) ! LAYER REFLECTIVITY (NO UNDERLYING-LAYER REFLECTION) |
1890 |
|
|
REAL (KIND=8) pre2(kdlon) ! LAYER REFLECTIVITY |
1891 |
|
|
REAL (KIND=8) ptr1(kdlon) ! LAYER TRANSMISSIVITY (NO UNDERLYING-LAYER REFLECTION) |
1892 |
|
|
REAL (KIND=8) ptr2(kdlon) ! LAYER TRANSMISSIVITY |
1893 |
|
|
|
1894 |
|
|
! * LOCAL VARIABLES: |
1895 |
|
|
|
1896 |
|
|
INTEGER jl |
1897 |
|
|
REAL (KIND=8) zff, zgp, ztop, zwcp, zdt, zx1, zwm |
1898 |
|
|
REAL (KIND=8) zrm2, zrk, zx2, zrp, zalpha, zbeta, zarg |
1899 |
|
|
REAL (KIND=8) zexmu0, zarg2, zexkp, zexkm, zxp2p, zxm2p, zap2b, zam2b |
1900 |
|
|
REAL (KIND=8) za11, za12, za13, za21, za22, za23 |
1901 |
|
|
REAL (KIND=8) zdena, zc1a, zc2a, zri0a, zri1a |
1902 |
|
|
REAL (KIND=8) zri0b, zri1b |
1903 |
|
|
REAL (KIND=8) zb21, zb22, zb23, zdenb, zc1b, zc2b |
1904 |
|
|
REAL (KIND=8) zri0c, zri1c, zri0d, zri1d |
1905 |
|
|
|
1906 |
|
|
! ------------------------------------------------------------------ |
1907 |
|
|
|
1908 |
|
|
! * 1. DELTA-EDDINGTON CALCULATIONS |
1909 |
|
|
|
1910 |
|
|
|
1911 |
|
|
DO jl = 1, kdlon |
1912 |
|
|
! * 1.1 SET UP THE DELTA-MODIFIED PARAMETERS |
1913 |
|
|
|
1914 |
|
|
|
1915 |
|
|
zff = pgg(jl)*pgg(jl) |
1916 |
|
|
zgp = pgg(jl)/(1.+pgg(jl)) |
1917 |
|
|
ztop = (1.-pw(jl)*zff)*pto1(jl) |
1918 |
|
|
zwcp = (1-zff)*pw(jl)/(1.-pw(jl)*zff) |
1919 |
|
|
zdt = 2./3. |
1920 |
|
|
zx1 = 1. - zwcp*zgp |
1921 |
|
|
zwm = 1. - zwcp |
1922 |
|
|
zrm2 = prmuz(jl)*prmuz(jl) |
1923 |
|
|
zrk = sqrt(3.*zwm*zx1) |
1924 |
|
|
zx2 = 4.*(1.-zrk*zrk*zrm2) |
1925 |
|
|
zrp = zrk/zx1 |
1926 |
|
|
zalpha = 3.*zwcp*zrm2*(1.+zgp*zwm)/zx2 |
1927 |
|
|
zbeta = 3.*zwcp*prmuz(jl)*(1.+3.*zgp*zrm2*zwm)/zx2 |
1928 |
|
|
zarg = min(ztop/prmuz(jl), 200._8) |
1929 |
|
|
zexmu0 = exp(-zarg) |
1930 |
|
|
zarg2 = min(zrk*ztop, 200._8) |
1931 |
|
|
zexkp = exp(zarg2) |
1932 |
|
|
zexkm = 1./zexkp |
1933 |
|
|
zxp2p = 1. + zdt*zrp |
1934 |
|
|
zxm2p = 1. - zdt*zrp |
1935 |
|
|
zap2b = zalpha + zdt*zbeta |
1936 |
|
|
zam2b = zalpha - zdt*zbeta |
1937 |
|
|
|
1938 |
|
|
! * 1.2 WITHOUT REFLECTION FROM THE UNDERLYING LAYER |
1939 |
|
|
|
1940 |
|
|
|
1941 |
|
|
za11 = zxp2p |
1942 |
|
|
za12 = zxm2p |
1943 |
|
|
za13 = zap2b |
1944 |
|
|
za22 = zxp2p*zexkp |
1945 |
|
|
za21 = zxm2p*zexkm |
1946 |
|
|
za23 = zam2b*zexmu0 |
1947 |
|
|
zdena = za11*za22 - za21*za12 |
1948 |
|
|
zc1a = (za22*za13-za12*za23)/zdena |
1949 |
|
|
zc2a = (za11*za23-za21*za13)/zdena |
1950 |
|
|
zri0a = zc1a + zc2a - zalpha |
1951 |
|
|
zri1a = zrp*(zc1a-zc2a) - zbeta |
1952 |
|
|
pre1(jl) = (zri0a-zdt*zri1a)/prmuz(jl) |
1953 |
|
|
zri0b = zc1a*zexkm + zc2a*zexkp - zalpha*zexmu0 |
1954 |
|
|
zri1b = zrp*(zc1a*zexkm-zc2a*zexkp) - zbeta*zexmu0 |
1955 |
|
|
ptr1(jl) = zexmu0 + (zri0b+zdt*zri1b)/prmuz(jl) |
1956 |
|
|
|
1957 |
|
|
! * 1.3 WITH REFLECTION FROM THE UNDERLYING LAYER |
1958 |
|
|
|
1959 |
|
|
|
1960 |
|
|
zb21 = za21 - pref(jl)*zxp2p*zexkm |
1961 |
|
|
zb22 = za22 - pref(jl)*zxm2p*zexkp |
1962 |
|
|
zb23 = za23 - pref(jl)*zexmu0*(zap2b-prmuz(jl)) |
1963 |
|
|
zdenb = za11*zb22 - zb21*za12 |
1964 |
|
|
zc1b = (zb22*za13-za12*zb23)/zdenb |
1965 |
|
|
zc2b = (za11*zb23-zb21*za13)/zdenb |
1966 |
|
|
zri0c = zc1b + zc2b - zalpha |
1967 |
|
|
zri1c = zrp*(zc1b-zc2b) - zbeta |
1968 |
|
|
pre2(jl) = (zri0c-zdt*zri1c)/prmuz(jl) |
1969 |
|
|
zri0d = zc1b*zexkm + zc2b*zexkp - zalpha*zexmu0 |
1970 |
|
|
zri1d = zrp*(zc1b*zexkm-zc2b*zexkp) - zbeta*zexmu0 |
1971 |
|
|
ptr2(jl) = zexmu0 + (zri0d+zdt*zri1d)/prmuz(jl) |
1972 |
|
|
|
1973 |
|
|
END DO |
1974 |
|
|
RETURN |
1975 |
|
|
END SUBROUTINE swde_lmdar4 |
1976 |
|
|
SUBROUTINE swtt_lmdar4(knu, ka, pu, ptr) |
1977 |
|
|
USE dimphy |
1978 |
|
|
USE radiation_ar4_param, ONLY: apad, bpad, d |
1979 |
|
|
IMPLICIT NONE |
1980 |
|
|
|
1981 |
|
|
! ----------------------------------------------------------------------- |
1982 |
|
|
! PURPOSE. |
1983 |
|
|
! -------- |
1984 |
|
|
! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
1985 |
|
|
! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
1986 |
|
|
! INTERVALS. |
1987 |
|
|
|
1988 |
|
|
! METHOD. |
1989 |
|
|
! ------- |
1990 |
|
|
|
1991 |
|
|
! TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
1992 |
|
|
! AND HORNER'S ALGORITHM. |
1993 |
|
|
|
1994 |
|
|
! REFERENCE. |
1995 |
|
|
! ---------- |
1996 |
|
|
|
1997 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
1998 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
1999 |
|
|
|
2000 |
|
|
! AUTHOR. |
2001 |
|
|
! ------- |
2002 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
2003 |
|
|
|
2004 |
|
|
! MODIFICATIONS. |
2005 |
|
|
! -------------- |
2006 |
|
|
! ORIGINAL : 88-12-15 |
2007 |
|
|
! ----------------------------------------------------------------------- |
2008 |
|
|
|
2009 |
|
|
! * ARGUMENTS |
2010 |
|
|
|
2011 |
|
|
INTEGER knu ! INDEX OF THE SPECTRAL INTERVAL |
2012 |
|
|
INTEGER ka ! INDEX OF THE ABSORBER |
2013 |
|
|
REAL (KIND=8) pu(kdlon) ! ABSORBER AMOUNT |
2014 |
|
|
|
2015 |
|
|
REAL (KIND=8) ptr(kdlon) ! TRANSMISSION FUNCTION |
2016 |
|
|
|
2017 |
|
|
! * LOCAL VARIABLES: |
2018 |
|
|
|
2019 |
|
|
REAL (KIND=8) zr1(kdlon), zr2(kdlon) |
2020 |
|
|
INTEGER jl, i, j |
2021 |
|
|
|
2022 |
|
|
! ----------------------------------------------------------------------- |
2023 |
|
|
|
2024 |
|
|
! * 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
2025 |
|
|
|
2026 |
|
|
|
2027 |
|
|
DO jl = 1, kdlon |
2028 |
|
|
zr1(jl) = apad(knu, ka, 1) + pu(jl)*(apad(knu,ka,2)+pu(jl)*(apad(knu,ka, & |
2029 |
|
|
3)+pu(jl)*(apad(knu,ka,4)+pu(jl)*(apad(knu,ka,5)+pu(jl)*(apad(knu,ka,6) & |
2030 |
|
|
+pu(jl)*(apad(knu,ka,7))))))) |
2031 |
|
|
|
2032 |
|
|
zr2(jl) = bpad(knu, ka, 1) + pu(jl)*(bpad(knu,ka,2)+pu(jl)*(bpad(knu,ka, & |
2033 |
|
|
3)+pu(jl)*(bpad(knu,ka,4)+pu(jl)*(bpad(knu,ka,5)+pu(jl)*(bpad(knu,ka,6) & |
2034 |
|
|
+pu(jl)*(bpad(knu,ka,7))))))) |
2035 |
|
|
|
2036 |
|
|
! * 2. ADD THE BACKGROUND TRANSMISSION |
2037 |
|
|
|
2038 |
|
|
|
2039 |
|
|
|
2040 |
|
|
ptr(jl) = (zr1(jl)/zr2(jl))*(1.-d(knu,ka)) + d(knu, ka) |
2041 |
|
|
END DO |
2042 |
|
|
|
2043 |
|
|
RETURN |
2044 |
|
|
END SUBROUTINE swtt_lmdar4 |
2045 |
|
|
SUBROUTINE swtt1_lmdar4(knu, kabs, kind, pu, ptr) |
2046 |
|
|
USE dimphy |
2047 |
|
|
USE radiation_ar4_param, ONLY: apad, bpad, d |
2048 |
|
|
IMPLICIT NONE |
2049 |
|
|
|
2050 |
|
|
! ----------------------------------------------------------------------- |
2051 |
|
|
! PURPOSE. |
2052 |
|
|
! -------- |
2053 |
|
|
! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
2054 |
|
|
! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
2055 |
|
|
! INTERVALS. |
2056 |
|
|
|
2057 |
|
|
! METHOD. |
2058 |
|
|
! ------- |
2059 |
|
|
|
2060 |
|
|
! TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
2061 |
|
|
! AND HORNER'S ALGORITHM. |
2062 |
|
|
|
2063 |
|
|
! REFERENCE. |
2064 |
|
|
! ---------- |
2065 |
|
|
|
2066 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
2067 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
2068 |
|
|
|
2069 |
|
|
! AUTHOR. |
2070 |
|
|
! ------- |
2071 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
2072 |
|
|
|
2073 |
|
|
! MODIFICATIONS. |
2074 |
|
|
! -------------- |
2075 |
|
|
! ORIGINAL : 95-01-20 |
2076 |
|
|
! ----------------------------------------------------------------------- |
2077 |
|
|
! * ARGUMENTS: |
2078 |
|
|
|
2079 |
|
|
INTEGER knu ! INDEX OF THE SPECTRAL INTERVAL |
2080 |
|
|
INTEGER kabs ! NUMBER OF ABSORBERS |
2081 |
|
|
INTEGER kind(kabs) ! INDICES OF THE ABSORBERS |
2082 |
|
|
REAL (KIND=8) pu(kdlon, kabs) ! ABSORBER AMOUNT |
2083 |
|
|
|
2084 |
|
|
REAL (KIND=8) ptr(kdlon, kabs) ! TRANSMISSION FUNCTION |
2085 |
|
|
|
2086 |
|
|
! * LOCAL VARIABLES: |
2087 |
|
|
|
2088 |
|
|
REAL (KIND=8) zr1(kdlon) |
2089 |
|
|
REAL (KIND=8) zr2(kdlon) |
2090 |
|
|
REAL (KIND=8) zu(kdlon) |
2091 |
|
|
INTEGER jl, ja, i, j, ia |
2092 |
|
|
|
2093 |
|
|
! ----------------------------------------------------------------------- |
2094 |
|
|
|
2095 |
|
|
! * 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
2096 |
|
|
|
2097 |
|
|
|
2098 |
|
|
DO ja = 1, kabs |
2099 |
|
|
ia = kind(ja) |
2100 |
|
|
DO jl = 1, kdlon |
2101 |
|
|
zu(jl) = pu(jl, ja) |
2102 |
|
|
zr1(jl) = apad(knu, ia, 1) + zu(jl)*(apad(knu,ia,2)+zu(jl)*(apad(knu, & |
2103 |
|
|
ia,3)+zu(jl)*(apad(knu,ia,4)+zu(jl)*(apad(knu,ia,5)+zu(jl)*(apad(knu, & |
2104 |
|
|
ia,6)+zu(jl)*(apad(knu,ia,7))))))) |
2105 |
|
|
|
2106 |
|
|
zr2(jl) = bpad(knu, ia, 1) + zu(jl)*(bpad(knu,ia,2)+zu(jl)*(bpad(knu, & |
2107 |
|
|
ia,3)+zu(jl)*(bpad(knu,ia,4)+zu(jl)*(bpad(knu,ia,5)+zu(jl)*(bpad(knu, & |
2108 |
|
|
ia,6)+zu(jl)*(bpad(knu,ia,7))))))) |
2109 |
|
|
|
2110 |
|
|
! * 2. ADD THE BACKGROUND TRANSMISSION |
2111 |
|
|
|
2112 |
|
|
|
2113 |
|
|
ptr(jl, ja) = (zr1(jl)/zr2(jl))*(1.-d(knu,ia)) + d(knu, ia) |
2114 |
|
|
END DO |
2115 |
|
|
END DO |
2116 |
|
|
|
2117 |
|
|
RETURN |
2118 |
|
|
END SUBROUTINE swtt1_lmdar4 |
2119 |
|
|
! IM ctes ds clesphys.h SUBROUTINE LW(RCO2,RCH4,RN2O,RCFC11,RCFC12, |
2120 |
|
|
SUBROUTINE lw_lmdar4(ppmb, pdp, ppsol, pdt0, pemis, ptl, ptave, pwv, pozon, & |
2121 |
|
|
paer, pcldld, pcldlu, pview, pcolr, pcolr0, ptoplw, psollw, ptoplw0, & |
2122 |
|
|
psollw0, psollwdown, & ! IM . |
2123 |
|
|
! psollwdown,psollwdownclr, |
2124 |
|
|
! IM . ptoplwdown,ptoplwdownclr) |
2125 |
|
|
plwup, plwdn, plwup0, plwdn0) |
2126 |
|
|
USE dimphy |
2127 |
|
|
USE print_control_mod, ONLY: lunout |
2128 |
|
|
IMPLICIT NONE |
2129 |
|
|
include "raddimlw.h" |
2130 |
|
|
include "YOMCST.h" |
2131 |
|
|
|
2132 |
|
|
! ----------------------------------------------------------------------- |
2133 |
|
|
! METHOD. |
2134 |
|
|
! ------- |
2135 |
|
|
|
2136 |
|
|
! 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
2137 |
|
|
! ABSORBERS. |
2138 |
|
|
! 2. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
2139 |
|
|
! GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
2140 |
|
|
! 3. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
2141 |
|
|
! TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
2142 |
|
|
! BOUNDARIES. |
2143 |
|
|
! 4. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
2144 |
|
|
! 5. INTRODUCES THE EFFECTS OF THE CLOUDS ON THE FLUXES. |
2145 |
|
|
|
2146 |
|
|
|
2147 |
|
|
! REFERENCE. |
2148 |
|
|
! ---------- |
2149 |
|
|
|
2150 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
2151 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
2152 |
|
|
|
2153 |
|
|
! AUTHOR. |
2154 |
|
|
! ------- |
2155 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
2156 |
|
|
|
2157 |
|
|
! MODIFICATIONS. |
2158 |
|
|
! -------------- |
2159 |
|
|
! ORIGINAL : 89-07-14 |
2160 |
|
|
! ----------------------------------------------------------------------- |
2161 |
|
|
! IM ctes ds clesphys.h |
2162 |
|
|
! REAL(KIND=8) RCO2 ! CO2 CONCENTRATION (IPCC:353.E-06* 44.011/28.97) |
2163 |
|
|
! REAL(KIND=8) RCH4 ! CH4 CONCENTRATION (IPCC: 1.72E-06* 16.043/28.97) |
2164 |
|
|
! REAL(KIND=8) RN2O ! N2O CONCENTRATION (IPCC: 310.E-09* 44.013/28.97) |
2165 |
|
|
! REAL(KIND=8) RCFC11 ! CFC11 CONCENTRATION (IPCC: 280.E-12* |
2166 |
|
|
! 137.3686/28.97) |
2167 |
|
|
! REAL(KIND=8) RCFC12 ! CFC12 CONCENTRATION (IPCC: 484.E-12* |
2168 |
|
|
! 120.9140/28.97) |
2169 |
|
|
include "clesphys.h" |
2170 |
|
|
REAL (KIND=8) pcldld(kdlon, kflev) ! DOWNWARD EFFECTIVE CLOUD COVER |
2171 |
|
|
REAL (KIND=8) pcldlu(kdlon, kflev) ! UPWARD EFFECTIVE CLOUD COVER |
2172 |
|
|
REAL (KIND=8) pdp(kdlon, kflev) ! LAYER PRESSURE THICKNESS (Pa) |
2173 |
|
|
REAL (KIND=8) pdt0(kdlon) ! SURFACE TEMPERATURE DISCONTINUITY (K) |
2174 |
|
|
REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
2175 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF LEVEL PRESSURE (mb) |
2176 |
|
|
REAL (KIND=8) ppsol(kdlon) ! SURFACE PRESSURE (Pa) |
2177 |
|
|
REAL (KIND=8) pozon(kdlon, kflev) ! O3 mass fraction |
2178 |
|
|
REAL (KIND=8) ptl(kdlon, kflev+1) ! HALF LEVEL TEMPERATURE (K) |
2179 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) ! OPTICAL THICKNESS OF THE AEROSOLS |
2180 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) ! LAYER TEMPERATURE (K) |
2181 |
|
|
REAL (KIND=8) pview(kdlon) ! COSECANT OF VIEWING ANGLE |
2182 |
|
|
REAL (KIND=8) pwv(kdlon, kflev) ! SPECIFIC HUMIDITY (kg/kg) |
2183 |
|
|
|
2184 |
|
|
REAL (KIND=8) pcolr(kdlon, kflev) ! LONG-WAVE TENDENCY (K/day) |
2185 |
|
|
REAL (KIND=8) pcolr0(kdlon, kflev) ! LONG-WAVE TENDENCY (K/day) clear-sky |
2186 |
|
|
REAL (KIND=8) ptoplw(kdlon) ! LONGWAVE FLUX AT T.O.A. |
2187 |
|
|
REAL (KIND=8) psollw(kdlon) ! LONGWAVE FLUX AT SURFACE |
2188 |
|
|
REAL (KIND=8) ptoplw0(kdlon) ! LONGWAVE FLUX AT T.O.A. (CLEAR-SKY) |
2189 |
|
|
REAL (KIND=8) psollw0(kdlon) ! LONGWAVE FLUX AT SURFACE (CLEAR-SKY) |
2190 |
|
|
! Rajout LF |
2191 |
|
|
REAL (KIND=8) psollwdown(kdlon) ! LONGWAVE downwards flux at surface |
2192 |
|
|
! Rajout IM |
2193 |
|
|
! IM real(kind=8) psollwdownclr(kdlon) ! LONGWAVE CS downwards flux at |
2194 |
|
|
! surface |
2195 |
|
|
! IM real(kind=8) ptoplwdown(kdlon) ! LONGWAVE downwards flux at |
2196 |
|
|
! T.O.A. |
2197 |
|
|
! IM real(kind=8) ptoplwdownclr(kdlon) ! LONGWAVE CS downwards flux at |
2198 |
|
|
! T.O.A. |
2199 |
|
|
! IM |
2200 |
|
|
REAL (KIND=8) plwup(kdlon, kflev+1) ! LW up total sky |
2201 |
|
|
REAL (KIND=8) plwup0(kdlon, kflev+1) ! LW up clear sky |
2202 |
|
|
REAL (KIND=8) plwdn(kdlon, kflev+1) ! LW down total sky |
2203 |
|
|
REAL (KIND=8) plwdn0(kdlon, kflev+1) ! LW down clear sky |
2204 |
|
|
! ------------------------------------------------------------------------- |
2205 |
|
|
REAL (KIND=8) zabcu(kdlon, nua, 3*kflev+1) |
2206 |
|
|
|
2207 |
|
|
REAL (KIND=8) zoz(kdlon, kflev) |
2208 |
|
|
! equivalent pressure of ozone in a layer, in Pa |
2209 |
|
|
|
2210 |
|
|
! ym REAL(KIND=8) ZFLUX(KDLON,2,KFLEV+1) ! RADIATIVE FLUXES (1:up; |
2211 |
|
|
! 2:down) |
2212 |
|
|
! ym REAL(KIND=8) ZFLUC(KDLON,2,KFLEV+1) ! CLEAR-SKY RADIATIVE FLUXES |
2213 |
|
|
! ym REAL(KIND=8) ZBINT(KDLON,KFLEV+1) ! Intermediate |
2214 |
|
|
! variable |
2215 |
|
|
! ym REAL(KIND=8) ZBSUI(KDLON) ! Intermediate |
2216 |
|
|
! variable |
2217 |
|
|
! ym REAL(KIND=8) ZCTS(KDLON,KFLEV) ! Intermediate |
2218 |
|
|
! variable |
2219 |
|
|
! ym REAL(KIND=8) ZCNTRB(KDLON,KFLEV+1,KFLEV+1) ! Intermediate |
2220 |
|
|
! variable |
2221 |
|
|
! ym SAVE ZFLUX, ZFLUC, ZBINT, ZBSUI, ZCTS, ZCNTRB |
2222 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zflux(:, :, :) ! RADIATIVE FLUXES (1:up; 2:down) |
2223 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zfluc(:, :, :) ! CLEAR-SKY RADIATIVE FLUXES |
2224 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zbint(:, :) ! Intermediate variable |
2225 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zbsui(:) ! Intermediate variable |
2226 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zcts(:, :) ! Intermediate variable |
2227 |
|
|
REAL (KIND=8), ALLOCATABLE, SAVE :: zcntrb(:, :, :) ! Intermediate variable |
2228 |
|
|
!$OMP THREADPRIVATE(ZFLUX, ZFLUC, ZBINT, ZBSUI, ZCTS, ZCNTRB) |
2229 |
|
|
|
2230 |
|
|
INTEGER ilim, i, k, kpl1 |
2231 |
|
|
|
2232 |
|
|
INTEGER lw0pas ! Every lw0pas steps, clear-sky is done |
2233 |
|
|
PARAMETER (lw0pas=1) |
2234 |
|
|
INTEGER lwpas ! Every lwpas steps, cloudy-sky is done |
2235 |
|
|
PARAMETER (lwpas=1) |
2236 |
|
|
|
2237 |
|
|
INTEGER itaplw0, itaplw |
2238 |
|
|
LOGICAL appel1er |
2239 |
|
|
SAVE appel1er, itaplw0, itaplw |
2240 |
|
|
!$OMP THREADPRIVATE(appel1er, itaplw0, itaplw) |
2241 |
|
|
DATA appel1er/.TRUE./ |
2242 |
|
|
DATA itaplw0, itaplw/0, 0/ |
2243 |
|
|
|
2244 |
|
|
! ------------------------------------------------------------------ |
2245 |
|
|
IF (appel1er) THEN |
2246 |
|
|
WRITE (lunout, *) 'LW clear-sky calling frequency: ', lw0pas |
2247 |
|
|
WRITE (lunout, *) 'LW cloudy-sky calling frequency: ', lwpas |
2248 |
|
|
WRITE (lunout, *) ' In general, they should be 1' |
2249 |
|
|
! ym |
2250 |
|
|
ALLOCATE (zflux(kdlon,2,kflev+1)) |
2251 |
|
|
ALLOCATE (zfluc(kdlon,2,kflev+1)) |
2252 |
|
|
ALLOCATE (zbint(kdlon,kflev+1)) |
2253 |
|
|
ALLOCATE (zbsui(kdlon)) |
2254 |
|
|
ALLOCATE (zcts(kdlon,kflev)) |
2255 |
|
|
ALLOCATE (zcntrb(kdlon,kflev+1,kflev+1)) |
2256 |
|
|
appel1er = .FALSE. |
2257 |
|
|
END IF |
2258 |
|
|
|
2259 |
|
|
IF (mod(itaplw0,lw0pas)==0) THEN |
2260 |
|
|
! Compute equivalent pressure of ozone from mass fraction: |
2261 |
|
|
DO k = 1, kflev |
2262 |
|
|
DO i = 1, kdlon |
2263 |
|
|
zoz(i, k) = pozon(i, k)*pdp(i, k) |
2264 |
|
|
END DO |
2265 |
|
|
END DO |
2266 |
|
|
! IM ctes ds clesphys.h CALL LWU(RCO2,RCH4, RN2O, RCFC11, RCFC12, |
2267 |
|
|
CALL lwu_lmdar4(paer, pdp, ppmb, ppsol, zoz, ptave, pview, pwv, zabcu) |
2268 |
|
|
CALL lwbv_lmdar4(ilim, pdp, pdt0, pemis, ppmb, ptl, ptave, zabcu, zfluc, & |
2269 |
|
|
zbint, zbsui, zcts, zcntrb) |
2270 |
|
|
itaplw0 = 0 |
2271 |
|
|
END IF |
2272 |
|
|
itaplw0 = itaplw0 + 1 |
2273 |
|
|
|
2274 |
|
|
IF (mod(itaplw,lwpas)==0) THEN |
2275 |
|
|
CALL lwc_lmdar4(ilim, pcldld, pcldlu, pemis, zfluc, zbint, zbsui, zcts, & |
2276 |
|
|
zcntrb, zflux) |
2277 |
|
|
itaplw = 0 |
2278 |
|
|
END IF |
2279 |
|
|
itaplw = itaplw + 1 |
2280 |
|
|
|
2281 |
|
|
DO k = 1, kflev |
2282 |
|
|
kpl1 = k + 1 |
2283 |
|
|
DO i = 1, kdlon |
2284 |
|
|
pcolr(i, k) = zflux(i, 1, kpl1) + zflux(i, 2, kpl1) - zflux(i, 1, k) - & |
2285 |
|
|
zflux(i, 2, k) |
2286 |
|
|
pcolr(i, k) = pcolr(i, k)*rday*rg/rcpd/pdp(i, k) |
2287 |
|
|
pcolr0(i, k) = zfluc(i, 1, kpl1) + zfluc(i, 2, kpl1) - zfluc(i, 1, k) - & |
2288 |
|
|
zfluc(i, 2, k) |
2289 |
|
|
pcolr0(i, k) = pcolr0(i, k)*rday*rg/rcpd/pdp(i, k) |
2290 |
|
|
END DO |
2291 |
|
|
END DO |
2292 |
|
|
DO i = 1, kdlon |
2293 |
|
|
psollw(i) = -zflux(i, 1, 1) - zflux(i, 2, 1) |
2294 |
|
|
ptoplw(i) = zflux(i, 1, kflev+1) + zflux(i, 2, kflev+1) |
2295 |
|
|
|
2296 |
|
|
psollw0(i) = -zfluc(i, 1, 1) - zfluc(i, 2, 1) |
2297 |
|
|
ptoplw0(i) = zfluc(i, 1, kflev+1) + zfluc(i, 2, kflev+1) |
2298 |
|
|
psollwdown(i) = -zflux(i, 2, 1) |
2299 |
|
|
|
2300 |
|
|
! IM attention aux signes !; LWtop >0, LWdn < 0 |
2301 |
|
|
DO k = 1, kflev + 1 |
2302 |
|
|
plwup(i, k) = zflux(i, 1, k) |
2303 |
|
|
plwup0(i, k) = zfluc(i, 1, k) |
2304 |
|
|
plwdn(i, k) = zflux(i, 2, k) |
2305 |
|
|
plwdn0(i, k) = zfluc(i, 2, k) |
2306 |
|
|
END DO |
2307 |
|
|
END DO |
2308 |
|
|
! ------------------------------------------------------------------ |
2309 |
|
|
RETURN |
2310 |
|
|
END SUBROUTINE lw_lmdar4 |
2311 |
|
|
! IM ctes ds clesphys.h SUBROUTINE LWU(RCO2, RCH4, RN2O, RCFC11, RCFC12, |
2312 |
|
|
SUBROUTINE lwu_lmdar4(paer, pdp, ppmb, ppsol, poz, ptave, pview, pwv, pabcu) |
2313 |
|
|
USE dimphy |
2314 |
|
|
USE radiation_ar4_param, ONLY: tref, rt1, raer, at, bt, oct |
2315 |
|
|
USE infotrac_phy, ONLY: type_trac |
2316 |
|
|
#ifdef REPROBUS |
2317 |
|
|
USE chem_rep, ONLY: rch42d, rn2o2d, rcfc112d, rcfc122d, ok_rtime2d |
2318 |
|
|
#endif |
2319 |
|
|
|
2320 |
|
|
IMPLICIT NONE |
2321 |
|
|
include "raddimlw.h" |
2322 |
|
|
include "YOMCST.h" |
2323 |
|
|
include "radepsi.h" |
2324 |
|
|
include "radopt.h" |
2325 |
|
|
|
2326 |
|
|
! PURPOSE. |
2327 |
|
|
! -------- |
2328 |
|
|
! COMPUTES ABSORBER AMOUNTS INCLUDING PRESSURE AND |
2329 |
|
|
! TEMPERATURE EFFECTS |
2330 |
|
|
|
2331 |
|
|
! METHOD. |
2332 |
|
|
! ------- |
2333 |
|
|
|
2334 |
|
|
! 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
2335 |
|
|
! ABSORBERS. |
2336 |
|
|
|
2337 |
|
|
|
2338 |
|
|
! REFERENCE. |
2339 |
|
|
! ---------- |
2340 |
|
|
|
2341 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
2342 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
2343 |
|
|
|
2344 |
|
|
! AUTHOR. |
2345 |
|
|
! ------- |
2346 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
2347 |
|
|
|
2348 |
|
|
! MODIFICATIONS. |
2349 |
|
|
! -------------- |
2350 |
|
|
! ORIGINAL : 89-07-14 |
2351 |
|
|
! Voigt lines (loop 404 modified) - JJM & PhD - 01/96 |
2352 |
|
|
! ----------------------------------------------------------------------- |
2353 |
|
|
! * ARGUMENTS: |
2354 |
|
|
! IM ctes ds clesphys.h |
2355 |
|
|
! REAL(KIND=8) RCO2 |
2356 |
|
|
! REAL(KIND=8) RCH4, RN2O, RCFC11, RCFC12 |
2357 |
|
|
include "clesphys.h" |
2358 |
|
|
REAL (KIND=8) paer(kdlon, kflev, 5) |
2359 |
|
|
REAL (KIND=8) pdp(kdlon, kflev) |
2360 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) |
2361 |
|
|
REAL (KIND=8) ppsol(kdlon) |
2362 |
|
|
REAL (KIND=8) poz(kdlon, kflev) |
2363 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) |
2364 |
|
|
REAL (KIND=8) pview(kdlon) |
2365 |
|
|
REAL (KIND=8) pwv(kdlon, kflev) |
2366 |
|
|
|
2367 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! EFFECTIVE ABSORBER AMOUNTS |
2368 |
|
|
|
2369 |
|
|
! ----------------------------------------------------------------------- |
2370 |
|
|
! * LOCAL VARIABLES: |
2371 |
|
|
REAL (KIND=8) zably(kdlon, nua, 3*kflev+1) |
2372 |
|
|
REAL (KIND=8) zduc(kdlon, 3*kflev+1) |
2373 |
|
|
REAL (KIND=8) zphio(kdlon) |
2374 |
|
|
REAL (KIND=8) zpsc2(kdlon) |
2375 |
|
|
REAL (KIND=8) zpsc3(kdlon) |
2376 |
|
|
REAL (KIND=8) zpsh1(kdlon) |
2377 |
|
|
REAL (KIND=8) zpsh2(kdlon) |
2378 |
|
|
REAL (KIND=8) zpsh3(kdlon) |
2379 |
|
|
REAL (KIND=8) zpsh4(kdlon) |
2380 |
|
|
REAL (KIND=8) zpsh5(kdlon) |
2381 |
|
|
REAL (KIND=8) zpsh6(kdlon) |
2382 |
|
|
REAL (KIND=8) zpsio(kdlon) |
2383 |
|
|
REAL (KIND=8) ztcon(kdlon) |
2384 |
|
|
REAL (KIND=8) zphm6(kdlon) |
2385 |
|
|
REAL (KIND=8) zpsm6(kdlon) |
2386 |
|
|
REAL (KIND=8) zphn6(kdlon) |
2387 |
|
|
REAL (KIND=8) zpsn6(kdlon) |
2388 |
|
|
REAL (KIND=8) zssig(kdlon, 3*kflev+1) |
2389 |
|
|
REAL (KIND=8) ztavi(kdlon) |
2390 |
|
|
REAL (KIND=8) zuaer(kdlon, ninter) |
2391 |
|
|
REAL (KIND=8) zxoz(kdlon) |
2392 |
|
|
REAL (KIND=8) zxwv(kdlon) |
2393 |
|
|
|
2394 |
|
|
INTEGER jl, jk, jkj, jkjr, jkjp, ig1 |
2395 |
|
|
INTEGER jki, jkip1, ja, jj |
2396 |
|
|
INTEGER jkl, jkp1, jkk, jkjpn |
2397 |
|
|
INTEGER jae1, jae2, jae3, jae, jjpn |
2398 |
|
|
INTEGER ir, jc, jcp1 |
2399 |
|
|
REAL (KIND=8) zdpm, zupm, zupmh2o, zupmco2, zupmo3, zu6, zup |
2400 |
|
|
REAL (KIND=8) zfppw, ztx, ztx2, zzably |
2401 |
|
|
REAL (KIND=8) zcah1, zcbh1, zcah2, zcbh2, zcah3, zcbh3 |
2402 |
|
|
REAL (KIND=8) zcah4, zcbh4, zcah5, zcbh5, zcah6, zcbh6 |
2403 |
|
|
REAL (KIND=8) zcac8, zcbc8 |
2404 |
|
|
REAL (KIND=8) zalup, zdiff |
2405 |
|
|
|
2406 |
|
|
REAL (KIND=8) pvgco2, pvgh2o, pvgo3 |
2407 |
|
|
|
2408 |
|
|
REAL (KIND=8) r10e ! DECIMAL/NATURAL LOG.FACTOR |
2409 |
|
|
PARAMETER (r10e=0.4342945) |
2410 |
|
|
|
2411 |
|
|
! ----------------------------------------------------------------------- |
2412 |
|
|
|
2413 |
|
|
IF (levoigt) THEN |
2414 |
|
|
pvgco2 = 60. |
2415 |
|
|
pvgh2o = 30. |
2416 |
|
|
pvgo3 = 400. |
2417 |
|
|
ELSE |
2418 |
|
|
pvgco2 = 0. |
2419 |
|
|
pvgh2o = 0. |
2420 |
|
|
pvgo3 = 0. |
2421 |
|
|
END IF |
2422 |
|
|
|
2423 |
|
|
! * 2. PRESSURE OVER GAUSS SUB-LEVELS |
2424 |
|
|
! ------------------------------ |
2425 |
|
|
|
2426 |
|
|
|
2427 |
|
|
DO jl = 1, kdlon |
2428 |
|
|
zssig(jl, 1) = ppmb(jl, 1)*100. |
2429 |
|
|
END DO |
2430 |
|
|
|
2431 |
|
|
DO jk = 1, kflev |
2432 |
|
|
jkj = (jk-1)*ng1p1 + 1 |
2433 |
|
|
jkjr = jkj |
2434 |
|
|
jkjp = jkj + ng1p1 |
2435 |
|
|
DO jl = 1, kdlon |
2436 |
|
|
zssig(jl, jkjp) = ppmb(jl, jk+1)*100. |
2437 |
|
|
END DO |
2438 |
|
|
DO ig1 = 1, ng1 |
2439 |
|
|
jkj = jkj + 1 |
2440 |
|
|
DO jl = 1, kdlon |
2441 |
|
|
zssig(jl, jkj) = (zssig(jl,jkjr)+zssig(jl,jkjp))*0.5 + & |
2442 |
|
|
rt1(ig1)*(zssig(jl,jkjp)-zssig(jl,jkjr))*0.5 |
2443 |
|
|
END DO |
2444 |
|
|
END DO |
2445 |
|
|
END DO |
2446 |
|
|
|
2447 |
|
|
! ----------------------------------------------------------------------- |
2448 |
|
|
|
2449 |
|
|
|
2450 |
|
|
! * 4. PRESSURE THICKNESS AND MEAN PRESSURE OF SUB-LAYERS |
2451 |
|
|
! -------------------------------------------------- |
2452 |
|
|
|
2453 |
|
|
|
2454 |
|
|
DO jki = 1, 3*kflev |
2455 |
|
|
jkip1 = jki + 1 |
2456 |
|
|
DO jl = 1, kdlon |
2457 |
|
|
zably(jl, 5, jki) = (zssig(jl,jki)+zssig(jl,jkip1))*0.5 |
2458 |
|
|
zably(jl, 3, jki) = (zssig(jl,jki)-zssig(jl,jkip1))/(10.*rg) |
2459 |
|
|
END DO |
2460 |
|
|
END DO |
2461 |
|
|
|
2462 |
|
|
DO jk = 1, kflev |
2463 |
|
|
jkp1 = jk + 1 |
2464 |
|
|
jkl = kflev + 1 - jk |
2465 |
|
|
DO jl = 1, kdlon |
2466 |
|
|
zxwv(jl) = max(pwv(jl,jk), zepscq) |
2467 |
|
|
zxoz(jl) = max(poz(jl,jk)/pdp(jl,jk), zepsco) |
2468 |
|
|
END DO |
2469 |
|
|
jkj = (jk-1)*ng1p1 + 1 |
2470 |
|
|
jkjpn = jkj + ng1 |
2471 |
|
|
DO jkk = jkj, jkjpn |
2472 |
|
|
DO jl = 1, kdlon |
2473 |
|
|
zdpm = zably(jl, 3, jkk) |
2474 |
|
|
zupm = zably(jl, 5, jkk)*zdpm/101325. |
2475 |
|
|
zupmco2 = (zably(jl,5,jkk)+pvgco2)*zdpm/101325. |
2476 |
|
|
zupmh2o = (zably(jl,5,jkk)+pvgh2o)*zdpm/101325. |
2477 |
|
|
zupmo3 = (zably(jl,5,jkk)+pvgo3)*zdpm/101325. |
2478 |
|
|
zduc(jl, jkk) = zdpm |
2479 |
|
|
zably(jl, 12, jkk) = zxoz(jl)*zdpm |
2480 |
|
|
zably(jl, 13, jkk) = zxoz(jl)*zupmo3 |
2481 |
|
|
zu6 = zxwv(jl)*zupm |
2482 |
|
|
zfppw = 1.6078*zxwv(jl)/(1.+0.608*zxwv(jl)) |
2483 |
|
|
zably(jl, 6, jkk) = zxwv(jl)*zupmh2o |
2484 |
|
|
zably(jl, 11, jkk) = zu6*zfppw |
2485 |
|
|
zably(jl, 10, jkk) = zu6*(1.-zfppw) |
2486 |
|
|
zably(jl, 9, jkk) = rco2*zupmco2 |
2487 |
|
|
zably(jl, 8, jkk) = rco2*zdpm |
2488 |
|
|
END DO |
2489 |
|
|
END DO |
2490 |
|
|
END DO |
2491 |
|
|
|
2492 |
|
|
! ----------------------------------------------------------------------- |
2493 |
|
|
|
2494 |
|
|
|
2495 |
|
|
! * 5. CUMULATIVE ABSORBER AMOUNTS FROM TOP OF ATMOSPHERE |
2496 |
|
|
! -------------------------------------------------- |
2497 |
|
|
|
2498 |
|
|
|
2499 |
|
|
DO ja = 1, nua |
2500 |
|
|
DO jl = 1, kdlon |
2501 |
|
|
pabcu(jl, ja, 3*kflev+1) = 0. |
2502 |
|
|
END DO |
2503 |
|
|
END DO |
2504 |
|
|
|
2505 |
|
|
DO jk = 1, kflev |
2506 |
|
|
jj = (jk-1)*ng1p1 + 1 |
2507 |
|
|
jjpn = jj + ng1 |
2508 |
|
|
jkl = kflev + 1 - jk |
2509 |
|
|
|
2510 |
|
|
! * 5.1 CUMULATIVE AEROSOL AMOUNTS FROM TOP OF ATMOSPHERE |
2511 |
|
|
! -------------------------------------------------- |
2512 |
|
|
|
2513 |
|
|
|
2514 |
|
|
jae1 = 3*kflev + 1 - jj |
2515 |
|
|
jae2 = 3*kflev + 1 - (jj+1) |
2516 |
|
|
jae3 = 3*kflev + 1 - jjpn |
2517 |
|
|
DO jae = 1, 5 |
2518 |
|
|
DO jl = 1, kdlon |
2519 |
|
|
zuaer(jl, jae) = (raer(jae,1)*paer(jl,jkl,1)+raer(jae,2)*paer(jl,jkl, & |
2520 |
|
|
2)+raer(jae,3)*paer(jl,jkl,3)+raer(jae,4)*paer(jl,jkl,4)+ & |
2521 |
|
|
raer(jae,5)*paer(jl,jkl,5))/(zduc(jl,jae1)+zduc(jl,jae2)+zduc(jl, & |
2522 |
|
|
jae3)) |
2523 |
|
|
END DO |
2524 |
|
|
END DO |
2525 |
|
|
|
2526 |
|
|
! * 5.2 INTRODUCES TEMPERATURE EFFECTS ON ABSORBER AMOUNTS |
2527 |
|
|
! -------------------------------------------------- |
2528 |
|
|
|
2529 |
|
|
|
2530 |
|
|
DO jl = 1, kdlon |
2531 |
|
|
ztavi(jl) = ptave(jl, jkl) |
2532 |
|
|
ztcon(jl) = exp(6.08*(296./ztavi(jl)-1.)) |
2533 |
|
|
ztx = ztavi(jl) - tref |
2534 |
|
|
ztx2 = ztx*ztx |
2535 |
|
|
zzably = zably(jl, 6, jae1) + zably(jl, 6, jae2) + zably(jl, 6, jae3) |
2536 |
|
|
zup = min(max(0.5*r10e*log(zzably)+5.,0._8), 6._8) |
2537 |
|
|
zcah1 = at(1, 1) + zup*(at(1,2)+zup*(at(1,3))) |
2538 |
|
|
zcbh1 = bt(1, 1) + zup*(bt(1,2)+zup*(bt(1,3))) |
2539 |
|
|
zpsh1(jl) = exp(zcah1*ztx+zcbh1*ztx2) |
2540 |
|
|
zcah2 = at(2, 1) + zup*(at(2,2)+zup*(at(2,3))) |
2541 |
|
|
zcbh2 = bt(2, 1) + zup*(bt(2,2)+zup*(bt(2,3))) |
2542 |
|
|
zpsh2(jl) = exp(zcah2*ztx+zcbh2*ztx2) |
2543 |
|
|
zcah3 = at(3, 1) + zup*(at(3,2)+zup*(at(3,3))) |
2544 |
|
|
zcbh3 = bt(3, 1) + zup*(bt(3,2)+zup*(bt(3,3))) |
2545 |
|
|
zpsh3(jl) = exp(zcah3*ztx+zcbh3*ztx2) |
2546 |
|
|
zcah4 = at(4, 1) + zup*(at(4,2)+zup*(at(4,3))) |
2547 |
|
|
zcbh4 = bt(4, 1) + zup*(bt(4,2)+zup*(bt(4,3))) |
2548 |
|
|
zpsh4(jl) = exp(zcah4*ztx+zcbh4*ztx2) |
2549 |
|
|
zcah5 = at(5, 1) + zup*(at(5,2)+zup*(at(5,3))) |
2550 |
|
|
zcbh5 = bt(5, 1) + zup*(bt(5,2)+zup*(bt(5,3))) |
2551 |
|
|
zpsh5(jl) = exp(zcah5*ztx+zcbh5*ztx2) |
2552 |
|
|
zcah6 = at(6, 1) + zup*(at(6,2)+zup*(at(6,3))) |
2553 |
|
|
zcbh6 = bt(6, 1) + zup*(bt(6,2)+zup*(bt(6,3))) |
2554 |
|
|
zpsh6(jl) = exp(zcah6*ztx+zcbh6*ztx2) |
2555 |
|
|
zphm6(jl) = exp(-5.81E-4*ztx-1.13E-6*ztx2) |
2556 |
|
|
zpsm6(jl) = exp(-5.57E-4*ztx-3.30E-6*ztx2) |
2557 |
|
|
zphn6(jl) = exp(-3.46E-5*ztx+2.05E-7*ztx2) |
2558 |
|
|
zpsn6(jl) = exp(3.70E-3*ztx-2.30E-6*ztx2) |
2559 |
|
|
END DO |
2560 |
|
|
|
2561 |
|
|
DO jl = 1, kdlon |
2562 |
|
|
ztavi(jl) = ptave(jl, jkl) |
2563 |
|
|
ztx = ztavi(jl) - tref |
2564 |
|
|
ztx2 = ztx*ztx |
2565 |
|
|
zzably = zably(jl, 9, jae1) + zably(jl, 9, jae2) + zably(jl, 9, jae3) |
2566 |
|
|
zalup = r10e*log(zzably) |
2567 |
|
|
zup = max(0._8, 5.0+0.5*zalup) |
2568 |
|
|
zpsc2(jl) = (ztavi(jl)/tref)**zup |
2569 |
|
|
zcac8 = at(8, 1) + zup*(at(8,2)+zup*(at(8,3))) |
2570 |
|
|
zcbc8 = bt(8, 1) + zup*(bt(8,2)+zup*(bt(8,3))) |
2571 |
|
|
zpsc3(jl) = exp(zcac8*ztx+zcbc8*ztx2) |
2572 |
|
|
zphio(jl) = exp(oct(1)*ztx+oct(2)*ztx2) |
2573 |
|
|
zpsio(jl) = exp(2.*(oct(3)*ztx+oct(4)*ztx2)) |
2574 |
|
|
END DO |
2575 |
|
|
|
2576 |
|
|
DO jkk = jj, jjpn |
2577 |
|
|
jc = 3*kflev + 1 - jkk |
2578 |
|
|
jcp1 = jc + 1 |
2579 |
|
|
DO jl = 1, kdlon |
2580 |
|
|
zdiff = pview(jl) |
2581 |
|
|
pabcu(jl, 10, jc) = pabcu(jl, 10, jcp1) + zably(jl, 10, jc)*zdiff |
2582 |
|
|
pabcu(jl, 11, jc) = pabcu(jl, 11, jcp1) + zably(jl, 11, jc)*ztcon(jl) & |
2583 |
|
|
*zdiff |
2584 |
|
|
|
2585 |
|
|
pabcu(jl, 12, jc) = pabcu(jl, 12, jcp1) + zably(jl, 12, jc)*zphio(jl) & |
2586 |
|
|
*zdiff |
2587 |
|
|
pabcu(jl, 13, jc) = pabcu(jl, 13, jcp1) + zably(jl, 13, jc)*zpsio(jl) & |
2588 |
|
|
*zdiff |
2589 |
|
|
|
2590 |
|
|
pabcu(jl, 7, jc) = pabcu(jl, 7, jcp1) + zably(jl, 9, jc)*zpsc2(jl)* & |
2591 |
|
|
zdiff |
2592 |
|
|
pabcu(jl, 8, jc) = pabcu(jl, 8, jcp1) + zably(jl, 9, jc)*zpsc3(jl)* & |
2593 |
|
|
zdiff |
2594 |
|
|
pabcu(jl, 9, jc) = pabcu(jl, 9, jcp1) + zably(jl, 9, jc)*zpsc3(jl)* & |
2595 |
|
|
zdiff |
2596 |
|
|
|
2597 |
|
|
pabcu(jl, 1, jc) = pabcu(jl, 1, jcp1) + zably(jl, 6, jc)*zpsh1(jl)* & |
2598 |
|
|
zdiff |
2599 |
|
|
pabcu(jl, 2, jc) = pabcu(jl, 2, jcp1) + zably(jl, 6, jc)*zpsh2(jl)* & |
2600 |
|
|
zdiff |
2601 |
|
|
pabcu(jl, 3, jc) = pabcu(jl, 3, jcp1) + zably(jl, 6, jc)*zpsh5(jl)* & |
2602 |
|
|
zdiff |
2603 |
|
|
pabcu(jl, 4, jc) = pabcu(jl, 4, jcp1) + zably(jl, 6, jc)*zpsh3(jl)* & |
2604 |
|
|
zdiff |
2605 |
|
|
pabcu(jl, 5, jc) = pabcu(jl, 5, jcp1) + zably(jl, 6, jc)*zpsh4(jl)* & |
2606 |
|
|
zdiff |
2607 |
|
|
pabcu(jl, 6, jc) = pabcu(jl, 6, jcp1) + zably(jl, 6, jc)*zpsh6(jl)* & |
2608 |
|
|
zdiff |
2609 |
|
|
|
2610 |
|
|
pabcu(jl, 14, jc) = pabcu(jl, 14, jcp1) + zuaer(jl, 1)*zduc(jl, jc)* & |
2611 |
|
|
zdiff |
2612 |
|
|
pabcu(jl, 15, jc) = pabcu(jl, 15, jcp1) + zuaer(jl, 2)*zduc(jl, jc)* & |
2613 |
|
|
zdiff |
2614 |
|
|
pabcu(jl, 16, jc) = pabcu(jl, 16, jcp1) + zuaer(jl, 3)*zduc(jl, jc)* & |
2615 |
|
|
zdiff |
2616 |
|
|
pabcu(jl, 17, jc) = pabcu(jl, 17, jcp1) + zuaer(jl, 4)*zduc(jl, jc)* & |
2617 |
|
|
zdiff |
2618 |
|
|
pabcu(jl, 18, jc) = pabcu(jl, 18, jcp1) + zuaer(jl, 5)*zduc(jl, jc)* & |
2619 |
|
|
zdiff |
2620 |
|
|
|
2621 |
|
|
|
2622 |
|
|
|
2623 |
|
|
IF (type_trac=='repr') THEN |
2624 |
|
|
#ifdef REPROBUS |
2625 |
|
|
IF (ok_rtime2d) THEN |
2626 |
|
|
pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
2627 |
|
|
zably(jl, 8, jc)*rch42d(jl, jc)/rco2*zphm6(jl)*zdiff |
2628 |
|
|
pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
2629 |
|
|
zably(jl, 9, jc)*rch42d(jl, jc)/rco2*zpsm6(jl)*zdiff |
2630 |
|
|
pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
2631 |
|
|
zably(jl, 8, jc)*rn2o2d(jl, jc)/rco2*zphn6(jl)*zdiff |
2632 |
|
|
pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
2633 |
|
|
zably(jl, 9, jc)*rn2o2d(jl, jc)/rco2*zpsn6(jl)*zdiff |
2634 |
|
|
|
2635 |
|
|
pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
2636 |
|
|
zably(jl, 8, jc)*rcfc112d(jl, jc)/rco2*zdiff |
2637 |
|
|
pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
2638 |
|
|
zably(jl, 8, jc)*rcfc122d(jl, jc)/rco2*zdiff |
2639 |
|
|
ELSE |
2640 |
|
|
! Same calculation as for type_trac /= repr |
2641 |
|
|
pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
2642 |
|
|
zably(jl, 8, jc)*rch4/rco2*zphm6(jl)*zdiff |
2643 |
|
|
pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
2644 |
|
|
zably(jl, 9, jc)*rch4/rco2*zpsm6(jl)*zdiff |
2645 |
|
|
pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
2646 |
|
|
zably(jl, 8, jc)*rn2o/rco2*zphn6(jl)*zdiff |
2647 |
|
|
pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
2648 |
|
|
zably(jl, 9, jc)*rn2o/rco2*zpsn6(jl)*zdiff |
2649 |
|
|
|
2650 |
|
|
pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
2651 |
|
|
zably(jl, 8, jc)*rcfc11/rco2*zdiff |
2652 |
|
|
pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
2653 |
|
|
zably(jl, 8, jc)*rcfc12/rco2*zdiff |
2654 |
|
|
END IF |
2655 |
|
|
#endif |
2656 |
|
|
ELSE |
2657 |
|
|
pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
2658 |
|
|
zably(jl, 8, jc)*rch4/rco2*zphm6(jl)*zdiff |
2659 |
|
|
pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
2660 |
|
|
zably(jl, 9, jc)*rch4/rco2*zpsm6(jl)*zdiff |
2661 |
|
|
pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
2662 |
|
|
zably(jl, 8, jc)*rn2o/rco2*zphn6(jl)*zdiff |
2663 |
|
|
pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
2664 |
|
|
zably(jl, 9, jc)*rn2o/rco2*zpsn6(jl)*zdiff |
2665 |
|
|
|
2666 |
|
|
pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
2667 |
|
|
zably(jl, 8, jc)*rcfc11/rco2*zdiff |
2668 |
|
|
pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
2669 |
|
|
zably(jl, 8, jc)*rcfc12/rco2*zdiff |
2670 |
|
|
END IF |
2671 |
|
|
|
2672 |
|
|
END DO |
2673 |
|
|
END DO |
2674 |
|
|
|
2675 |
|
|
END DO |
2676 |
|
|
|
2677 |
|
|
|
2678 |
|
|
RETURN |
2679 |
|
|
END SUBROUTINE lwu_lmdar4 |
2680 |
|
|
SUBROUTINE lwbv_lmdar4(klim, pdp, pdt0, pemis, ppmb, ptl, ptave, pabcu, & |
2681 |
|
|
pfluc, pbint, pbsui, pcts, pcntrb) |
2682 |
|
|
USE dimphy |
2683 |
|
|
IMPLICIT NONE |
2684 |
|
|
include "raddimlw.h" |
2685 |
|
|
include "YOMCST.h" |
2686 |
|
|
|
2687 |
|
|
! PURPOSE. |
2688 |
|
|
! -------- |
2689 |
|
|
! TO COMPUTE THE PLANCK FUNCTION AND PERFORM THE |
2690 |
|
|
! VERTICAL INTEGRATION. SPLIT OUT FROM LW FOR MEMORY |
2691 |
|
|
! SAVING |
2692 |
|
|
|
2693 |
|
|
! METHOD. |
2694 |
|
|
! ------- |
2695 |
|
|
|
2696 |
|
|
! 1. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
2697 |
|
|
! GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
2698 |
|
|
! 2. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
2699 |
|
|
! TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
2700 |
|
|
! BOUNDARIES. |
2701 |
|
|
! 3. COMPUTES THE CLEAR-SKY COOLING RATES. |
2702 |
|
|
|
2703 |
|
|
! REFERENCE. |
2704 |
|
|
! ---------- |
2705 |
|
|
|
2706 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
2707 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
2708 |
|
|
|
2709 |
|
|
! AUTHOR. |
2710 |
|
|
! ------- |
2711 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
2712 |
|
|
|
2713 |
|
|
! MODIFICATIONS. |
2714 |
|
|
! -------------- |
2715 |
|
|
! ORIGINAL : 89-07-14 |
2716 |
|
|
! MODIFICATION : 93-10-15 M.HAMRUD (SPLIT OUT FROM LW TO SAVE |
2717 |
|
|
! MEMORY) |
2718 |
|
|
! ----------------------------------------------------------------------- |
2719 |
|
|
! * ARGUMENTS: |
2720 |
|
|
INTEGER klim |
2721 |
|
|
|
2722 |
|
|
REAL (KIND=8) pdp(kdlon, kflev) |
2723 |
|
|
REAL (KIND=8) pdt0(kdlon) |
2724 |
|
|
REAL (KIND=8) pemis(kdlon) |
2725 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) |
2726 |
|
|
REAL (KIND=8) ptl(kdlon, kflev+1) |
2727 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) |
2728 |
|
|
|
2729 |
|
|
REAL (KIND=8) pfluc(kdlon, 2, kflev+1) |
2730 |
|
|
|
2731 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) |
2732 |
|
|
REAL (KIND=8) pbint(kdlon, kflev+1) |
2733 |
|
|
REAL (KIND=8) pbsui(kdlon) |
2734 |
|
|
REAL (KIND=8) pcts(kdlon, kflev) |
2735 |
|
|
REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) |
2736 |
|
|
|
2737 |
|
|
! ------------------------------------------------------------------------- |
2738 |
|
|
|
2739 |
|
|
! * LOCAL VARIABLES: |
2740 |
|
|
REAL (KIND=8) zb(kdlon, ninter, kflev+1) |
2741 |
|
|
REAL (KIND=8) zbsur(kdlon, ninter) |
2742 |
|
|
REAL (KIND=8) zbtop(kdlon, ninter) |
2743 |
|
|
REAL (KIND=8) zdbsl(kdlon, ninter, kflev*2) |
2744 |
|
|
REAL (KIND=8) zga(kdlon, 8, 2, kflev) |
2745 |
|
|
REAL (KIND=8) zgb(kdlon, 8, 2, kflev) |
2746 |
|
|
REAL (KIND=8) zgasur(kdlon, 8, 2) |
2747 |
|
|
REAL (KIND=8) zgbsur(kdlon, 8, 2) |
2748 |
|
|
REAL (KIND=8) zgatop(kdlon, 8, 2) |
2749 |
|
|
REAL (KIND=8) zgbtop(kdlon, 8, 2) |
2750 |
|
|
|
2751 |
|
|
INTEGER nuaer, ntraer |
2752 |
|
|
! ------------------------------------------------------------------ |
2753 |
|
|
! * COMPUTES PLANCK FUNCTIONS: |
2754 |
|
|
CALL lwb_lmdar4(pdt0, ptave, ptl, zb, pbint, pbsui, zbsur, zbtop, zdbsl, & |
2755 |
|
|
zga, zgb, zgasur, zgbsur, zgatop, zgbtop) |
2756 |
|
|
! ------------------------------------------------------------------ |
2757 |
|
|
! * PERFORMS THE VERTICAL INTEGRATION: |
2758 |
|
|
nuaer = nua |
2759 |
|
|
ntraer = ntra |
2760 |
|
|
CALL lwv_lmdar4(nuaer, ntraer, klim, pabcu, zb, pbint, pbsui, zbsur, zbtop, & |
2761 |
|
|
zdbsl, pemis, ppmb, ptave, zga, zgb, zgasur, zgbsur, zgatop, zgbtop, & |
2762 |
|
|
pcntrb, pcts, pfluc) |
2763 |
|
|
! ------------------------------------------------------------------ |
2764 |
|
|
RETURN |
2765 |
|
|
END SUBROUTINE lwbv_lmdar4 |
2766 |
|
|
SUBROUTINE lwc_lmdar4(klim, pcldld, pcldlu, pemis, pfluc, pbint, pbsuin, & |
2767 |
|
|
pcts, pcntrb, pflux) |
2768 |
|
|
USE dimphy |
2769 |
|
|
IMPLICIT NONE |
2770 |
|
|
include "radepsi.h" |
2771 |
|
|
include "radopt.h" |
2772 |
|
|
|
2773 |
|
|
! PURPOSE. |
2774 |
|
|
! -------- |
2775 |
|
|
! INTRODUCES CLOUD EFFECTS ON LONGWAVE FLUXES OR |
2776 |
|
|
! RADIANCES |
2777 |
|
|
|
2778 |
|
|
! EXPLICIT ARGUMENTS : |
2779 |
|
|
! -------------------- |
2780 |
|
|
! ==== INPUTS === |
2781 |
|
|
! PBINT : (KDLON,0:KFLEV) ; HALF LEVEL PLANCK FUNCTION |
2782 |
|
|
! PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
2783 |
|
|
! PCLDLD : (KDLON,KFLEV) ; DOWNWARD EFFECTIVE CLOUD FRACTION |
2784 |
|
|
! PCLDLU : (KDLON,KFLEV) ; UPWARD EFFECTIVE CLOUD FRACTION |
2785 |
|
|
! PCNTRB : (KDLON,KFLEV+1,KFLEV+1); CLEAR-SKY ENERGY EXCHANGE |
2786 |
|
|
! PCTS : (KDLON,KFLEV) ; CLEAR-SKY LAYER COOLING-TO-SPACE |
2787 |
|
|
! PEMIS : (KDLON) ; SURFACE EMISSIVITY |
2788 |
|
|
! PFLUC |
2789 |
|
|
! ==== OUTPUTS === |
2790 |
|
|
! PFLUX(KDLON,2,KFLEV) ; RADIATIVE FLUXES : |
2791 |
|
|
! 1 ==> UPWARD FLUX TOTAL |
2792 |
|
|
! 2 ==> DOWNWARD FLUX TOTAL |
2793 |
|
|
|
2794 |
|
|
! METHOD. |
2795 |
|
|
! ------- |
2796 |
|
|
|
2797 |
|
|
! 1. INITIALIZES ALL FLUXES TO CLEAR-SKY VALUES |
2798 |
|
|
! 2. EFFECT OF ONE OVERCAST UNITY EMISSIVITY CLOUD LAYER |
2799 |
|
|
! 3. EFFECT OF SEMI-TRANSPARENT, PARTIAL OR MULTI-LAYERED |
2800 |
|
|
! CLOUDS |
2801 |
|
|
|
2802 |
|
|
! REFERENCE. |
2803 |
|
|
! ---------- |
2804 |
|
|
|
2805 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
2806 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
2807 |
|
|
|
2808 |
|
|
! AUTHOR. |
2809 |
|
|
! ------- |
2810 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
2811 |
|
|
|
2812 |
|
|
! MODIFICATIONS. |
2813 |
|
|
! -------------- |
2814 |
|
|
! ORIGINAL : 89-07-14 |
2815 |
|
|
! Voigt lines (loop 231 to 233) - JJM & PhD - 01/96 |
2816 |
|
|
! ----------------------------------------------------------------------- |
2817 |
|
|
! * ARGUMENTS: |
2818 |
|
|
INTEGER klim |
2819 |
|
|
REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
2820 |
|
|
REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF LEVEL PLANCK FUNCTION |
2821 |
|
|
REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
2822 |
|
|
REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) !CLEAR-SKY ENERGY EXCHANGE |
2823 |
|
|
REAL (KIND=8) pcts(kdlon, kflev) ! CLEAR-SKY LAYER COOLING-TO-SPACE |
2824 |
|
|
|
2825 |
|
|
REAL (KIND=8) pcldld(kdlon, kflev) |
2826 |
|
|
REAL (KIND=8) pcldlu(kdlon, kflev) |
2827 |
|
|
REAL (KIND=8) pemis(kdlon) |
2828 |
|
|
|
2829 |
|
|
REAL (KIND=8) pflux(kdlon, 2, kflev+1) |
2830 |
|
|
! ----------------------------------------------------------------------- |
2831 |
|
|
! * LOCAL VARIABLES: |
2832 |
|
|
INTEGER imx(kdlon), imxp(kdlon) |
2833 |
|
|
|
2834 |
|
|
REAL (KIND=8) zclear(kdlon), zcloud(kdlon), zdnf(kdlon, kflev+1, kflev+1), & |
2835 |
|
|
zfd(kdlon), zfn10(kdlon), zfu(kdlon), zupf(kdlon, kflev+1, kflev+1) |
2836 |
|
|
REAL (KIND=8) zclm(kdlon, kflev+1, kflev+1) |
2837 |
|
|
|
2838 |
|
|
INTEGER jk, jl, imaxc, imx1, imx2, jkj, jkp1, jkm1 |
2839 |
|
|
INTEGER jk1, jk2, jkc, jkcp1, jcloud |
2840 |
|
|
INTEGER imxm1, imxp1 |
2841 |
|
|
REAL (KIND=8) zcfrac |
2842 |
|
|
|
2843 |
|
|
! ------------------------------------------------------------------ |
2844 |
|
|
|
2845 |
|
|
! * 1. INITIALIZATION |
2846 |
|
|
! -------------- |
2847 |
|
|
|
2848 |
|
|
|
2849 |
|
|
imaxc = 0 |
2850 |
|
|
|
2851 |
|
|
DO jl = 1, kdlon |
2852 |
|
|
imx(jl) = 0 |
2853 |
|
|
imxp(jl) = 0 |
2854 |
|
|
zcloud(jl) = 0. |
2855 |
|
|
END DO |
2856 |
|
|
|
2857 |
|
|
! * 1.1 SEARCH THE LAYER INDEX OF THE HIGHEST CLOUD |
2858 |
|
|
! ------------------------------------------- |
2859 |
|
|
|
2860 |
|
|
|
2861 |
|
|
DO jk = 1, kflev |
2862 |
|
|
DO jl = 1, kdlon |
2863 |
|
|
imx1 = imx(jl) |
2864 |
|
|
imx2 = jk |
2865 |
|
|
IF (pcldlu(jl,jk)>zepsc) THEN |
2866 |
|
|
imxp(jl) = imx2 |
2867 |
|
|
ELSE |
2868 |
|
|
imxp(jl) = imx1 |
2869 |
|
|
END IF |
2870 |
|
|
imaxc = max(imxp(jl), imaxc) |
2871 |
|
|
imx(jl) = imxp(jl) |
2872 |
|
|
END DO |
2873 |
|
|
END DO |
2874 |
|
|
! GM******* |
2875 |
|
|
imaxc = kflev |
2876 |
|
|
! GM******* |
2877 |
|
|
|
2878 |
|
|
DO jk = 1, kflev + 1 |
2879 |
|
|
DO jl = 1, kdlon |
2880 |
|
|
pflux(jl, 1, jk) = pfluc(jl, 1, jk) |
2881 |
|
|
pflux(jl, 2, jk) = pfluc(jl, 2, jk) |
2882 |
|
|
END DO |
2883 |
|
|
END DO |
2884 |
|
|
|
2885 |
|
|
! ------------------------------------------------------------------ |
2886 |
|
|
|
2887 |
|
|
! * 2. EFFECT OF CLOUDINESS ON LONGWAVE FLUXES |
2888 |
|
|
! --------------------------------------- |
2889 |
|
|
|
2890 |
|
|
IF (imaxc>0) THEN |
2891 |
|
|
|
2892 |
|
|
imxp1 = imaxc + 1 |
2893 |
|
|
imxm1 = imaxc - 1 |
2894 |
|
|
|
2895 |
|
|
! * 2.0 INITIALIZE TO CLEAR-SKY FLUXES |
2896 |
|
|
! ------------------------------ |
2897 |
|
|
|
2898 |
|
|
|
2899 |
|
|
DO jk1 = 1, kflev + 1 |
2900 |
|
|
DO jk2 = 1, kflev + 1 |
2901 |
|
|
DO jl = 1, kdlon |
2902 |
|
|
zupf(jl, jk2, jk1) = pfluc(jl, 1, jk1) |
2903 |
|
|
zdnf(jl, jk2, jk1) = pfluc(jl, 2, jk1) |
2904 |
|
|
END DO |
2905 |
|
|
END DO |
2906 |
|
|
END DO |
2907 |
|
|
|
2908 |
|
|
! * 2.1 FLUXES FOR ONE OVERCAST UNITY EMISSIVITY CLOUD |
2909 |
|
|
! ---------------------------------------------- |
2910 |
|
|
|
2911 |
|
|
|
2912 |
|
|
DO jkc = 1, imaxc |
2913 |
|
|
jcloud = jkc |
2914 |
|
|
jkcp1 = jcloud + 1 |
2915 |
|
|
|
2916 |
|
|
! * 2.1.1 ABOVE THE CLOUD |
2917 |
|
|
! --------------- |
2918 |
|
|
|
2919 |
|
|
|
2920 |
|
|
DO jk = jkcp1, kflev + 1 |
2921 |
|
|
jkm1 = jk - 1 |
2922 |
|
|
DO jl = 1, kdlon |
2923 |
|
|
zfu(jl) = 0. |
2924 |
|
|
END DO |
2925 |
|
|
IF (jk>jkcp1) THEN |
2926 |
|
|
DO jkj = jkcp1, jkm1 |
2927 |
|
|
DO jl = 1, kdlon |
2928 |
|
|
zfu(jl) = zfu(jl) + pcntrb(jl, jk, jkj) |
2929 |
|
|
END DO |
2930 |
|
|
END DO |
2931 |
|
|
END IF |
2932 |
|
|
|
2933 |
|
|
DO jl = 1, kdlon |
2934 |
|
|
zupf(jl, jkcp1, jk) = pbint(jl, jk) - zfu(jl) |
2935 |
|
|
END DO |
2936 |
|
|
END DO |
2937 |
|
|
|
2938 |
|
|
! * 2.1.2 BELOW THE CLOUD |
2939 |
|
|
! --------------- |
2940 |
|
|
|
2941 |
|
|
|
2942 |
|
|
DO jk = 1, jcloud |
2943 |
|
|
jkp1 = jk + 1 |
2944 |
|
|
DO jl = 1, kdlon |
2945 |
|
|
zfd(jl) = 0. |
2946 |
|
|
END DO |
2947 |
|
|
|
2948 |
|
|
IF (jk<jcloud) THEN |
2949 |
|
|
DO jkj = jkp1, jcloud |
2950 |
|
|
DO jl = 1, kdlon |
2951 |
|
|
zfd(jl) = zfd(jl) + pcntrb(jl, jk, jkj) |
2952 |
|
|
END DO |
2953 |
|
|
END DO |
2954 |
|
|
END IF |
2955 |
|
|
DO jl = 1, kdlon |
2956 |
|
|
zdnf(jl, jkcp1, jk) = -pbint(jl, jk) - zfd(jl) |
2957 |
|
|
END DO |
2958 |
|
|
END DO |
2959 |
|
|
|
2960 |
|
|
END DO |
2961 |
|
|
|
2962 |
|
|
! * 2.2 CLOUD COVER MATRIX |
2963 |
|
|
! ------------------ |
2964 |
|
|
|
2965 |
|
|
! * ZCLM(JK1,JK2) IS THE OBSCURATION FACTOR BY CLOUD LAYERS BETWEEN |
2966 |
|
|
! HALF-LEVELS JK1 AND JK2 AS SEEN FROM JK1 |
2967 |
|
|
|
2968 |
|
|
|
2969 |
|
|
DO jk1 = 1, kflev + 1 |
2970 |
|
|
DO jk2 = 1, kflev + 1 |
2971 |
|
|
DO jl = 1, kdlon |
2972 |
|
|
zclm(jl, jk1, jk2) = 0. |
2973 |
|
|
END DO |
2974 |
|
|
END DO |
2975 |
|
|
END DO |
2976 |
|
|
|
2977 |
|
|
! * 2.4 CLOUD COVER BELOW THE LEVEL OF CALCULATION |
2978 |
|
|
! ------------------------------------------ |
2979 |
|
|
|
2980 |
|
|
|
2981 |
|
|
DO jk1 = 2, kflev + 1 |
2982 |
|
|
DO jl = 1, kdlon |
2983 |
|
|
zclear(jl) = 1. |
2984 |
|
|
zcloud(jl) = 0. |
2985 |
|
|
END DO |
2986 |
|
|
DO jk = jk1 - 1, 1, -1 |
2987 |
|
|
DO jl = 1, kdlon |
2988 |
|
|
IF (novlp==1) THEN |
2989 |
|
|
! * maximum-random |
2990 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(pcldlu(jl, & |
2991 |
|
|
jk),zcloud(jl)))/(1.0-min(zcloud(jl),1.-zepsec)) |
2992 |
|
|
zclm(jl, jk1, jk) = 1.0 - zclear(jl) |
2993 |
|
|
zcloud(jl) = pcldlu(jl, jk) |
2994 |
|
|
ELSE IF (novlp==2) THEN |
2995 |
|
|
! * maximum |
2996 |
|
|
zcloud(jl) = max(zcloud(jl), pcldlu(jl,jk)) |
2997 |
|
|
zclm(jl, jk1, jk) = zcloud(jl) |
2998 |
|
|
ELSE IF (novlp==3) THEN |
2999 |
|
|
! * random |
3000 |
|
|
zclear(jl) = zclear(jl)*(1.0-pcldlu(jl,jk)) |
3001 |
|
|
zcloud(jl) = 1.0 - zclear(jl) |
3002 |
|
|
zclm(jl, jk1, jk) = zcloud(jl) |
3003 |
|
|
END IF |
3004 |
|
|
END DO |
3005 |
|
|
END DO |
3006 |
|
|
END DO |
3007 |
|
|
|
3008 |
|
|
! * 2.5 CLOUD COVER ABOVE THE LEVEL OF CALCULATION |
3009 |
|
|
! ------------------------------------------ |
3010 |
|
|
|
3011 |
|
|
|
3012 |
|
|
DO jk1 = 1, kflev |
3013 |
|
|
DO jl = 1, kdlon |
3014 |
|
|
zclear(jl) = 1. |
3015 |
|
|
zcloud(jl) = 0. |
3016 |
|
|
END DO |
3017 |
|
|
DO jk = jk1, kflev |
3018 |
|
|
DO jl = 1, kdlon |
3019 |
|
|
IF (novlp==1) THEN |
3020 |
|
|
! * maximum-random |
3021 |
|
|
zclear(jl) = zclear(jl)*(1.0-max(pcldld(jl, & |
3022 |
|
|
jk),zcloud(jl)))/(1.0-min(zcloud(jl),1.-zepsec)) |
3023 |
|
|
zclm(jl, jk1, jk) = 1.0 - zclear(jl) |
3024 |
|
|
zcloud(jl) = pcldld(jl, jk) |
3025 |
|
|
ELSE IF (novlp==2) THEN |
3026 |
|
|
! * maximum |
3027 |
|
|
zcloud(jl) = max(zcloud(jl), pcldld(jl,jk)) |
3028 |
|
|
zclm(jl, jk1, jk) = zcloud(jl) |
3029 |
|
|
ELSE IF (novlp==3) THEN |
3030 |
|
|
! * random |
3031 |
|
|
zclear(jl) = zclear(jl)*(1.0-pcldld(jl,jk)) |
3032 |
|
|
zcloud(jl) = 1.0 - zclear(jl) |
3033 |
|
|
zclm(jl, jk1, jk) = zcloud(jl) |
3034 |
|
|
END IF |
3035 |
|
|
END DO |
3036 |
|
|
END DO |
3037 |
|
|
END DO |
3038 |
|
|
|
3039 |
|
|
! * 3. FLUXES FOR PARTIAL/MULTIPLE LAYERED CLOUDINESS |
3040 |
|
|
! ---------------------------------------------- |
3041 |
|
|
|
3042 |
|
|
|
3043 |
|
|
! * 3.1 DOWNWARD FLUXES |
3044 |
|
|
! --------------- |
3045 |
|
|
|
3046 |
|
|
|
3047 |
|
|
DO jl = 1, kdlon |
3048 |
|
|
pflux(jl, 2, kflev+1) = 0. |
3049 |
|
|
END DO |
3050 |
|
|
|
3051 |
|
|
DO jk1 = kflev, 1, -1 |
3052 |
|
|
|
3053 |
|
|
! * CONTRIBUTION FROM CLEAR-SKY FRACTION |
3054 |
|
|
|
3055 |
|
|
DO jl = 1, kdlon |
3056 |
|
|
zfd(jl) = (1.-zclm(jl,jk1,kflev))*zdnf(jl, 1, jk1) |
3057 |
|
|
END DO |
3058 |
|
|
|
3059 |
|
|
! * CONTRIBUTION FROM ADJACENT CLOUD |
3060 |
|
|
|
3061 |
|
|
DO jl = 1, kdlon |
3062 |
|
|
zfd(jl) = zfd(jl) + zclm(jl, jk1, jk1)*zdnf(jl, jk1+1, jk1) |
3063 |
|
|
END DO |
3064 |
|
|
|
3065 |
|
|
! * CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
3066 |
|
|
|
3067 |
|
|
DO jk = kflev - 1, jk1, -1 |
3068 |
|
|
DO jl = 1, kdlon |
3069 |
|
|
zcfrac = zclm(jl, jk1, jk+1) - zclm(jl, jk1, jk) |
3070 |
|
|
zfd(jl) = zfd(jl) + zcfrac*zdnf(jl, jk+2, jk1) |
3071 |
|
|
END DO |
3072 |
|
|
END DO |
3073 |
|
|
|
3074 |
|
|
DO jl = 1, kdlon |
3075 |
|
|
pflux(jl, 2, jk1) = zfd(jl) |
3076 |
|
|
END DO |
3077 |
|
|
|
3078 |
|
|
END DO |
3079 |
|
|
|
3080 |
|
|
! * 3.2 UPWARD FLUX AT THE SURFACE |
3081 |
|
|
! -------------------------- |
3082 |
|
|
|
3083 |
|
|
|
3084 |
|
|
DO jl = 1, kdlon |
3085 |
|
|
pflux(jl, 1, 1) = pemis(jl)*pbsuin(jl) - (1.-pemis(jl))*pflux(jl, 2, 1) |
3086 |
|
|
END DO |
3087 |
|
|
|
3088 |
|
|
! * 3.3 UPWARD FLUXES |
3089 |
|
|
! ------------- |
3090 |
|
|
|
3091 |
|
|
|
3092 |
|
|
DO jk1 = 2, kflev + 1 |
3093 |
|
|
|
3094 |
|
|
! * CONTRIBUTION FROM CLEAR-SKY FRACTION |
3095 |
|
|
|
3096 |
|
|
DO jl = 1, kdlon |
3097 |
|
|
zfu(jl) = (1.-zclm(jl,jk1,1))*zupf(jl, 1, jk1) |
3098 |
|
|
END DO |
3099 |
|
|
|
3100 |
|
|
! * CONTRIBUTION FROM ADJACENT CLOUD |
3101 |
|
|
|
3102 |
|
|
DO jl = 1, kdlon |
3103 |
|
|
zfu(jl) = zfu(jl) + zclm(jl, jk1, jk1-1)*zupf(jl, jk1, jk1) |
3104 |
|
|
END DO |
3105 |
|
|
|
3106 |
|
|
! * CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
3107 |
|
|
|
3108 |
|
|
DO jk = 2, jk1 - 1 |
3109 |
|
|
DO jl = 1, kdlon |
3110 |
|
|
zcfrac = zclm(jl, jk1, jk-1) - zclm(jl, jk1, jk) |
3111 |
|
|
zfu(jl) = zfu(jl) + zcfrac*zupf(jl, jk, jk1) |
3112 |
|
|
END DO |
3113 |
|
|
END DO |
3114 |
|
|
|
3115 |
|
|
DO jl = 1, kdlon |
3116 |
|
|
pflux(jl, 1, jk1) = zfu(jl) |
3117 |
|
|
END DO |
3118 |
|
|
|
3119 |
|
|
END DO |
3120 |
|
|
|
3121 |
|
|
|
3122 |
|
|
END IF |
3123 |
|
|
|
3124 |
|
|
! * 2.3 END OF CLOUD EFFECT COMPUTATIONS |
3125 |
|
|
|
3126 |
|
|
|
3127 |
|
|
IF (.NOT. levoigt) THEN |
3128 |
|
|
DO jl = 1, kdlon |
3129 |
|
|
zfn10(jl) = pflux(jl, 1, klim) + pflux(jl, 2, klim) |
3130 |
|
|
END DO |
3131 |
|
|
DO jk = klim + 1, kflev + 1 |
3132 |
|
|
DO jl = 1, kdlon |
3133 |
|
|
zfn10(jl) = zfn10(jl) + pcts(jl, jk-1) |
3134 |
|
|
pflux(jl, 1, jk) = zfn10(jl) |
3135 |
|
|
pflux(jl, 2, jk) = 0.0 |
3136 |
|
|
END DO |
3137 |
|
|
END DO |
3138 |
|
|
END IF |
3139 |
|
|
|
3140 |
|
|
RETURN |
3141 |
|
|
END SUBROUTINE lwc_lmdar4 |
3142 |
|
|
SUBROUTINE lwb_lmdar4(pdt0, ptave, ptl, pb, pbint, pbsuin, pbsur, pbtop, & |
3143 |
|
|
pdbsl, pga, pgb, pgasur, pgbsur, pgatop, pgbtop) |
3144 |
|
|
USE dimphy |
3145 |
|
|
USE radiation_ar4_param, ONLY: tintp, xp, ga, gb |
3146 |
|
|
IMPLICIT NONE |
3147 |
|
|
include "raddimlw.h" |
3148 |
|
|
|
3149 |
|
|
! ----------------------------------------------------------------------- |
3150 |
|
|
! PURPOSE. |
3151 |
|
|
! -------- |
3152 |
|
|
! COMPUTES PLANCK FUNCTIONS |
3153 |
|
|
|
3154 |
|
|
! EXPLICIT ARGUMENTS : |
3155 |
|
|
! -------------------- |
3156 |
|
|
! ==== INPUTS === |
3157 |
|
|
! PDT0 : (KDLON) ; SURFACE TEMPERATURE DISCONTINUITY |
3158 |
|
|
! PTAVE : (KDLON,KFLEV) ; TEMPERATURE |
3159 |
|
|
! PTL : (KDLON,0:KFLEV) ; HALF LEVEL TEMPERATURE |
3160 |
|
|
! ==== OUTPUTS === |
3161 |
|
|
! PB : (KDLON,Ninter,KFLEV+1); SPECTRAL HALF LEVEL PLANCK FUNCTION |
3162 |
|
|
! PBINT : (KDLON,KFLEV+1) ; HALF LEVEL PLANCK FUNCTION |
3163 |
|
|
! PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
3164 |
|
|
! PBSUR : (KDLON,Ninter) ; SURFACE SPECTRAL PLANCK FUNCTION |
3165 |
|
|
! PBTOP : (KDLON,Ninter) ; TOP SPECTRAL PLANCK FUNCTION |
3166 |
|
|
! PDBSL : (KDLON,Ninter,KFLEV*2); SUB-LAYER PLANCK FUNCTION GRADIENT |
3167 |
|
|
! PGA : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
3168 |
|
|
! PGB : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
3169 |
|
|
! PGASUR, PGBSUR (KDLON,8,2) ; SURFACE PADE APPROXIMANTS |
3170 |
|
|
! PGATOP, PGBTOP (KDLON,8,2) ; T.O.A. PADE APPROXIMANTS |
3171 |
|
|
|
3172 |
|
|
! IMPLICIT ARGUMENTS : NONE |
3173 |
|
|
! -------------------- |
3174 |
|
|
|
3175 |
|
|
! METHOD. |
3176 |
|
|
! ------- |
3177 |
|
|
|
3178 |
|
|
! 1. COMPUTES THE PLANCK FUNCTION ON ALL LEVELS AND HALF LEVELS |
3179 |
|
|
! FROM A POLYNOMIAL DEVELOPMENT OF PLANCK FUNCTION |
3180 |
|
|
|
3181 |
|
|
! REFERENCE. |
3182 |
|
|
! ---------- |
3183 |
|
|
|
3184 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
3185 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS " |
3186 |
|
|
|
3187 |
|
|
! AUTHOR. |
3188 |
|
|
! ------- |
3189 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
3190 |
|
|
|
3191 |
|
|
! MODIFICATIONS. |
3192 |
|
|
! -------------- |
3193 |
|
|
! ORIGINAL : 89-07-14 |
3194 |
|
|
|
3195 |
|
|
! ----------------------------------------------------------------------- |
3196 |
|
|
|
3197 |
|
|
! ARGUMENTS: |
3198 |
|
|
|
3199 |
|
|
REAL (KIND=8) pdt0(kdlon) |
3200 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) |
3201 |
|
|
REAL (KIND=8) ptl(kdlon, kflev+1) |
3202 |
|
|
|
3203 |
|
|
REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF LEVEL PLANCK FUNCTION |
3204 |
|
|
REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF LEVEL PLANCK FUNCTION |
3205 |
|
|
REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
3206 |
|
|
REAL (KIND=8) pbsur(kdlon, ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
3207 |
|
|
REAL (KIND=8) pbtop(kdlon, ninter) ! TOP SPECTRAL PLANCK FUNCTION |
3208 |
|
|
REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
3209 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
3210 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
3211 |
|
|
REAL (KIND=8) pgasur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
3212 |
|
|
REAL (KIND=8) pgbsur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
3213 |
|
|
REAL (KIND=8) pgatop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
3214 |
|
|
REAL (KIND=8) pgbtop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
3215 |
|
|
|
3216 |
|
|
! ------------------------------------------------------------------------- |
3217 |
|
|
! * LOCAL VARIABLES: |
3218 |
|
|
INTEGER indb(kdlon), inds(kdlon) |
3219 |
|
|
REAL (KIND=8) zblay(kdlon, kflev), zblev(kdlon, kflev+1) |
3220 |
|
|
REAL (KIND=8) zres(kdlon), zres2(kdlon), zti(kdlon), zti2(kdlon) |
3221 |
|
|
|
3222 |
|
|
INTEGER jk, jl, ic, jnu, jf, jg |
3223 |
|
|
INTEGER jk1, jk2 |
3224 |
|
|
INTEGER k, j, ixtox, indto, ixtx, indt |
3225 |
|
|
INTEGER indsu, indtp |
3226 |
|
|
REAL (KIND=8) zdsto1, zdstox, zdst1, zdstx |
3227 |
|
|
|
3228 |
|
|
! * Quelques parametres: |
3229 |
|
|
REAL (KIND=8) tstand |
3230 |
|
|
PARAMETER (tstand=250.0) |
3231 |
|
|
REAL (KIND=8) tstp |
3232 |
|
|
PARAMETER (tstp=12.5) |
3233 |
|
|
INTEGER mxixt |
3234 |
|
|
PARAMETER (mxixt=10) |
3235 |
|
|
|
3236 |
|
|
! * Used Data Block: |
3237 |
|
|
! REAL*8 TINTP(11) |
3238 |
|
|
! SAVE TINTP |
3239 |
|
|
! c$OMP THREADPRIVATE(TINTP) |
3240 |
|
|
! REAL*8 GA(11,16,3), GB(11,16,3) |
3241 |
|
|
! SAVE GA, GB |
3242 |
|
|
! c$OMP THREADPRIVATE(GA, GB) |
3243 |
|
|
! REAL*8 XP(6,6) |
3244 |
|
|
! SAVE XP |
3245 |
|
|
! c$OMP THREADPRIVATE(XP) |
3246 |
|
|
|
3247 |
|
|
! DATA TINTP / 187.5, 200., 212.5, 225., 237.5, 250., |
3248 |
|
|
! S 262.5, 275., 287.5, 300., 312.5 / |
3249 |
|
|
! ----------------------------------------------------------------------- |
3250 |
|
|
! -- WATER VAPOR -- INT.1 -- 0- 500 CM-1 -- FROM ABS225 ---------------- |
3251 |
|
|
|
3252 |
|
|
|
3253 |
|
|
|
3254 |
|
|
|
3255 |
|
|
! -- R.D. -- G = - 0.2 SLA |
3256 |
|
|
|
3257 |
|
|
|
3258 |
|
|
! ----- INTERVAL = 1 ----- T = 187.5 |
3259 |
|
|
|
3260 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
3261 |
|
|
! DATA (GA( 1, 1,IC),IC=1,3) / |
3262 |
|
|
! S 0.63499072E-02,-0.99506586E-03, 0.00000000E+00/ |
3263 |
|
|
! DATA (GB( 1, 1,IC),IC=1,3) / |
3264 |
|
|
! S 0.63499072E-02, 0.97222852E-01, 0.10000000E+01/ |
3265 |
|
|
! DATA (GA( 1, 2,IC),IC=1,3) / |
3266 |
|
|
! S 0.77266491E-02,-0.11661515E-02, 0.00000000E+00/ |
3267 |
|
|
! DATA (GB( 1, 2,IC),IC=1,3) / |
3268 |
|
|
! S 0.77266491E-02, 0.10681591E+00, 0.10000000E+01/ |
3269 |
|
|
|
3270 |
|
|
! ----- INTERVAL = 1 ----- T = 200.0 |
3271 |
|
|
|
3272 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
3273 |
|
|
! DATA (GA( 2, 1,IC),IC=1,3) / |
3274 |
|
|
! S 0.65566348E-02,-0.10184169E-02, 0.00000000E+00/ |
3275 |
|
|
! DATA (GB( 2, 1,IC),IC=1,3) / |
3276 |
|
|
! S 0.65566348E-02, 0.98862238E-01, 0.10000000E+01/ |
3277 |
|
|
! DATA (GA( 2, 2,IC),IC=1,3) / |
3278 |
|
|
! S 0.81323287E-02,-0.11886130E-02, 0.00000000E+00/ |
3279 |
|
|
! DATA (GB( 2, 2,IC),IC=1,3) / |
3280 |
|
|
! S 0.81323287E-02, 0.10921298E+00, 0.10000000E+01/ |
3281 |
|
|
|
3282 |
|
|
! ----- INTERVAL = 1 ----- T = 212.5 |
3283 |
|
|
|
3284 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
3285 |
|
|
! DATA (GA( 3, 1,IC),IC=1,3) / |
3286 |
|
|
! S 0.67849730E-02,-0.10404730E-02, 0.00000000E+00/ |
3287 |
|
|
! DATA (GB( 3, 1,IC),IC=1,3) / |
3288 |
|
|
! S 0.67849730E-02, 0.10061504E+00, 0.10000000E+01/ |
3289 |
|
|
! DATA (GA( 3, 2,IC),IC=1,3) / |
3290 |
|
|
! S 0.86507620E-02,-0.12139929E-02, 0.00000000E+00/ |
3291 |
|
|
! DATA (GB( 3, 2,IC),IC=1,3) / |
3292 |
|
|
! S 0.86507620E-02, 0.11198225E+00, 0.10000000E+01/ |
3293 |
|
|
|
3294 |
|
|
! ----- INTERVAL = 1 ----- T = 225.0 |
3295 |
|
|
|
3296 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
3297 |
|
|
! DATA (GA( 4, 1,IC),IC=1,3) / |
3298 |
|
|
! S 0.70481947E-02,-0.10621792E-02, 0.00000000E+00/ |
3299 |
|
|
! DATA (GB( 4, 1,IC),IC=1,3) / |
3300 |
|
|
! S 0.70481947E-02, 0.10256222E+00, 0.10000000E+01/ |
3301 |
|
|
! DATA (GA( 4, 2,IC),IC=1,3) / |
3302 |
|
|
! S 0.92776391E-02,-0.12445811E-02, 0.00000000E+00/ |
3303 |
|
|
! DATA (GB( 4, 2,IC),IC=1,3) / |
3304 |
|
|
! S 0.92776391E-02, 0.11487826E+00, 0.10000000E+01/ |
3305 |
|
|
|
3306 |
|
|
! ----- INTERVAL = 1 ----- T = 237.5 |
3307 |
|
|
|
3308 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
3309 |
|
|
! DATA (GA( 5, 1,IC),IC=1,3) / |
3310 |
|
|
! S 0.73585943E-02,-0.10847662E-02, 0.00000000E+00/ |
3311 |
|
|
! DATA (GB( 5, 1,IC),IC=1,3) / |
3312 |
|
|
! S 0.73585943E-02, 0.10475952E+00, 0.10000000E+01/ |
3313 |
|
|
! DATA (GA( 5, 2,IC),IC=1,3) / |
3314 |
|
|
! S 0.99806312E-02,-0.12807672E-02, 0.00000000E+00/ |
3315 |
|
|
! DATA (GB( 5, 2,IC),IC=1,3) / |
3316 |
|
|
! S 0.99806312E-02, 0.11751113E+00, 0.10000000E+01/ |
3317 |
|
|
|
3318 |
|
|
! ----- INTERVAL = 1 ----- T = 250.0 |
3319 |
|
|
|
3320 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
3321 |
|
|
! DATA (GA( 6, 1,IC),IC=1,3) / |
3322 |
|
|
! S 0.77242818E-02,-0.11094726E-02, 0.00000000E+00/ |
3323 |
|
|
! DATA (GB( 6, 1,IC),IC=1,3) / |
3324 |
|
|
! S 0.77242818E-02, 0.10720986E+00, 0.10000000E+01/ |
3325 |
|
|
! DATA (GA( 6, 2,IC),IC=1,3) / |
3326 |
|
|
! S 0.10709803E-01,-0.13208251E-02, 0.00000000E+00/ |
3327 |
|
|
! DATA (GB( 6, 2,IC),IC=1,3) / |
3328 |
|
|
! S 0.10709803E-01, 0.11951535E+00, 0.10000000E+01/ |
3329 |
|
|
|
3330 |
|
|
! ----- INTERVAL = 1 ----- T = 262.5 |
3331 |
|
|
|
3332 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
3333 |
|
|
! DATA (GA( 7, 1,IC),IC=1,3) / |
3334 |
|
|
! S 0.81472693E-02,-0.11372949E-02, 0.00000000E+00/ |
3335 |
|
|
! DATA (GB( 7, 1,IC),IC=1,3) / |
3336 |
|
|
! S 0.81472693E-02, 0.10985370E+00, 0.10000000E+01/ |
3337 |
|
|
! DATA (GA( 7, 2,IC),IC=1,3) / |
3338 |
|
|
! S 0.11414739E-01,-0.13619034E-02, 0.00000000E+00/ |
3339 |
|
|
! DATA (GB( 7, 2,IC),IC=1,3) / |
3340 |
|
|
! S 0.11414739E-01, 0.12069945E+00, 0.10000000E+01/ |
3341 |
|
|
|
3342 |
|
|
! ----- INTERVAL = 1 ----- T = 275.0 |
3343 |
|
|
|
3344 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
3345 |
|
|
! DATA (GA( 8, 1,IC),IC=1,3) / |
3346 |
|
|
! S 0.86227527E-02,-0.11687683E-02, 0.00000000E+00/ |
3347 |
|
|
! DATA (GB( 8, 1,IC),IC=1,3) / |
3348 |
|
|
! S 0.86227527E-02, 0.11257633E+00, 0.10000000E+01/ |
3349 |
|
|
! DATA (GA( 8, 2,IC),IC=1,3) / |
3350 |
|
|
! S 0.12058772E-01,-0.14014165E-02, 0.00000000E+00/ |
3351 |
|
|
! DATA (GB( 8, 2,IC),IC=1,3) / |
3352 |
|
|
! S 0.12058772E-01, 0.12108524E+00, 0.10000000E+01/ |
3353 |
|
|
|
3354 |
|
|
! ----- INTERVAL = 1 ----- T = 287.5 |
3355 |
|
|
|
3356 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
3357 |
|
|
! DATA (GA( 9, 1,IC),IC=1,3) / |
3358 |
|
|
! S 0.91396814E-02,-0.12038314E-02, 0.00000000E+00/ |
3359 |
|
|
! DATA (GB( 9, 1,IC),IC=1,3) / |
3360 |
|
|
! S 0.91396814E-02, 0.11522980E+00, 0.10000000E+01/ |
3361 |
|
|
! DATA (GA( 9, 2,IC),IC=1,3) / |
3362 |
|
|
! S 0.12623992E-01,-0.14378639E-02, 0.00000000E+00/ |
3363 |
|
|
! DATA (GB( 9, 2,IC),IC=1,3) / |
3364 |
|
|
! S 0.12623992E-01, 0.12084229E+00, 0.10000000E+01/ |
3365 |
|
|
|
3366 |
|
|
! ----- INTERVAL = 1 ----- T = 300.0 |
3367 |
|
|
|
3368 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
3369 |
|
|
! DATA (GA(10, 1,IC),IC=1,3) / |
3370 |
|
|
! S 0.96825438E-02,-0.12418367E-02, 0.00000000E+00/ |
3371 |
|
|
! DATA (GB(10, 1,IC),IC=1,3) / |
3372 |
|
|
! S 0.96825438E-02, 0.11766343E+00, 0.10000000E+01/ |
3373 |
|
|
! DATA (GA(10, 2,IC),IC=1,3) / |
3374 |
|
|
! S 0.13108146E-01,-0.14708488E-02, 0.00000000E+00/ |
3375 |
|
|
! DATA (GB(10, 2,IC),IC=1,3) / |
3376 |
|
|
! S 0.13108146E-01, 0.12019005E+00, 0.10000000E+01/ |
3377 |
|
|
|
3378 |
|
|
! ----- INTERVAL = 1 ----- T = 312.5 |
3379 |
|
|
|
3380 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
3381 |
|
|
! DATA (GA(11, 1,IC),IC=1,3) / |
3382 |
|
|
! S 0.10233955E-01,-0.12817135E-02, 0.00000000E+00/ |
3383 |
|
|
! DATA (GB(11, 1,IC),IC=1,3) / |
3384 |
|
|
! S 0.10233955E-01, 0.11975320E+00, 0.10000000E+01/ |
3385 |
|
|
! DATA (GA(11, 2,IC),IC=1,3) / |
3386 |
|
|
! S 0.13518390E-01,-0.15006791E-02, 0.00000000E+00/ |
3387 |
|
|
! DATA (GB(11, 2,IC),IC=1,3) / |
3388 |
|
|
! S 0.13518390E-01, 0.11932684E+00, 0.10000000E+01/ |
3389 |
|
|
|
3390 |
|
|
|
3391 |
|
|
|
3392 |
|
|
! --- WATER VAPOR --- INTERVAL 2 -- 500-800 CM-1--- FROM ABS225 --------- |
3393 |
|
|
|
3394 |
|
|
|
3395 |
|
|
|
3396 |
|
|
|
3397 |
|
|
! --- R.D. --- G = 0.02 + 0.50 / ( 1 + 4.5 U ) |
3398 |
|
|
|
3399 |
|
|
|
3400 |
|
|
! ----- INTERVAL = 2 ----- T = 187.5 |
3401 |
|
|
|
3402 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3403 |
|
|
! DATA (GA( 1, 3,IC),IC=1,3) / |
3404 |
|
|
! S 0.11644593E+01, 0.41243390E+00, 0.00000000E+00/ |
3405 |
|
|
! DATA (GB( 1, 3,IC),IC=1,3) / |
3406 |
|
|
! S 0.11644593E+01, 0.10346097E+01, 0.10000000E+01/ |
3407 |
|
|
! DATA (GA( 1, 4,IC),IC=1,3) / |
3408 |
|
|
! S 0.12006968E+01, 0.48318936E+00, 0.00000000E+00/ |
3409 |
|
|
! DATA (GB( 1, 4,IC),IC=1,3) / |
3410 |
|
|
! S 0.12006968E+01, 0.10626130E+01, 0.10000000E+01/ |
3411 |
|
|
|
3412 |
|
|
! ----- INTERVAL = 2 ----- T = 200.0 |
3413 |
|
|
|
3414 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3415 |
|
|
! DATA (GA( 2, 3,IC),IC=1,3) / |
3416 |
|
|
! S 0.11747203E+01, 0.43407282E+00, 0.00000000E+00/ |
3417 |
|
|
! DATA (GB( 2, 3,IC),IC=1,3) / |
3418 |
|
|
! S 0.11747203E+01, 0.10433655E+01, 0.10000000E+01/ |
3419 |
|
|
! DATA (GA( 2, 4,IC),IC=1,3) / |
3420 |
|
|
! S 0.12108196E+01, 0.50501827E+00, 0.00000000E+00/ |
3421 |
|
|
! DATA (GB( 2, 4,IC),IC=1,3) / |
3422 |
|
|
! S 0.12108196E+01, 0.10716026E+01, 0.10000000E+01/ |
3423 |
|
|
|
3424 |
|
|
! ----- INTERVAL = 2 ----- T = 212.5 |
3425 |
|
|
|
3426 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3427 |
|
|
! DATA (GA( 3, 3,IC),IC=1,3) / |
3428 |
|
|
! S 0.11837872E+01, 0.45331413E+00, 0.00000000E+00/ |
3429 |
|
|
! DATA (GB( 3, 3,IC),IC=1,3) / |
3430 |
|
|
! S 0.11837872E+01, 0.10511933E+01, 0.10000000E+01/ |
3431 |
|
|
! DATA (GA( 3, 4,IC),IC=1,3) / |
3432 |
|
|
! S 0.12196717E+01, 0.52409502E+00, 0.00000000E+00/ |
3433 |
|
|
! DATA (GB( 3, 4,IC),IC=1,3) / |
3434 |
|
|
! S 0.12196717E+01, 0.10795108E+01, 0.10000000E+01/ |
3435 |
|
|
|
3436 |
|
|
! ----- INTERVAL = 2 ----- T = 225.0 |
3437 |
|
|
|
3438 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3439 |
|
|
! DATA (GA( 4, 3,IC),IC=1,3) / |
3440 |
|
|
! S 0.11918561E+01, 0.47048604E+00, 0.00000000E+00/ |
3441 |
|
|
! DATA (GB( 4, 3,IC),IC=1,3) / |
3442 |
|
|
! S 0.11918561E+01, 0.10582150E+01, 0.10000000E+01/ |
3443 |
|
|
! DATA (GA( 4, 4,IC),IC=1,3) / |
3444 |
|
|
! S 0.12274493E+01, 0.54085277E+00, 0.00000000E+00/ |
3445 |
|
|
! DATA (GB( 4, 4,IC),IC=1,3) / |
3446 |
|
|
! S 0.12274493E+01, 0.10865006E+01, 0.10000000E+01/ |
3447 |
|
|
|
3448 |
|
|
! ----- INTERVAL = 2 ----- T = 237.5 |
3449 |
|
|
|
3450 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3451 |
|
|
! DATA (GA( 5, 3,IC),IC=1,3) / |
3452 |
|
|
! S 0.11990757E+01, 0.48586286E+00, 0.00000000E+00/ |
3453 |
|
|
! DATA (GB( 5, 3,IC),IC=1,3) / |
3454 |
|
|
! S 0.11990757E+01, 0.10645317E+01, 0.10000000E+01/ |
3455 |
|
|
! DATA (GA( 5, 4,IC),IC=1,3) / |
3456 |
|
|
! S 0.12343189E+01, 0.55565422E+00, 0.00000000E+00/ |
3457 |
|
|
! DATA (GB( 5, 4,IC),IC=1,3) / |
3458 |
|
|
! S 0.12343189E+01, 0.10927103E+01, 0.10000000E+01/ |
3459 |
|
|
|
3460 |
|
|
! ----- INTERVAL = 2 ----- T = 250.0 |
3461 |
|
|
|
3462 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3463 |
|
|
! DATA (GA( 6, 3,IC),IC=1,3) / |
3464 |
|
|
! S 0.12055643E+01, 0.49968044E+00, 0.00000000E+00/ |
3465 |
|
|
! DATA (GB( 6, 3,IC),IC=1,3) / |
3466 |
|
|
! S 0.12055643E+01, 0.10702313E+01, 0.10000000E+01/ |
3467 |
|
|
! DATA (GA( 6, 4,IC),IC=1,3) / |
3468 |
|
|
! S 0.12404147E+01, 0.56878618E+00, 0.00000000E+00/ |
3469 |
|
|
! DATA (GB( 6, 4,IC),IC=1,3) / |
3470 |
|
|
! S 0.12404147E+01, 0.10982489E+01, 0.10000000E+01/ |
3471 |
|
|
|
3472 |
|
|
! ----- INTERVAL = 2 ----- T = 262.5 |
3473 |
|
|
|
3474 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3475 |
|
|
! DATA (GA( 7, 3,IC),IC=1,3) / |
3476 |
|
|
! S 0.12114186E+01, 0.51214132E+00, 0.00000000E+00/ |
3477 |
|
|
! DATA (GB( 7, 3,IC),IC=1,3) / |
3478 |
|
|
! S 0.12114186E+01, 0.10753907E+01, 0.10000000E+01/ |
3479 |
|
|
! DATA (GA( 7, 4,IC),IC=1,3) / |
3480 |
|
|
! S 0.12458431E+01, 0.58047395E+00, 0.00000000E+00/ |
3481 |
|
|
! DATA (GB( 7, 4,IC),IC=1,3) / |
3482 |
|
|
! S 0.12458431E+01, 0.11032019E+01, 0.10000000E+01/ |
3483 |
|
|
|
3484 |
|
|
! ----- INTERVAL = 2 ----- T = 275.0 |
3485 |
|
|
|
3486 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3487 |
|
|
! DATA (GA( 8, 3,IC),IC=1,3) / |
3488 |
|
|
! S 0.12167192E+01, 0.52341830E+00, 0.00000000E+00/ |
3489 |
|
|
! DATA (GB( 8, 3,IC),IC=1,3) / |
3490 |
|
|
! S 0.12167192E+01, 0.10800762E+01, 0.10000000E+01/ |
3491 |
|
|
! DATA (GA( 8, 4,IC),IC=1,3) / |
3492 |
|
|
! S 0.12506907E+01, 0.59089894E+00, 0.00000000E+00/ |
3493 |
|
|
! DATA (GB( 8, 4,IC),IC=1,3) / |
3494 |
|
|
! S 0.12506907E+01, 0.11076379E+01, 0.10000000E+01/ |
3495 |
|
|
|
3496 |
|
|
! ----- INTERVAL = 2 ----- T = 287.5 |
3497 |
|
|
|
3498 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3499 |
|
|
! DATA (GA( 9, 3,IC),IC=1,3) / |
3500 |
|
|
! S 0.12215344E+01, 0.53365803E+00, 0.00000000E+00/ |
3501 |
|
|
! DATA (GB( 9, 3,IC),IC=1,3) / |
3502 |
|
|
! S 0.12215344E+01, 0.10843446E+01, 0.10000000E+01/ |
3503 |
|
|
! DATA (GA( 9, 4,IC),IC=1,3) / |
3504 |
|
|
! S 0.12550299E+01, 0.60021475E+00, 0.00000000E+00/ |
3505 |
|
|
! DATA (GB( 9, 4,IC),IC=1,3) / |
3506 |
|
|
! S 0.12550299E+01, 0.11116160E+01, 0.10000000E+01/ |
3507 |
|
|
|
3508 |
|
|
! ----- INTERVAL = 2 ----- T = 300.0 |
3509 |
|
|
|
3510 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3511 |
|
|
! DATA (GA(10, 3,IC),IC=1,3) / |
3512 |
|
|
! S 0.12259226E+01, 0.54298448E+00, 0.00000000E+00/ |
3513 |
|
|
! DATA (GB(10, 3,IC),IC=1,3) / |
3514 |
|
|
! S 0.12259226E+01, 0.10882439E+01, 0.10000000E+01/ |
3515 |
|
|
! DATA (GA(10, 4,IC),IC=1,3) / |
3516 |
|
|
! S 0.12589256E+01, 0.60856112E+00, 0.00000000E+00/ |
3517 |
|
|
! DATA (GB(10, 4,IC),IC=1,3) / |
3518 |
|
|
! S 0.12589256E+01, 0.11151910E+01, 0.10000000E+01/ |
3519 |
|
|
|
3520 |
|
|
! ----- INTERVAL = 2 ----- T = 312.5 |
3521 |
|
|
|
3522 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3523 |
|
|
! DATA (GA(11, 3,IC),IC=1,3) / |
3524 |
|
|
! S 0.12299344E+01, 0.55150227E+00, 0.00000000E+00/ |
3525 |
|
|
! DATA (GB(11, 3,IC),IC=1,3) / |
3526 |
|
|
! S 0.12299344E+01, 0.10918144E+01, 0.10000000E+01/ |
3527 |
|
|
! DATA (GA(11, 4,IC),IC=1,3) / |
3528 |
|
|
! S 0.12624402E+01, 0.61607594E+00, 0.00000000E+00/ |
3529 |
|
|
! DATA (GB(11, 4,IC),IC=1,3) / |
3530 |
|
|
! S 0.12624402E+01, 0.11184188E+01, 0.10000000E+01/ |
3531 |
|
|
|
3532 |
|
|
|
3533 |
|
|
|
3534 |
|
|
|
3535 |
|
|
|
3536 |
|
|
|
3537 |
|
|
! - WATER VAPOR - INT. 3 -- 800-970 + 1110-1250 CM-1 -- FIT FROM 215 IS - |
3538 |
|
|
|
3539 |
|
|
|
3540 |
|
|
! -- WATER VAPOR LINES IN THE WINDOW REGION (800-1250 CM-1) |
3541 |
|
|
|
3542 |
|
|
|
3543 |
|
|
|
3544 |
|
|
! --- G = 3.875E-03 --------------- |
3545 |
|
|
|
3546 |
|
|
! ----- INTERVAL = 3 ----- T = 187.5 |
3547 |
|
|
|
3548 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3549 |
|
|
! DATA (GA( 1, 7,IC),IC=1,3) / |
3550 |
|
|
! S 0.10192131E+02, 0.80737799E+01, 0.00000000E+00/ |
3551 |
|
|
! DATA (GB( 1, 7,IC),IC=1,3) / |
3552 |
|
|
! S 0.10192131E+02, 0.82623280E+01, 0.10000000E+01/ |
3553 |
|
|
! DATA (GA( 1, 8,IC),IC=1,3) / |
3554 |
|
|
! S 0.92439050E+01, 0.77425778E+01, 0.00000000E+00/ |
3555 |
|
|
! DATA (GB( 1, 8,IC),IC=1,3) / |
3556 |
|
|
! S 0.92439050E+01, 0.79342219E+01, 0.10000000E+01/ |
3557 |
|
|
|
3558 |
|
|
! ----- INTERVAL = 3 ----- T = 200.0 |
3559 |
|
|
|
3560 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3561 |
|
|
! DATA (GA( 2, 7,IC),IC=1,3) / |
3562 |
|
|
! S 0.97258602E+01, 0.79171158E+01, 0.00000000E+00/ |
3563 |
|
|
! DATA (GB( 2, 7,IC),IC=1,3) / |
3564 |
|
|
! S 0.97258602E+01, 0.81072291E+01, 0.10000000E+01/ |
3565 |
|
|
! DATA (GA( 2, 8,IC),IC=1,3) / |
3566 |
|
|
! S 0.87567422E+01, 0.75443460E+01, 0.00000000E+00/ |
3567 |
|
|
! DATA (GB( 2, 8,IC),IC=1,3) / |
3568 |
|
|
! S 0.87567422E+01, 0.77373458E+01, 0.10000000E+01/ |
3569 |
|
|
|
3570 |
|
|
! ----- INTERVAL = 3 ----- T = 212.5 |
3571 |
|
|
|
3572 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3573 |
|
|
! DATA (GA( 3, 7,IC),IC=1,3) / |
3574 |
|
|
! S 0.92992890E+01, 0.77609605E+01, 0.00000000E+00/ |
3575 |
|
|
! DATA (GB( 3, 7,IC),IC=1,3) / |
3576 |
|
|
! S 0.92992890E+01, 0.79523834E+01, 0.10000000E+01/ |
3577 |
|
|
! DATA (GA( 3, 8,IC),IC=1,3) / |
3578 |
|
|
! S 0.83270144E+01, 0.73526151E+01, 0.00000000E+00/ |
3579 |
|
|
! DATA (GB( 3, 8,IC),IC=1,3) / |
3580 |
|
|
! S 0.83270144E+01, 0.75467334E+01, 0.10000000E+01/ |
3581 |
|
|
|
3582 |
|
|
! ----- INTERVAL = 3 ----- T = 225.0 |
3583 |
|
|
|
3584 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3585 |
|
|
! DATA (GA( 4, 7,IC),IC=1,3) / |
3586 |
|
|
! S 0.89154021E+01, 0.76087371E+01, 0.00000000E+00/ |
3587 |
|
|
! DATA (GB( 4, 7,IC),IC=1,3) / |
3588 |
|
|
! S 0.89154021E+01, 0.78012527E+01, 0.10000000E+01/ |
3589 |
|
|
! DATA (GA( 4, 8,IC),IC=1,3) / |
3590 |
|
|
! S 0.79528337E+01, 0.71711188E+01, 0.00000000E+00/ |
3591 |
|
|
! DATA (GB( 4, 8,IC),IC=1,3) / |
3592 |
|
|
! S 0.79528337E+01, 0.73661786E+01, 0.10000000E+01/ |
3593 |
|
|
|
3594 |
|
|
! ----- INTERVAL = 3 ----- T = 237.5 |
3595 |
|
|
|
3596 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3597 |
|
|
! DATA (GA( 5, 7,IC),IC=1,3) / |
3598 |
|
|
! S 0.85730084E+01, 0.74627112E+01, 0.00000000E+00/ |
3599 |
|
|
! DATA (GB( 5, 7,IC),IC=1,3) / |
3600 |
|
|
! S 0.85730084E+01, 0.76561458E+01, 0.10000000E+01/ |
3601 |
|
|
! DATA (GA( 5, 8,IC),IC=1,3) / |
3602 |
|
|
! S 0.76286839E+01, 0.70015571E+01, 0.00000000E+00/ |
3603 |
|
|
! DATA (GB( 5, 8,IC),IC=1,3) / |
3604 |
|
|
! S 0.76286839E+01, 0.71974319E+01, 0.10000000E+01/ |
3605 |
|
|
|
3606 |
|
|
! ----- INTERVAL = 3 ----- T = 250.0 |
3607 |
|
|
|
3608 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3609 |
|
|
! DATA (GA( 6, 7,IC),IC=1,3) / |
3610 |
|
|
! S 0.82685838E+01, 0.73239981E+01, 0.00000000E+00/ |
3611 |
|
|
! DATA (GB( 6, 7,IC),IC=1,3) / |
3612 |
|
|
! S 0.82685838E+01, 0.75182174E+01, 0.10000000E+01/ |
3613 |
|
|
! DATA (GA( 6, 8,IC),IC=1,3) / |
3614 |
|
|
! S 0.73477879E+01, 0.68442532E+01, 0.00000000E+00/ |
3615 |
|
|
! DATA (GB( 6, 8,IC),IC=1,3) / |
3616 |
|
|
! S 0.73477879E+01, 0.70408543E+01, 0.10000000E+01/ |
3617 |
|
|
|
3618 |
|
|
! ----- INTERVAL = 3 ----- T = 262.5 |
3619 |
|
|
|
3620 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3621 |
|
|
! DATA (GA( 7, 7,IC),IC=1,3) / |
3622 |
|
|
! S 0.79978921E+01, 0.71929934E+01, 0.00000000E+00/ |
3623 |
|
|
! DATA (GB( 7, 7,IC),IC=1,3) / |
3624 |
|
|
! S 0.79978921E+01, 0.73878952E+01, 0.10000000E+01/ |
3625 |
|
|
! DATA (GA( 7, 8,IC),IC=1,3) / |
3626 |
|
|
! S 0.71035818E+01, 0.66987996E+01, 0.00000000E+00/ |
3627 |
|
|
! DATA (GB( 7, 8,IC),IC=1,3) / |
3628 |
|
|
! S 0.71035818E+01, 0.68960649E+01, 0.10000000E+01/ |
3629 |
|
|
|
3630 |
|
|
! ----- INTERVAL = 3 ----- T = 275.0 |
3631 |
|
|
|
3632 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3633 |
|
|
! DATA (GA( 8, 7,IC),IC=1,3) / |
3634 |
|
|
! S 0.77568055E+01, 0.70697065E+01, 0.00000000E+00/ |
3635 |
|
|
! DATA (GB( 8, 7,IC),IC=1,3) / |
3636 |
|
|
! S 0.77568055E+01, 0.72652133E+01, 0.10000000E+01/ |
3637 |
|
|
! DATA (GA( 8, 8,IC),IC=1,3) / |
3638 |
|
|
! S 0.68903312E+01, 0.65644820E+01, 0.00000000E+00/ |
3639 |
|
|
! DATA (GB( 8, 8,IC),IC=1,3) / |
3640 |
|
|
! S 0.68903312E+01, 0.67623672E+01, 0.10000000E+01/ |
3641 |
|
|
|
3642 |
|
|
! ----- INTERVAL = 3 ----- T = 287.5 |
3643 |
|
|
|
3644 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3645 |
|
|
! DATA (GA( 9, 7,IC),IC=1,3) / |
3646 |
|
|
! S 0.75416266E+01, 0.69539626E+01, 0.00000000E+00/ |
3647 |
|
|
! DATA (GB( 9, 7,IC),IC=1,3) / |
3648 |
|
|
! S 0.75416266E+01, 0.71500151E+01, 0.10000000E+01/ |
3649 |
|
|
! DATA (GA( 9, 8,IC),IC=1,3) / |
3650 |
|
|
! S 0.67032875E+01, 0.64405267E+01, 0.00000000E+00/ |
3651 |
|
|
! DATA (GB( 9, 8,IC),IC=1,3) / |
3652 |
|
|
! S 0.67032875E+01, 0.66389989E+01, 0.10000000E+01/ |
3653 |
|
|
|
3654 |
|
|
! ----- INTERVAL = 3 ----- T = 300.0 |
3655 |
|
|
|
3656 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3657 |
|
|
! DATA (GA(10, 7,IC),IC=1,3) / |
3658 |
|
|
! S 0.73491694E+01, 0.68455144E+01, 0.00000000E+00/ |
3659 |
|
|
! DATA (GB(10, 7,IC),IC=1,3) / |
3660 |
|
|
! S 0.73491694E+01, 0.70420667E+01, 0.10000000E+01/ |
3661 |
|
|
! DATA (GA(10, 8,IC),IC=1,3) / |
3662 |
|
|
! S 0.65386461E+01, 0.63262376E+01, 0.00000000E+00/ |
3663 |
|
|
! DATA (GB(10, 8,IC),IC=1,3) / |
3664 |
|
|
! S 0.65386461E+01, 0.65252707E+01, 0.10000000E+01/ |
3665 |
|
|
|
3666 |
|
|
! ----- INTERVAL = 3 ----- T = 312.5 |
3667 |
|
|
|
3668 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3669 |
|
|
! DATA (GA(11, 7,IC),IC=1,3) / |
3670 |
|
|
! S 0.71767400E+01, 0.67441020E+01, 0.00000000E+00/ |
3671 |
|
|
! DATA (GB(11, 7,IC),IC=1,3) / |
3672 |
|
|
! S 0.71767400E+01, 0.69411177E+01, 0.10000000E+01/ |
3673 |
|
|
! DATA (GA(11, 8,IC),IC=1,3) / |
3674 |
|
|
! S 0.63934377E+01, 0.62210701E+01, 0.00000000E+00/ |
3675 |
|
|
! DATA (GB(11, 8,IC),IC=1,3) / |
3676 |
|
|
! S 0.63934377E+01, 0.64206412E+01, 0.10000000E+01/ |
3677 |
|
|
|
3678 |
|
|
|
3679 |
|
|
! -- WATER VAPOR -- 970-1110 CM-1 ---------------------------------------- |
3680 |
|
|
|
3681 |
|
|
! -- G = 3.6E-03 |
3682 |
|
|
|
3683 |
|
|
! ----- INTERVAL = 4 ----- T = 187.5 |
3684 |
|
|
|
3685 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3686 |
|
|
! DATA (GA( 1, 9,IC),IC=1,3) / |
3687 |
|
|
! S 0.24870635E+02, 0.10542131E+02, 0.00000000E+00/ |
3688 |
|
|
! DATA (GB( 1, 9,IC),IC=1,3) / |
3689 |
|
|
! S 0.24870635E+02, 0.10656640E+02, 0.10000000E+01/ |
3690 |
|
|
! DATA (GA( 1,10,IC),IC=1,3) / |
3691 |
|
|
! S 0.24586283E+02, 0.10490353E+02, 0.00000000E+00/ |
3692 |
|
|
! DATA (GB( 1,10,IC),IC=1,3) / |
3693 |
|
|
! S 0.24586283E+02, 0.10605856E+02, 0.10000000E+01/ |
3694 |
|
|
|
3695 |
|
|
! ----- INTERVAL = 4 ----- T = 200.0 |
3696 |
|
|
|
3697 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3698 |
|
|
! DATA (GA( 2, 9,IC),IC=1,3) / |
3699 |
|
|
! S 0.24725591E+02, 0.10515895E+02, 0.00000000E+00/ |
3700 |
|
|
! DATA (GB( 2, 9,IC),IC=1,3) / |
3701 |
|
|
! S 0.24725591E+02, 0.10630910E+02, 0.10000000E+01/ |
3702 |
|
|
! DATA (GA( 2,10,IC),IC=1,3) / |
3703 |
|
|
! S 0.24441465E+02, 0.10463512E+02, 0.00000000E+00/ |
3704 |
|
|
! DATA (GB( 2,10,IC),IC=1,3) / |
3705 |
|
|
! S 0.24441465E+02, 0.10579514E+02, 0.10000000E+01/ |
3706 |
|
|
|
3707 |
|
|
! ----- INTERVAL = 4 ----- T = 212.5 |
3708 |
|
|
|
3709 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3710 |
|
|
! DATA (GA( 3, 9,IC),IC=1,3) / |
3711 |
|
|
! S 0.24600320E+02, 0.10492949E+02, 0.00000000E+00/ |
3712 |
|
|
! DATA (GB( 3, 9,IC),IC=1,3) / |
3713 |
|
|
! S 0.24600320E+02, 0.10608399E+02, 0.10000000E+01/ |
3714 |
|
|
! DATA (GA( 3,10,IC),IC=1,3) / |
3715 |
|
|
! S 0.24311657E+02, 0.10439183E+02, 0.00000000E+00/ |
3716 |
|
|
! DATA (GB( 3,10,IC),IC=1,3) / |
3717 |
|
|
! S 0.24311657E+02, 0.10555632E+02, 0.10000000E+01/ |
3718 |
|
|
|
3719 |
|
|
! ----- INTERVAL = 4 ----- T = 225.0 |
3720 |
|
|
|
3721 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3722 |
|
|
! DATA (GA( 4, 9,IC),IC=1,3) / |
3723 |
|
|
! S 0.24487300E+02, 0.10472049E+02, 0.00000000E+00/ |
3724 |
|
|
! DATA (GB( 4, 9,IC),IC=1,3) / |
3725 |
|
|
! S 0.24487300E+02, 0.10587891E+02, 0.10000000E+01/ |
3726 |
|
|
! DATA (GA( 4,10,IC),IC=1,3) / |
3727 |
|
|
! S 0.24196167E+02, 0.10417324E+02, 0.00000000E+00/ |
3728 |
|
|
! DATA (GB( 4,10,IC),IC=1,3) / |
3729 |
|
|
! S 0.24196167E+02, 0.10534169E+02, 0.10000000E+01/ |
3730 |
|
|
|
3731 |
|
|
! ----- INTERVAL = 4 ----- T = 237.5 |
3732 |
|
|
|
3733 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3734 |
|
|
! DATA (GA( 5, 9,IC),IC=1,3) / |
3735 |
|
|
! S 0.24384935E+02, 0.10452961E+02, 0.00000000E+00/ |
3736 |
|
|
! DATA (GB( 5, 9,IC),IC=1,3) / |
3737 |
|
|
! S 0.24384935E+02, 0.10569156E+02, 0.10000000E+01/ |
3738 |
|
|
! DATA (GA( 5,10,IC),IC=1,3) / |
3739 |
|
|
! S 0.24093406E+02, 0.10397704E+02, 0.00000000E+00/ |
3740 |
|
|
! DATA (GB( 5,10,IC),IC=1,3) / |
3741 |
|
|
! S 0.24093406E+02, 0.10514900E+02, 0.10000000E+01/ |
3742 |
|
|
|
3743 |
|
|
! ----- INTERVAL = 4 ----- T = 250.0 |
3744 |
|
|
|
3745 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3746 |
|
|
! DATA (GA( 6, 9,IC),IC=1,3) / |
3747 |
|
|
! S 0.24292341E+02, 0.10435562E+02, 0.00000000E+00/ |
3748 |
|
|
! DATA (GB( 6, 9,IC),IC=1,3) / |
3749 |
|
|
! S 0.24292341E+02, 0.10552075E+02, 0.10000000E+01/ |
3750 |
|
|
! DATA (GA( 6,10,IC),IC=1,3) / |
3751 |
|
|
! S 0.24001597E+02, 0.10380038E+02, 0.00000000E+00/ |
3752 |
|
|
! DATA (GB( 6,10,IC),IC=1,3) / |
3753 |
|
|
! S 0.24001597E+02, 0.10497547E+02, 0.10000000E+01/ |
3754 |
|
|
|
3755 |
|
|
! ----- INTERVAL = 4 ----- T = 262.5 |
3756 |
|
|
|
3757 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3758 |
|
|
! DATA (GA( 7, 9,IC),IC=1,3) / |
3759 |
|
|
! S 0.24208572E+02, 0.10419710E+02, 0.00000000E+00/ |
3760 |
|
|
! DATA (GB( 7, 9,IC),IC=1,3) / |
3761 |
|
|
! S 0.24208572E+02, 0.10536510E+02, 0.10000000E+01/ |
3762 |
|
|
! DATA (GA( 7,10,IC),IC=1,3) / |
3763 |
|
|
! S 0.23919098E+02, 0.10364052E+02, 0.00000000E+00/ |
3764 |
|
|
! DATA (GB( 7,10,IC),IC=1,3) / |
3765 |
|
|
! S 0.23919098E+02, 0.10481842E+02, 0.10000000E+01/ |
3766 |
|
|
|
3767 |
|
|
! ----- INTERVAL = 4 ----- T = 275.0 |
3768 |
|
|
|
3769 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3770 |
|
|
! DATA (GA( 8, 9,IC),IC=1,3) / |
3771 |
|
|
! S 0.24132642E+02, 0.10405247E+02, 0.00000000E+00/ |
3772 |
|
|
! DATA (GB( 8, 9,IC),IC=1,3) / |
3773 |
|
|
! S 0.24132642E+02, 0.10522307E+02, 0.10000000E+01/ |
3774 |
|
|
! DATA (GA( 8,10,IC),IC=1,3) / |
3775 |
|
|
! S 0.23844511E+02, 0.10349509E+02, 0.00000000E+00/ |
3776 |
|
|
! DATA (GB( 8,10,IC),IC=1,3) / |
3777 |
|
|
! S 0.23844511E+02, 0.10467553E+02, 0.10000000E+01/ |
3778 |
|
|
|
3779 |
|
|
! ----- INTERVAL = 4 ----- T = 287.5 |
3780 |
|
|
|
3781 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3782 |
|
|
! DATA (GA( 9, 9,IC),IC=1,3) / |
3783 |
|
|
! S 0.24063614E+02, 0.10392022E+02, 0.00000000E+00/ |
3784 |
|
|
! DATA (GB( 9, 9,IC),IC=1,3) / |
3785 |
|
|
! S 0.24063614E+02, 0.10509317E+02, 0.10000000E+01/ |
3786 |
|
|
! DATA (GA( 9,10,IC),IC=1,3) / |
3787 |
|
|
! S 0.23776708E+02, 0.10336215E+02, 0.00000000E+00/ |
3788 |
|
|
! DATA (GB( 9,10,IC),IC=1,3) / |
3789 |
|
|
! S 0.23776708E+02, 0.10454488E+02, 0.10000000E+01/ |
3790 |
|
|
|
3791 |
|
|
! ----- INTERVAL = 4 ----- T = 300.0 |
3792 |
|
|
|
3793 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3794 |
|
|
! DATA (GA(10, 9,IC),IC=1,3) / |
3795 |
|
|
! S 0.24000649E+02, 0.10379892E+02, 0.00000000E+00/ |
3796 |
|
|
! DATA (GB(10, 9,IC),IC=1,3) / |
3797 |
|
|
! S 0.24000649E+02, 0.10497402E+02, 0.10000000E+01/ |
3798 |
|
|
! DATA (GA(10,10,IC),IC=1,3) / |
3799 |
|
|
! S 0.23714816E+02, 0.10324018E+02, 0.00000000E+00/ |
3800 |
|
|
! DATA (GB(10,10,IC),IC=1,3) / |
3801 |
|
|
! S 0.23714816E+02, 0.10442501E+02, 0.10000000E+01/ |
3802 |
|
|
|
3803 |
|
|
! ----- INTERVAL = 4 ----- T = 312.5 |
3804 |
|
|
|
3805 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
3806 |
|
|
! DATA (GA(11, 9,IC),IC=1,3) / |
3807 |
|
|
! S 0.23943021E+02, 0.10368736E+02, 0.00000000E+00/ |
3808 |
|
|
! DATA (GB(11, 9,IC),IC=1,3) / |
3809 |
|
|
! S 0.23943021E+02, 0.10486443E+02, 0.10000000E+01/ |
3810 |
|
|
! DATA (GA(11,10,IC),IC=1,3) / |
3811 |
|
|
! S 0.23658197E+02, 0.10312808E+02, 0.00000000E+00/ |
3812 |
|
|
! DATA (GB(11,10,IC),IC=1,3) / |
3813 |
|
|
! S 0.23658197E+02, 0.10431483E+02, 0.10000000E+01/ |
3814 |
|
|
|
3815 |
|
|
|
3816 |
|
|
|
3817 |
|
|
! -- H2O -- WEAKER PARTS OF THE STRONG BANDS -- FROM ABS225 ---- |
3818 |
|
|
|
3819 |
|
|
! -- WATER VAPOR --- 350 - 500 CM-1 |
3820 |
|
|
|
3821 |
|
|
! -- G = - 0.2*SLA, 0.0 +0.5/(1+0.5U) |
3822 |
|
|
|
3823 |
|
|
! ----- INTERVAL = 5 ----- T = 187.5 |
3824 |
|
|
|
3825 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3826 |
|
|
! DATA (GA( 1, 5,IC),IC=1,3) / |
3827 |
|
|
! S 0.15750172E+00,-0.22159303E-01, 0.00000000E+00/ |
3828 |
|
|
! DATA (GB( 1, 5,IC),IC=1,3) / |
3829 |
|
|
! S 0.15750172E+00, 0.38103212E+00, 0.10000000E+01/ |
3830 |
|
|
! DATA (GA( 1, 6,IC),IC=1,3) / |
3831 |
|
|
! S 0.17770551E+00,-0.24972399E-01, 0.00000000E+00/ |
3832 |
|
|
! DATA (GB( 1, 6,IC),IC=1,3) / |
3833 |
|
|
! S 0.17770551E+00, 0.41646579E+00, 0.10000000E+01/ |
3834 |
|
|
|
3835 |
|
|
! ----- INTERVAL = 5 ----- T = 200.0 |
3836 |
|
|
|
3837 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3838 |
|
|
! DATA (GA( 2, 5,IC),IC=1,3) / |
3839 |
|
|
! S 0.16174076E+00,-0.22748917E-01, 0.00000000E+00/ |
3840 |
|
|
! DATA (GB( 2, 5,IC),IC=1,3) / |
3841 |
|
|
! S 0.16174076E+00, 0.38913800E+00, 0.10000000E+01/ |
3842 |
|
|
! DATA (GA( 2, 6,IC),IC=1,3) / |
3843 |
|
|
! S 0.18176757E+00,-0.25537247E-01, 0.00000000E+00/ |
3844 |
|
|
! DATA (GB( 2, 6,IC),IC=1,3) / |
3845 |
|
|
! S 0.18176757E+00, 0.42345095E+00, 0.10000000E+01/ |
3846 |
|
|
|
3847 |
|
|
! ----- INTERVAL = 5 ----- T = 212.5 |
3848 |
|
|
|
3849 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3850 |
|
|
! DATA (GA( 3, 5,IC),IC=1,3) / |
3851 |
|
|
! S 0.16548628E+00,-0.23269898E-01, 0.00000000E+00/ |
3852 |
|
|
! DATA (GB( 3, 5,IC),IC=1,3) / |
3853 |
|
|
! S 0.16548628E+00, 0.39613651E+00, 0.10000000E+01/ |
3854 |
|
|
! DATA (GA( 3, 6,IC),IC=1,3) / |
3855 |
|
|
! S 0.18527967E+00,-0.26025624E-01, 0.00000000E+00/ |
3856 |
|
|
! DATA (GB( 3, 6,IC),IC=1,3) / |
3857 |
|
|
! S 0.18527967E+00, 0.42937476E+00, 0.10000000E+01/ |
3858 |
|
|
|
3859 |
|
|
! ----- INTERVAL = 5 ----- T = 225.0 |
3860 |
|
|
|
3861 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3862 |
|
|
! DATA (GA( 4, 5,IC),IC=1,3) / |
3863 |
|
|
! S 0.16881124E+00,-0.23732392E-01, 0.00000000E+00/ |
3864 |
|
|
! DATA (GB( 4, 5,IC),IC=1,3) / |
3865 |
|
|
! S 0.16881124E+00, 0.40222421E+00, 0.10000000E+01/ |
3866 |
|
|
! DATA (GA( 4, 6,IC),IC=1,3) / |
3867 |
|
|
! S 0.18833348E+00,-0.26450280E-01, 0.00000000E+00/ |
3868 |
|
|
! DATA (GB( 4, 6,IC),IC=1,3) / |
3869 |
|
|
! S 0.18833348E+00, 0.43444062E+00, 0.10000000E+01/ |
3870 |
|
|
|
3871 |
|
|
! ----- INTERVAL = 5 ----- T = 237.5 |
3872 |
|
|
|
3873 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3874 |
|
|
! DATA (GA( 5, 5,IC),IC=1,3) / |
3875 |
|
|
! S 0.17177839E+00,-0.24145123E-01, 0.00000000E+00/ |
3876 |
|
|
! DATA (GB( 5, 5,IC),IC=1,3) / |
3877 |
|
|
! S 0.17177839E+00, 0.40756010E+00, 0.10000000E+01/ |
3878 |
|
|
! DATA (GA( 5, 6,IC),IC=1,3) / |
3879 |
|
|
! S 0.19100108E+00,-0.26821236E-01, 0.00000000E+00/ |
3880 |
|
|
! DATA (GB( 5, 6,IC),IC=1,3) / |
3881 |
|
|
! S 0.19100108E+00, 0.43880316E+00, 0.10000000E+01/ |
3882 |
|
|
|
3883 |
|
|
! ----- INTERVAL = 5 ----- T = 250.0 |
3884 |
|
|
|
3885 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3886 |
|
|
! DATA (GA( 6, 5,IC),IC=1,3) / |
3887 |
|
|
! S 0.17443933E+00,-0.24515269E-01, 0.00000000E+00/ |
3888 |
|
|
! DATA (GB( 6, 5,IC),IC=1,3) / |
3889 |
|
|
! S 0.17443933E+00, 0.41226954E+00, 0.10000000E+01/ |
3890 |
|
|
! DATA (GA( 6, 6,IC),IC=1,3) / |
3891 |
|
|
! S 0.19334122E+00,-0.27146657E-01, 0.00000000E+00/ |
3892 |
|
|
! DATA (GB( 6, 6,IC),IC=1,3) / |
3893 |
|
|
! S 0.19334122E+00, 0.44258354E+00, 0.10000000E+01/ |
3894 |
|
|
|
3895 |
|
|
! ----- INTERVAL = 5 ----- T = 262.5 |
3896 |
|
|
|
3897 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3898 |
|
|
! DATA (GA( 7, 5,IC),IC=1,3) / |
3899 |
|
|
! S 0.17683622E+00,-0.24848690E-01, 0.00000000E+00/ |
3900 |
|
|
! DATA (GB( 7, 5,IC),IC=1,3) / |
3901 |
|
|
! S 0.17683622E+00, 0.41645142E+00, 0.10000000E+01/ |
3902 |
|
|
! DATA (GA( 7, 6,IC),IC=1,3) / |
3903 |
|
|
! S 0.19540288E+00,-0.27433354E-01, 0.00000000E+00/ |
3904 |
|
|
! DATA (GB( 7, 6,IC),IC=1,3) / |
3905 |
|
|
! S 0.19540288E+00, 0.44587882E+00, 0.10000000E+01/ |
3906 |
|
|
|
3907 |
|
|
! ----- INTERVAL = 5 ----- T = 275.0 |
3908 |
|
|
|
3909 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3910 |
|
|
! DATA (GA( 8, 5,IC),IC=1,3) / |
3911 |
|
|
! S 0.17900375E+00,-0.25150210E-01, 0.00000000E+00/ |
3912 |
|
|
! DATA (GB( 8, 5,IC),IC=1,3) / |
3913 |
|
|
! S 0.17900375E+00, 0.42018474E+00, 0.10000000E+01/ |
3914 |
|
|
! DATA (GA( 8, 6,IC),IC=1,3) / |
3915 |
|
|
! S 0.19722732E+00,-0.27687065E-01, 0.00000000E+00/ |
3916 |
|
|
! DATA (GB( 8, 6,IC),IC=1,3) / |
3917 |
|
|
! S 0.19722732E+00, 0.44876776E+00, 0.10000000E+01/ |
3918 |
|
|
|
3919 |
|
|
! ----- INTERVAL = 5 ----- T = 287.5 |
3920 |
|
|
|
3921 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3922 |
|
|
! DATA (GA( 9, 5,IC),IC=1,3) / |
3923 |
|
|
! S 0.18097099E+00,-0.25423873E-01, 0.00000000E+00/ |
3924 |
|
|
! DATA (GB( 9, 5,IC),IC=1,3) / |
3925 |
|
|
! S 0.18097099E+00, 0.42353379E+00, 0.10000000E+01/ |
3926 |
|
|
! DATA (GA( 9, 6,IC),IC=1,3) / |
3927 |
|
|
! S 0.19884918E+00,-0.27912608E-01, 0.00000000E+00/ |
3928 |
|
|
! DATA (GB( 9, 6,IC),IC=1,3) / |
3929 |
|
|
! S 0.19884918E+00, 0.45131451E+00, 0.10000000E+01/ |
3930 |
|
|
|
3931 |
|
|
! ----- INTERVAL = 5 ----- T = 300.0 |
3932 |
|
|
|
3933 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3934 |
|
|
! DATA (GA(10, 5,IC),IC=1,3) / |
3935 |
|
|
! S 0.18276283E+00,-0.25673139E-01, 0.00000000E+00/ |
3936 |
|
|
! DATA (GB(10, 5,IC),IC=1,3) / |
3937 |
|
|
! S 0.18276283E+00, 0.42655211E+00, 0.10000000E+01/ |
3938 |
|
|
! DATA (GA(10, 6,IC),IC=1,3) / |
3939 |
|
|
! S 0.20029696E+00,-0.28113944E-01, 0.00000000E+00/ |
3940 |
|
|
! DATA (GB(10, 6,IC),IC=1,3) / |
3941 |
|
|
! S 0.20029696E+00, 0.45357095E+00, 0.10000000E+01/ |
3942 |
|
|
|
3943 |
|
|
! ----- INTERVAL = 5 ----- T = 312.5 |
3944 |
|
|
|
3945 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3946 |
|
|
! DATA (GA(11, 5,IC),IC=1,3) / |
3947 |
|
|
! S 0.18440117E+00,-0.25901055E-01, 0.00000000E+00/ |
3948 |
|
|
! DATA (GB(11, 5,IC),IC=1,3) / |
3949 |
|
|
! S 0.18440117E+00, 0.42928533E+00, 0.10000000E+01/ |
3950 |
|
|
! DATA (GA(11, 6,IC),IC=1,3) / |
3951 |
|
|
! S 0.20159300E+00,-0.28294180E-01, 0.00000000E+00/ |
3952 |
|
|
! DATA (GB(11, 6,IC),IC=1,3) / |
3953 |
|
|
! S 0.20159300E+00, 0.45557797E+00, 0.10000000E+01/ |
3954 |
|
|
|
3955 |
|
|
|
3956 |
|
|
|
3957 |
|
|
|
3958 |
|
|
! - WATER VAPOR - WINGS OF VIBRATION-ROTATION BAND - 1250-1450+1880-2820 - |
3959 |
|
|
! --- G = 0.0 |
3960 |
|
|
|
3961 |
|
|
|
3962 |
|
|
! ----- INTERVAL = 6 ----- T = 187.5 |
3963 |
|
|
|
3964 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3965 |
|
|
! DATA (GA( 1,11,IC),IC=1,3) / |
3966 |
|
|
! S 0.11990218E+02,-0.12823142E+01, 0.00000000E+00/ |
3967 |
|
|
! DATA (GB( 1,11,IC),IC=1,3) / |
3968 |
|
|
! S 0.11990218E+02, 0.26681588E+02, 0.10000000E+01/ |
3969 |
|
|
! DATA (GA( 1,12,IC),IC=1,3) / |
3970 |
|
|
! S 0.79709806E+01,-0.74805226E+00, 0.00000000E+00/ |
3971 |
|
|
! DATA (GB( 1,12,IC),IC=1,3) / |
3972 |
|
|
! S 0.79709806E+01, 0.18377807E+02, 0.10000000E+01/ |
3973 |
|
|
|
3974 |
|
|
! ----- INTERVAL = 6 ----- T = 200.0 |
3975 |
|
|
|
3976 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3977 |
|
|
! DATA (GA( 2,11,IC),IC=1,3) / |
3978 |
|
|
! S 0.10904073E+02,-0.10571588E+01, 0.00000000E+00/ |
3979 |
|
|
! DATA (GB( 2,11,IC),IC=1,3) / |
3980 |
|
|
! S 0.10904073E+02, 0.24728346E+02, 0.10000000E+01/ |
3981 |
|
|
! DATA (GA( 2,12,IC),IC=1,3) / |
3982 |
|
|
! S 0.75400737E+01,-0.56252739E+00, 0.00000000E+00/ |
3983 |
|
|
! DATA (GB( 2,12,IC),IC=1,3) / |
3984 |
|
|
! S 0.75400737E+01, 0.17643148E+02, 0.10000000E+01/ |
3985 |
|
|
|
3986 |
|
|
! ----- INTERVAL = 6 ----- T = 212.5 |
3987 |
|
|
|
3988 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
3989 |
|
|
! DATA (GA( 3,11,IC),IC=1,3) / |
3990 |
|
|
! S 0.89126838E+01,-0.74864953E+00, 0.00000000E+00/ |
3991 |
|
|
! DATA (GB( 3,11,IC),IC=1,3) / |
3992 |
|
|
! S 0.89126838E+01, 0.20551342E+02, 0.10000000E+01/ |
3993 |
|
|
! DATA (GA( 3,12,IC),IC=1,3) / |
3994 |
|
|
! S 0.81804377E+01,-0.46188072E+00, 0.00000000E+00/ |
3995 |
|
|
! DATA (GB( 3,12,IC),IC=1,3) / |
3996 |
|
|
! S 0.81804377E+01, 0.19296161E+02, 0.10000000E+01/ |
3997 |
|
|
|
3998 |
|
|
! ----- INTERVAL = 6 ----- T = 225.0 |
3999 |
|
|
|
4000 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
4001 |
|
|
! DATA (GA( 4,11,IC),IC=1,3) / |
4002 |
|
|
! S 0.85622405E+01,-0.58705980E+00, 0.00000000E+00/ |
4003 |
|
|
! DATA (GB( 4,11,IC),IC=1,3) / |
4004 |
|
|
! S 0.85622405E+01, 0.19955244E+02, 0.10000000E+01/ |
4005 |
|
|
! DATA (GA( 4,12,IC),IC=1,3) / |
4006 |
|
|
! S 0.10564339E+02,-0.40712065E+00, 0.00000000E+00/ |
4007 |
|
|
! DATA (GB( 4,12,IC),IC=1,3) / |
4008 |
|
|
! S 0.10564339E+02, 0.24951120E+02, 0.10000000E+01/ |
4009 |
|
|
|
4010 |
|
|
! ----- INTERVAL = 6 ----- T = 237.5 |
4011 |
|
|
|
4012 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
4013 |
|
|
! DATA (GA( 5,11,IC),IC=1,3) / |
4014 |
|
|
! S 0.94892164E+01,-0.49305772E+00, 0.00000000E+00/ |
4015 |
|
|
! DATA (GB( 5,11,IC),IC=1,3) / |
4016 |
|
|
! S 0.94892164E+01, 0.22227100E+02, 0.10000000E+01/ |
4017 |
|
|
! DATA (GA( 5,12,IC),IC=1,3) / |
4018 |
|
|
! S 0.46896789E+02,-0.15295996E+01, 0.00000000E+00/ |
4019 |
|
|
! DATA (GB( 5,12,IC),IC=1,3) / |
4020 |
|
|
! S 0.46896789E+02, 0.10957372E+03, 0.10000000E+01/ |
4021 |
|
|
|
4022 |
|
|
! ----- INTERVAL = 6 ----- T = 250.0 |
4023 |
|
|
|
4024 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
4025 |
|
|
! DATA (GA( 6,11,IC),IC=1,3) / |
4026 |
|
|
! S 0.13580937E+02,-0.51461431E+00, 0.00000000E+00/ |
4027 |
|
|
! DATA (GB( 6,11,IC),IC=1,3) / |
4028 |
|
|
! S 0.13580937E+02, 0.31770288E+02, 0.10000000E+01/ |
4029 |
|
|
! DATA (GA( 6,12,IC),IC=1,3) / |
4030 |
|
|
! S-0.30926524E+01, 0.43555255E+00, 0.00000000E+00/ |
4031 |
|
|
! DATA (GB( 6,12,IC),IC=1,3) / |
4032 |
|
|
! S-0.30926524E+01,-0.67432659E+01, 0.10000000E+01/ |
4033 |
|
|
|
4034 |
|
|
! ----- INTERVAL = 6 ----- T = 262.5 |
4035 |
|
|
|
4036 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
4037 |
|
|
! DATA (GA( 7,11,IC),IC=1,3) / |
4038 |
|
|
! S-0.32050918E+03, 0.12373350E+02, 0.00000000E+00/ |
4039 |
|
|
! DATA (GB( 7,11,IC),IC=1,3) / |
4040 |
|
|
! S-0.32050918E+03,-0.74061287E+03, 0.10000000E+01/ |
4041 |
|
|
! DATA (GA( 7,12,IC),IC=1,3) / |
4042 |
|
|
! S 0.85742941E+00, 0.50380874E+00, 0.00000000E+00/ |
4043 |
|
|
! DATA (GB( 7,12,IC),IC=1,3) / |
4044 |
|
|
! S 0.85742941E+00, 0.24550746E+01, 0.10000000E+01/ |
4045 |
|
|
|
4046 |
|
|
! ----- INTERVAL = 6 ----- T = 275.0 |
4047 |
|
|
|
4048 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
4049 |
|
|
! DATA (GA( 8,11,IC),IC=1,3) / |
4050 |
|
|
! S-0.37133165E+01, 0.44809588E+00, 0.00000000E+00/ |
4051 |
|
|
! DATA (GB( 8,11,IC),IC=1,3) / |
4052 |
|
|
! S-0.37133165E+01,-0.81329826E+01, 0.10000000E+01/ |
4053 |
|
|
! DATA (GA( 8,12,IC),IC=1,3) / |
4054 |
|
|
! S 0.19164038E+01, 0.68537352E+00, 0.00000000E+00/ |
4055 |
|
|
! DATA (GB( 8,12,IC),IC=1,3) / |
4056 |
|
|
! S 0.19164038E+01, 0.49089917E+01, 0.10000000E+01/ |
4057 |
|
|
|
4058 |
|
|
! ----- INTERVAL = 6 ----- T = 287.5 |
4059 |
|
|
|
4060 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
4061 |
|
|
! DATA (GA( 9,11,IC),IC=1,3) / |
4062 |
|
|
! S 0.18890836E+00, 0.46548918E+00, 0.00000000E+00/ |
4063 |
|
|
! DATA (GB( 9,11,IC),IC=1,3) / |
4064 |
|
|
! S 0.18890836E+00, 0.90279822E+00, 0.10000000E+01/ |
4065 |
|
|
! DATA (GA( 9,12,IC),IC=1,3) / |
4066 |
|
|
! S 0.23513199E+01, 0.89437630E+00, 0.00000000E+00/ |
4067 |
|
|
! DATA (GB( 9,12,IC),IC=1,3) / |
4068 |
|
|
! S 0.23513199E+01, 0.59008712E+01, 0.10000000E+01/ |
4069 |
|
|
|
4070 |
|
|
! ----- INTERVAL = 6 ----- T = 300.0 |
4071 |
|
|
|
4072 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
4073 |
|
|
! DATA (GA(10,11,IC),IC=1,3) / |
4074 |
|
|
! S 0.14209226E+01, 0.59121475E+00, 0.00000000E+00/ |
4075 |
|
|
! DATA (GB(10,11,IC),IC=1,3) / |
4076 |
|
|
! S 0.14209226E+01, 0.37532746E+01, 0.10000000E+01/ |
4077 |
|
|
! DATA (GA(10,12,IC),IC=1,3) / |
4078 |
|
|
! S 0.25566644E+01, 0.11127003E+01, 0.00000000E+00/ |
4079 |
|
|
! DATA (GB(10,12,IC),IC=1,3) / |
4080 |
|
|
! S 0.25566644E+01, 0.63532616E+01, 0.10000000E+01/ |
4081 |
|
|
|
4082 |
|
|
! ----- INTERVAL = 6 ----- T = 312.5 |
4083 |
|
|
|
4084 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
4085 |
|
|
! DATA (GA(11,11,IC),IC=1,3) / |
4086 |
|
|
! S 0.19817679E+01, 0.74676119E+00, 0.00000000E+00/ |
4087 |
|
|
! DATA (GB(11,11,IC),IC=1,3) / |
4088 |
|
|
! S 0.19817679E+01, 0.50437916E+01, 0.10000000E+01/ |
4089 |
|
|
! DATA (GA(11,12,IC),IC=1,3) / |
4090 |
|
|
! S 0.26555181E+01, 0.13329782E+01, 0.00000000E+00/ |
4091 |
|
|
! DATA (GB(11,12,IC),IC=1,3) / |
4092 |
|
|
! S 0.26555181E+01, 0.65558627E+01, 0.10000000E+01/ |
4093 |
|
|
|
4094 |
|
|
|
4095 |
|
|
|
4096 |
|
|
|
4097 |
|
|
|
4098 |
|
|
! -- END WATER VAPOR |
4099 |
|
|
|
4100 |
|
|
|
4101 |
|
|
! -- CO2 -- INT.2 -- 500-800 CM-1 --- FROM ABS225 ---------------------- |
4102 |
|
|
|
4103 |
|
|
|
4104 |
|
|
|
4105 |
|
|
! -- FIU = 0.8 + MAX(0.35,(7-IU)*0.9) , X/T, 9 |
4106 |
|
|
|
4107 |
|
|
! ----- INTERVAL = 2 ----- T = 187.5 |
4108 |
|
|
|
4109 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
4110 |
|
|
! DATA (GA( 1,13,IC),IC=1,3) / |
4111 |
|
|
! S 0.87668459E-01, 0.13845511E+01, 0.00000000E+00/ |
4112 |
|
|
! DATA (GB( 1,13,IC),IC=1,3) / |
4113 |
|
|
! S 0.87668459E-01, 0.23203798E+01, 0.10000000E+01/ |
4114 |
|
|
! DATA (GA( 1,14,IC),IC=1,3) / |
4115 |
|
|
! S 0.74878820E-01, 0.11718758E+01, 0.00000000E+00/ |
4116 |
|
|
! DATA (GB( 1,14,IC),IC=1,3) / |
4117 |
|
|
! S 0.74878820E-01, 0.20206726E+01, 0.10000000E+01/ |
4118 |
|
|
|
4119 |
|
|
! ----- INTERVAL = 2 ----- T = 200.0 |
4120 |
|
|
|
4121 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
4122 |
|
|
! DATA (GA( 2,13,IC),IC=1,3) / |
4123 |
|
|
! S 0.83754276E-01, 0.13187042E+01, 0.00000000E+00/ |
4124 |
|
|
! DATA (GB( 2,13,IC),IC=1,3) / |
4125 |
|
|
! S 0.83754276E-01, 0.22288925E+01, 0.10000000E+01/ |
4126 |
|
|
! DATA (GA( 2,14,IC),IC=1,3) / |
4127 |
|
|
! S 0.71650966E-01, 0.11216131E+01, 0.00000000E+00/ |
4128 |
|
|
! DATA (GB( 2,14,IC),IC=1,3) / |
4129 |
|
|
! S 0.71650966E-01, 0.19441824E+01, 0.10000000E+01/ |
4130 |
|
|
|
4131 |
|
|
! ----- INTERVAL = 2 ----- T = 212.5 |
4132 |
|
|
|
4133 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
4134 |
|
|
! DATA (GA( 3,13,IC),IC=1,3) / |
4135 |
|
|
! S 0.80460283E-01, 0.12644396E+01, 0.00000000E+00/ |
4136 |
|
|
! DATA (GB( 3,13,IC),IC=1,3) / |
4137 |
|
|
! S 0.80460283E-01, 0.21515593E+01, 0.10000000E+01/ |
4138 |
|
|
! DATA (GA( 3,14,IC),IC=1,3) / |
4139 |
|
|
! S 0.68979615E-01, 0.10809473E+01, 0.00000000E+00/ |
4140 |
|
|
! DATA (GB( 3,14,IC),IC=1,3) / |
4141 |
|
|
! S 0.68979615E-01, 0.18807257E+01, 0.10000000E+01/ |
4142 |
|
|
|
4143 |
|
|
! ----- INTERVAL = 2 ----- T = 225.0 |
4144 |
|
|
|
4145 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
4146 |
|
|
! DATA (GA( 4,13,IC),IC=1,3) / |
4147 |
|
|
! S 0.77659686E-01, 0.12191543E+01, 0.00000000E+00/ |
4148 |
|
|
! DATA (GB( 4,13,IC),IC=1,3) / |
4149 |
|
|
! S 0.77659686E-01, 0.20855896E+01, 0.10000000E+01/ |
4150 |
|
|
! DATA (GA( 4,14,IC),IC=1,3) / |
4151 |
|
|
! S 0.66745345E-01, 0.10476396E+01, 0.00000000E+00/ |
4152 |
|
|
! DATA (GB( 4,14,IC),IC=1,3) / |
4153 |
|
|
! S 0.66745345E-01, 0.18275618E+01, 0.10000000E+01/ |
4154 |
|
|
|
4155 |
|
|
! ----- INTERVAL = 2 ----- T = 237.5 |
4156 |
|
|
|
4157 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
4158 |
|
|
! DATA (GA( 5,13,IC),IC=1,3) / |
4159 |
|
|
! S 0.75257056E-01, 0.11809511E+01, 0.00000000E+00/ |
4160 |
|
|
! DATA (GB( 5,13,IC),IC=1,3) / |
4161 |
|
|
! S 0.75257056E-01, 0.20288489E+01, 0.10000000E+01/ |
4162 |
|
|
! DATA (GA( 5,14,IC),IC=1,3) / |
4163 |
|
|
! S 0.64857571E-01, 0.10200373E+01, 0.00000000E+00/ |
4164 |
|
|
! DATA (GB( 5,14,IC),IC=1,3) / |
4165 |
|
|
! S 0.64857571E-01, 0.17825910E+01, 0.10000000E+01/ |
4166 |
|
|
|
4167 |
|
|
! ----- INTERVAL = 2 ----- T = 250.0 |
4168 |
|
|
|
4169 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
4170 |
|
|
! DATA (GA( 6,13,IC),IC=1,3) / |
4171 |
|
|
! S 0.73179175E-01, 0.11484154E+01, 0.00000000E+00/ |
4172 |
|
|
! DATA (GB( 6,13,IC),IC=1,3) / |
4173 |
|
|
! S 0.73179175E-01, 0.19796791E+01, 0.10000000E+01/ |
4174 |
|
|
! DATA (GA( 6,14,IC),IC=1,3) / |
4175 |
|
|
! S 0.63248495E-01, 0.99692726E+00, 0.00000000E+00/ |
4176 |
|
|
! DATA (GB( 6,14,IC),IC=1,3) / |
4177 |
|
|
! S 0.63248495E-01, 0.17442308E+01, 0.10000000E+01/ |
4178 |
|
|
|
4179 |
|
|
! ----- INTERVAL = 2 ----- T = 262.5 |
4180 |
|
|
|
4181 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
4182 |
|
|
! DATA (GA( 7,13,IC),IC=1,3) / |
4183 |
|
|
! S 0.71369063E-01, 0.11204723E+01, 0.00000000E+00/ |
4184 |
|
|
! DATA (GB( 7,13,IC),IC=1,3) / |
4185 |
|
|
! S 0.71369063E-01, 0.19367778E+01, 0.10000000E+01/ |
4186 |
|
|
! DATA (GA( 7,14,IC),IC=1,3) / |
4187 |
|
|
! S 0.61866970E-01, 0.97740923E+00, 0.00000000E+00/ |
4188 |
|
|
! DATA (GB( 7,14,IC),IC=1,3) / |
4189 |
|
|
! S 0.61866970E-01, 0.17112809E+01, 0.10000000E+01/ |
4190 |
|
|
|
4191 |
|
|
! ----- INTERVAL = 2 ----- T = 275.0 |
4192 |
|
|
|
4193 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
4194 |
|
|
! DATA (GA( 8,13,IC),IC=1,3) / |
4195 |
|
|
! S 0.69781812E-01, 0.10962918E+01, 0.00000000E+00/ |
4196 |
|
|
! DATA (GB( 8,13,IC),IC=1,3) / |
4197 |
|
|
! S 0.69781812E-01, 0.18991112E+01, 0.10000000E+01/ |
4198 |
|
|
! DATA (GA( 8,14,IC),IC=1,3) / |
4199 |
|
|
! S 0.60673632E-01, 0.96080188E+00, 0.00000000E+00/ |
4200 |
|
|
! DATA (GB( 8,14,IC),IC=1,3) / |
4201 |
|
|
! S 0.60673632E-01, 0.16828137E+01, 0.10000000E+01/ |
4202 |
|
|
|
4203 |
|
|
! ----- INTERVAL = 2 ----- T = 287.5 |
4204 |
|
|
|
4205 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
4206 |
|
|
! DATA (GA( 9,13,IC),IC=1,3) / |
4207 |
|
|
! S 0.68381606E-01, 0.10752229E+01, 0.00000000E+00/ |
4208 |
|
|
! DATA (GB( 9,13,IC),IC=1,3) / |
4209 |
|
|
! S 0.68381606E-01, 0.18658501E+01, 0.10000000E+01/ |
4210 |
|
|
! DATA (GA( 9,14,IC),IC=1,3) / |
4211 |
|
|
! S 0.59637277E-01, 0.94657562E+00, 0.00000000E+00/ |
4212 |
|
|
! DATA (GB( 9,14,IC),IC=1,3) / |
4213 |
|
|
! S 0.59637277E-01, 0.16580908E+01, 0.10000000E+01/ |
4214 |
|
|
|
4215 |
|
|
! ----- INTERVAL = 2 ----- T = 300.0 |
4216 |
|
|
|
4217 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
4218 |
|
|
! DATA (GA(10,13,IC),IC=1,3) / |
4219 |
|
|
! S 0.67139539E-01, 0.10567474E+01, 0.00000000E+00/ |
4220 |
|
|
! DATA (GB(10,13,IC),IC=1,3) / |
4221 |
|
|
! S 0.67139539E-01, 0.18363226E+01, 0.10000000E+01/ |
4222 |
|
|
! DATA (GA(10,14,IC),IC=1,3) / |
4223 |
|
|
! S 0.58732178E-01, 0.93430511E+00, 0.00000000E+00/ |
4224 |
|
|
! DATA (GB(10,14,IC),IC=1,3) / |
4225 |
|
|
! S 0.58732178E-01, 0.16365014E+01, 0.10000000E+01/ |
4226 |
|
|
|
4227 |
|
|
! ----- INTERVAL = 2 ----- T = 312.5 |
4228 |
|
|
|
4229 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
4230 |
|
|
! DATA (GA(11,13,IC),IC=1,3) / |
4231 |
|
|
! S 0.66032012E-01, 0.10404465E+01, 0.00000000E+00/ |
4232 |
|
|
! DATA (GB(11,13,IC),IC=1,3) / |
4233 |
|
|
! S 0.66032012E-01, 0.18099779E+01, 0.10000000E+01/ |
4234 |
|
|
! DATA (GA(11,14,IC),IC=1,3) / |
4235 |
|
|
! S 0.57936092E-01, 0.92363528E+00, 0.00000000E+00/ |
4236 |
|
|
! DATA (GB(11,14,IC),IC=1,3) / |
4237 |
|
|
! S 0.57936092E-01, 0.16175164E+01, 0.10000000E+01/ |
4238 |
|
|
|
4239 |
|
|
|
4240 |
|
|
|
4241 |
|
|
|
4242 |
|
|
|
4243 |
|
|
|
4244 |
|
|
|
4245 |
|
|
|
4246 |
|
|
|
4247 |
|
|
|
4248 |
|
|
! -- CARBON DIOXIDE LINES IN THE WINDOW REGION (800-1250 CM-1) |
4249 |
|
|
|
4250 |
|
|
|
4251 |
|
|
! -- G = 0.0 |
4252 |
|
|
|
4253 |
|
|
|
4254 |
|
|
! ----- INTERVAL = 4 ----- T = 187.5 |
4255 |
|
|
|
4256 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
4257 |
|
|
! DATA (GA( 1,15,IC),IC=1,3) / |
4258 |
|
|
! S 0.13230067E+02, 0.22042132E+02, 0.00000000E+00/ |
4259 |
|
|
! DATA (GB( 1,15,IC),IC=1,3) / |
4260 |
|
|
! S 0.13230067E+02, 0.22051750E+02, 0.10000000E+01/ |
4261 |
|
|
! DATA (GA( 1,16,IC),IC=1,3) / |
4262 |
|
|
! S 0.13183816E+02, 0.22169501E+02, 0.00000000E+00/ |
4263 |
|
|
! DATA (GB( 1,16,IC),IC=1,3) / |
4264 |
|
|
! S 0.13183816E+02, 0.22178972E+02, 0.10000000E+01/ |
4265 |
|
|
|
4266 |
|
|
! ----- INTERVAL = 4 ----- T = 200.0 |
4267 |
|
|
|
4268 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
4269 |
|
|
! DATA (GA( 2,15,IC),IC=1,3) / |
4270 |
|
|
! S 0.13213564E+02, 0.22107298E+02, 0.00000000E+00/ |
4271 |
|
|
! DATA (GB( 2,15,IC),IC=1,3) / |
4272 |
|
|
! S 0.13213564E+02, 0.22116850E+02, 0.10000000E+01/ |
4273 |
|
|
! DATA (GA( 2,16,IC),IC=1,3) / |
4274 |
|
|
! S 0.13189991E+02, 0.22270075E+02, 0.00000000E+00/ |
4275 |
|
|
! DATA (GB( 2,16,IC),IC=1,3) / |
4276 |
|
|
! S 0.13189991E+02, 0.22279484E+02, 0.10000000E+01/ |
4277 |
|
|
|
4278 |
|
|
! ----- INTERVAL = 4 ----- T = 212.5 |
4279 |
|
|
|
4280 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
4281 |
|
|
! DATA (GA( 3,15,IC),IC=1,3) / |
4282 |
|
|
! S 0.13209140E+02, 0.22180915E+02, 0.00000000E+00/ |
4283 |
|
|
! DATA (GB( 3,15,IC),IC=1,3) / |
4284 |
|
|
! S 0.13209140E+02, 0.22190410E+02, 0.10000000E+01/ |
4285 |
|
|
! DATA (GA( 3,16,IC),IC=1,3) / |
4286 |
|
|
! S 0.13209485E+02, 0.22379193E+02, 0.00000000E+00/ |
4287 |
|
|
! DATA (GB( 3,16,IC),IC=1,3) / |
4288 |
|
|
! S 0.13209485E+02, 0.22388551E+02, 0.10000000E+01/ |
4289 |
|
|
|
4290 |
|
|
! ----- INTERVAL = 4 ----- T = 225.0 |
4291 |
|
|
|
4292 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
4293 |
|
|
! DATA (GA( 4,15,IC),IC=1,3) / |
4294 |
|
|
! S 0.13213894E+02, 0.22259478E+02, 0.00000000E+00/ |
4295 |
|
|
! DATA (GB( 4,15,IC),IC=1,3) / |
4296 |
|
|
! S 0.13213894E+02, 0.22268925E+02, 0.10000000E+01/ |
4297 |
|
|
! DATA (GA( 4,16,IC),IC=1,3) / |
4298 |
|
|
! S 0.13238789E+02, 0.22492992E+02, 0.00000000E+00/ |
4299 |
|
|
! DATA (GB( 4,16,IC),IC=1,3) / |
4300 |
|
|
! S 0.13238789E+02, 0.22502309E+02, 0.10000000E+01/ |
4301 |
|
|
|
4302 |
|
|
! ----- INTERVAL = 4 ----- T = 237.5 |
4303 |
|
|
|
4304 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
4305 |
|
|
! DATA (GA( 5,15,IC),IC=1,3) / |
4306 |
|
|
! S 0.13225963E+02, 0.22341039E+02, 0.00000000E+00/ |
4307 |
|
|
! DATA (GB( 5,15,IC),IC=1,3) / |
4308 |
|
|
! S 0.13225963E+02, 0.22350445E+02, 0.10000000E+01/ |
4309 |
|
|
! DATA (GA( 5,16,IC),IC=1,3) / |
4310 |
|
|
! S 0.13275017E+02, 0.22608508E+02, 0.00000000E+00/ |
4311 |
|
|
! DATA (GB( 5,16,IC),IC=1,3) / |
4312 |
|
|
! S 0.13275017E+02, 0.22617792E+02, 0.10000000E+01/ |
4313 |
|
|
|
4314 |
|
|
! ----- INTERVAL = 4 ----- T = 250.0 |
4315 |
|
|
|
4316 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
4317 |
|
|
! DATA (GA( 6,15,IC),IC=1,3) / |
4318 |
|
|
! S 0.13243806E+02, 0.22424247E+02, 0.00000000E+00/ |
4319 |
|
|
! DATA (GB( 6,15,IC),IC=1,3) / |
4320 |
|
|
! S 0.13243806E+02, 0.22433617E+02, 0.10000000E+01/ |
4321 |
|
|
! DATA (GA( 6,16,IC),IC=1,3) / |
4322 |
|
|
! S 0.13316096E+02, 0.22723843E+02, 0.00000000E+00/ |
4323 |
|
|
! DATA (GB( 6,16,IC),IC=1,3) / |
4324 |
|
|
! S 0.13316096E+02, 0.22733099E+02, 0.10000000E+01/ |
4325 |
|
|
|
4326 |
|
|
! ----- INTERVAL = 4 ----- T = 262.5 |
4327 |
|
|
|
4328 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
4329 |
|
|
! DATA (GA( 7,15,IC),IC=1,3) / |
4330 |
|
|
! S 0.13266104E+02, 0.22508089E+02, 0.00000000E+00/ |
4331 |
|
|
! DATA (GB( 7,15,IC),IC=1,3) / |
4332 |
|
|
! S 0.13266104E+02, 0.22517429E+02, 0.10000000E+01/ |
4333 |
|
|
! DATA (GA( 7,16,IC),IC=1,3) / |
4334 |
|
|
! S 0.13360555E+02, 0.22837837E+02, 0.00000000E+00/ |
4335 |
|
|
! DATA (GB( 7,16,IC),IC=1,3) / |
4336 |
|
|
! S 0.13360555E+02, 0.22847071E+02, 0.10000000E+01/ |
4337 |
|
|
|
4338 |
|
|
! ----- INTERVAL = 4 ----- T = 275.0 |
4339 |
|
|
|
4340 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
4341 |
|
|
! DATA (GA( 8,15,IC),IC=1,3) / |
4342 |
|
|
! S 0.13291782E+02, 0.22591771E+02, 0.00000000E+00/ |
4343 |
|
|
! DATA (GB( 8,15,IC),IC=1,3) / |
4344 |
|
|
! S 0.13291782E+02, 0.22601086E+02, 0.10000000E+01/ |
4345 |
|
|
! DATA (GA( 8,16,IC),IC=1,3) / |
4346 |
|
|
! S 0.13407324E+02, 0.22949751E+02, 0.00000000E+00/ |
4347 |
|
|
! DATA (GB( 8,16,IC),IC=1,3) / |
4348 |
|
|
! S 0.13407324E+02, 0.22958967E+02, 0.10000000E+01/ |
4349 |
|
|
|
4350 |
|
|
! ----- INTERVAL = 4 ----- T = 287.5 |
4351 |
|
|
|
4352 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
4353 |
|
|
! DATA (GA( 9,15,IC),IC=1,3) / |
4354 |
|
|
! S 0.13319961E+02, 0.22674661E+02, 0.00000000E+00/ |
4355 |
|
|
! DATA (GB( 9,15,IC),IC=1,3) / |
4356 |
|
|
! S 0.13319961E+02, 0.22683956E+02, 0.10000000E+01/ |
4357 |
|
|
! DATA (GA( 9,16,IC),IC=1,3) / |
4358 |
|
|
! S 0.13455544E+02, 0.23059032E+02, 0.00000000E+00/ |
4359 |
|
|
! DATA (GB( 9,16,IC),IC=1,3) / |
4360 |
|
|
! S 0.13455544E+02, 0.23068234E+02, 0.10000000E+01/ |
4361 |
|
|
|
4362 |
|
|
! ----- INTERVAL = 4 ----- T = 300.0 |
4363 |
|
|
|
4364 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
4365 |
|
|
! DATA (GA(10,15,IC),IC=1,3) / |
4366 |
|
|
! S 0.13349927E+02, 0.22756246E+02, 0.00000000E+00/ |
4367 |
|
|
! DATA (GB(10,15,IC),IC=1,3) / |
4368 |
|
|
! S 0.13349927E+02, 0.22765522E+02, 0.10000000E+01/ |
4369 |
|
|
! DATA (GA(10,16,IC),IC=1,3) / |
4370 |
|
|
! S 0.13504450E+02, 0.23165146E+02, 0.00000000E+00/ |
4371 |
|
|
! DATA (GB(10,16,IC),IC=1,3) / |
4372 |
|
|
! S 0.13504450E+02, 0.23174336E+02, 0.10000000E+01/ |
4373 |
|
|
|
4374 |
|
|
! ----- INTERVAL = 4 ----- T = 312.5 |
4375 |
|
|
|
4376 |
|
|
! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
4377 |
|
|
! DATA (GA(11,15,IC),IC=1,3) / |
4378 |
|
|
! S 0.13381108E+02, 0.22836093E+02, 0.00000000E+00/ |
4379 |
|
|
! DATA (GB(11,15,IC),IC=1,3) / |
4380 |
|
|
! S 0.13381108E+02, 0.22845354E+02, 0.10000000E+01/ |
4381 |
|
|
! DATA (GA(11,16,IC),IC=1,3) / |
4382 |
|
|
! S 0.13553282E+02, 0.23267456E+02, 0.00000000E+00/ |
4383 |
|
|
! DATA (GB(11,16,IC),IC=1,3) / |
4384 |
|
|
! S 0.13553282E+02, 0.23276638E+02, 0.10000000E+01/ |
4385 |
|
|
|
4386 |
|
|
! ------------------------------------------------------------------ |
4387 |
|
|
! DATA (( XP( J,K),J=1,6), K=1,6) / |
4388 |
|
|
! S 0.46430621E+02, 0.12928299E+03, 0.20732648E+03, |
4389 |
|
|
! S 0.31398411E+03, 0.18373177E+03,-0.11412303E+03, |
4390 |
|
|
! S 0.73604774E+02, 0.27887914E+03, 0.27076947E+03, |
4391 |
|
|
! S-0.57322111E+02,-0.64742459E+02, 0.87238280E+02, |
4392 |
|
|
! S 0.37050866E+02, 0.20498759E+03, 0.37558029E+03, |
4393 |
|
|
! S 0.17401171E+03,-0.13350302E+03,-0.37651795E+02, |
4394 |
|
|
! S 0.14930141E+02, 0.89161160E+02, 0.17793062E+03, |
4395 |
|
|
! S 0.93433860E+02,-0.70646020E+02,-0.26373150E+02, |
4396 |
|
|
! S 0.40386780E+02, 0.10855270E+03, 0.50755010E+02, |
4397 |
|
|
! S-0.31496190E+02, 0.12791300E+00, 0.18017770E+01, |
4398 |
|
|
! S 0.90811926E+01, 0.75073923E+02, 0.24654438E+03, |
4399 |
|
|
! S 0.39332612E+03, 0.29385281E+03, 0.89107921E+02 / |
4400 |
|
|
|
4401 |
|
|
|
4402 |
|
|
|
4403 |
|
|
! * 1.0 PLANCK FUNCTIONS AND GRADIENTS |
4404 |
|
|
! ------------------------------ |
4405 |
|
|
|
4406 |
|
|
|
4407 |
|
|
! cdir collapse |
4408 |
|
|
DO jk = 1, kflev + 1 |
4409 |
|
|
DO jl = 1, kdlon |
4410 |
|
|
pbint(jl, jk) = 0. |
4411 |
|
|
END DO |
4412 |
|
|
END DO |
4413 |
|
|
DO jl = 1, kdlon |
4414 |
|
|
pbsuin(jl) = 0. |
4415 |
|
|
END DO |
4416 |
|
|
|
4417 |
|
|
DO jnu = 1, ninter |
4418 |
|
|
|
4419 |
|
|
! * 1.1 LEVELS FROM SURFACE TO KFLEV |
4420 |
|
|
! ---------------------------- |
4421 |
|
|
|
4422 |
|
|
|
4423 |
|
|
DO jk = 1, kflev |
4424 |
|
|
DO jl = 1, kdlon |
4425 |
|
|
zti(jl) = (ptl(jl,jk)-tstand)/tstand |
4426 |
|
|
zres(jl) = xp(1, jnu) + zti(jl)*(xp(2,jnu)+zti(jl)*(xp(3, & |
4427 |
|
|
jnu)+zti(jl)*(xp(4,jnu)+zti(jl)*(xp(5,jnu)+zti(jl)*(xp(6,jnu)))))) |
4428 |
|
|
pbint(jl, jk) = pbint(jl, jk) + zres(jl) |
4429 |
|
|
pb(jl, jnu, jk) = zres(jl) |
4430 |
|
|
zblev(jl, jk) = zres(jl) |
4431 |
|
|
zti2(jl) = (ptave(jl,jk)-tstand)/tstand |
4432 |
|
|
zres2(jl) = xp(1, jnu) + zti2(jl)*(xp(2,jnu)+zti2(jl)*(xp(3, & |
4433 |
|
|
jnu)+zti2(jl)*(xp(4,jnu)+zti2(jl)*(xp(5,jnu)+zti2(jl)*(xp(6,jnu)))) & |
4434 |
|
|
)) |
4435 |
|
|
zblay(jl, jk) = zres2(jl) |
4436 |
|
|
END DO |
4437 |
|
|
END DO |
4438 |
|
|
|
4439 |
|
|
! * 1.2 TOP OF THE ATMOSPHERE AND SURFACE |
4440 |
|
|
! --------------------------------- |
4441 |
|
|
|
4442 |
|
|
|
4443 |
|
|
DO jl = 1, kdlon |
4444 |
|
|
zti(jl) = (ptl(jl,kflev+1)-tstand)/tstand |
4445 |
|
|
zti2(jl) = (ptl(jl,1)+pdt0(jl)-tstand)/tstand |
4446 |
|
|
zres(jl) = xp(1, jnu) + zti(jl)*(xp(2,jnu)+zti(jl)*(xp(3, & |
4447 |
|
|
jnu)+zti(jl)*(xp(4,jnu)+zti(jl)*(xp(5,jnu)+zti(jl)*(xp(6,jnu)))))) |
4448 |
|
|
zres2(jl) = xp(1, jnu) + zti2(jl)*(xp(2,jnu)+zti2(jl)*(xp(3, & |
4449 |
|
|
jnu)+zti2(jl)*(xp(4,jnu)+zti2(jl)*(xp(5,jnu)+zti2(jl)*(xp(6,jnu)))))) |
4450 |
|
|
pbint(jl, kflev+1) = pbint(jl, kflev+1) + zres(jl) |
4451 |
|
|
pb(jl, jnu, kflev+1) = zres(jl) |
4452 |
|
|
zblev(jl, kflev+1) = zres(jl) |
4453 |
|
|
pbtop(jl, jnu) = zres(jl) |
4454 |
|
|
pbsur(jl, jnu) = zres2(jl) |
4455 |
|
|
pbsuin(jl) = pbsuin(jl) + zres2(jl) |
4456 |
|
|
END DO |
4457 |
|
|
|
4458 |
|
|
! * 1.3 GRADIENTS IN SUB-LAYERS |
4459 |
|
|
! ----------------------- |
4460 |
|
|
|
4461 |
|
|
|
4462 |
|
|
DO jk = 1, kflev |
4463 |
|
|
jk2 = 2*jk |
4464 |
|
|
jk1 = jk2 - 1 |
4465 |
|
|
DO jl = 1, kdlon |
4466 |
|
|
pdbsl(jl, jnu, jk1) = zblay(jl, jk) - zblev(jl, jk) |
4467 |
|
|
pdbsl(jl, jnu, jk2) = zblev(jl, jk+1) - zblay(jl, jk) |
4468 |
|
|
END DO |
4469 |
|
|
END DO |
4470 |
|
|
|
4471 |
|
|
END DO |
4472 |
|
|
|
4473 |
|
|
! * 2.0 CHOOSE THE RELEVANT SETS OF PADE APPROXIMANTS |
4474 |
|
|
! --------------------------------------------- |
4475 |
|
|
|
4476 |
|
|
|
4477 |
|
|
|
4478 |
|
|
|
4479 |
|
|
DO jl = 1, kdlon |
4480 |
|
|
zdsto1 = (ptl(jl,kflev+1)-tintp(1))/tstp |
4481 |
|
|
ixtox = max(1, min(mxixt,int(zdsto1+1.))) |
4482 |
|
|
zdstox = (ptl(jl,kflev+1)-tintp(ixtox))/tstp |
4483 |
|
|
IF (zdstox<0.5) THEN |
4484 |
|
|
indto = ixtox |
4485 |
|
|
ELSE |
4486 |
|
|
indto = ixtox + 1 |
4487 |
|
|
END IF |
4488 |
|
|
indb(jl) = indto |
4489 |
|
|
zdst1 = (ptl(jl,1)-tintp(1))/tstp |
4490 |
|
|
ixtx = max(1, min(mxixt,int(zdst1+1.))) |
4491 |
|
|
zdstx = (ptl(jl,1)-tintp(ixtx))/tstp |
4492 |
|
|
IF (zdstx<0.5) THEN |
4493 |
|
|
indt = ixtx |
4494 |
|
|
ELSE |
4495 |
|
|
indt = ixtx + 1 |
4496 |
|
|
END IF |
4497 |
|
|
inds(jl) = indt |
4498 |
|
|
END DO |
4499 |
|
|
|
4500 |
|
|
DO jf = 1, 2 |
4501 |
|
|
DO jg = 1, 8 |
4502 |
|
|
DO jl = 1, kdlon |
4503 |
|
|
indsu = inds(jl) |
4504 |
|
|
pgasur(jl, jg, jf) = ga(indsu, 2*jg-1, jf) |
4505 |
|
|
pgbsur(jl, jg, jf) = gb(indsu, 2*jg-1, jf) |
4506 |
|
|
indtp = indb(jl) |
4507 |
|
|
pgatop(jl, jg, jf) = ga(indtp, 2*jg-1, jf) |
4508 |
|
|
pgbtop(jl, jg, jf) = gb(indtp, 2*jg-1, jf) |
4509 |
|
|
END DO |
4510 |
|
|
END DO |
4511 |
|
|
END DO |
4512 |
|
|
|
4513 |
|
|
DO jk = 1, kflev |
4514 |
|
|
DO jl = 1, kdlon |
4515 |
|
|
zdst1 = (ptave(jl,jk)-tintp(1))/tstp |
4516 |
|
|
ixtx = max(1, min(mxixt,int(zdst1+1.))) |
4517 |
|
|
zdstx = (ptave(jl,jk)-tintp(ixtx))/tstp |
4518 |
|
|
IF (zdstx<0.5) THEN |
4519 |
|
|
indt = ixtx |
4520 |
|
|
ELSE |
4521 |
|
|
indt = ixtx + 1 |
4522 |
|
|
END IF |
4523 |
|
|
indb(jl) = indt |
4524 |
|
|
END DO |
4525 |
|
|
|
4526 |
|
|
DO jf = 1, 2 |
4527 |
|
|
DO jg = 1, 8 |
4528 |
|
|
DO jl = 1, kdlon |
4529 |
|
|
indt = indb(jl) |
4530 |
|
|
pga(jl, jg, jf, jk) = ga(indt, 2*jg, jf) |
4531 |
|
|
pgb(jl, jg, jf, jk) = gb(indt, 2*jg, jf) |
4532 |
|
|
END DO |
4533 |
|
|
END DO |
4534 |
|
|
END DO |
4535 |
|
|
END DO |
4536 |
|
|
|
4537 |
|
|
! ------------------------------------------------------------------ |
4538 |
|
|
|
4539 |
|
|
RETURN |
4540 |
|
|
END SUBROUTINE lwb_lmdar4 |
4541 |
|
|
SUBROUTINE lwv_lmdar4(kuaer, ktraer, klim, pabcu, pb, pbint, pbsuin, pbsur, & |
4542 |
|
|
pbtop, pdbsl, pemis, ppmb, ptave, pga, pgb, pgasur, pgbsur, pgatop, & |
4543 |
|
|
pgbtop, pcntrb, pcts, pfluc) |
4544 |
|
|
USE dimphy |
4545 |
|
|
IMPLICIT NONE |
4546 |
|
|
include "raddimlw.h" |
4547 |
|
|
include "YOMCST.h" |
4548 |
|
|
|
4549 |
|
|
! ----------------------------------------------------------------------- |
4550 |
|
|
! PURPOSE. |
4551 |
|
|
! -------- |
4552 |
|
|
! CARRIES OUT THE VERTICAL INTEGRATION TO GIVE LONGWAVE |
4553 |
|
|
! FLUXES OR RADIANCES |
4554 |
|
|
|
4555 |
|
|
! METHOD. |
4556 |
|
|
! ------- |
4557 |
|
|
|
4558 |
|
|
! 1. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING BETWEEN |
4559 |
|
|
! CONTRIBUTIONS BY - THE NEARBY LAYERS |
4560 |
|
|
! - THE DISTANT LAYERS |
4561 |
|
|
! - THE BOUNDARY TERMS |
4562 |
|
|
! 2. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
4563 |
|
|
|
4564 |
|
|
! REFERENCE. |
4565 |
|
|
! ---------- |
4566 |
|
|
|
4567 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
4568 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
4569 |
|
|
|
4570 |
|
|
! AUTHOR. |
4571 |
|
|
! ------- |
4572 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
4573 |
|
|
|
4574 |
|
|
! MODIFICATIONS. |
4575 |
|
|
! -------------- |
4576 |
|
|
! ORIGINAL : 89-07-14 |
4577 |
|
|
! ----------------------------------------------------------------------- |
4578 |
|
|
|
4579 |
|
|
! * ARGUMENTS: |
4580 |
|
|
INTEGER kuaer, ktraer, klim |
4581 |
|
|
|
4582 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! EFFECTIVE ABSORBER AMOUNTS |
4583 |
|
|
REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
4584 |
|
|
REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF-LEVEL PLANCK FUNCTIONS |
4585 |
|
|
REAL (KIND=8) pbsur(kdlon, ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
4586 |
|
|
REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
4587 |
|
|
REAL (KIND=8) pbtop(kdlon, ninter) ! T.O.A. SPECTRAL PLANCK FUNCTION |
4588 |
|
|
REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
4589 |
|
|
REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
4590 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF-LEVEL PRESSURE (MB) |
4591 |
|
|
REAL (KIND=8) ptave(kdlon, kflev) ! TEMPERATURE |
4592 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
4593 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
4594 |
|
|
REAL (KIND=8) pgasur(kdlon, 8, 2) ! PADE APPROXIMANTS |
4595 |
|
|
REAL (KIND=8) pgbsur(kdlon, 8, 2) ! PADE APPROXIMANTS |
4596 |
|
|
REAL (KIND=8) pgatop(kdlon, 8, 2) ! PADE APPROXIMANTS |
4597 |
|
|
REAL (KIND=8) pgbtop(kdlon, 8, 2) ! PADE APPROXIMANTS |
4598 |
|
|
|
4599 |
|
|
REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
4600 |
|
|
REAL (KIND=8) pcts(kdlon, kflev) ! COOLING-TO-SPACE TERM |
4601 |
|
|
REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
4602 |
|
|
! ----------------------------------------------------------------------- |
4603 |
|
|
! LOCAL VARIABLES: |
4604 |
|
|
REAL (KIND=8) zadjd(kdlon, kflev+1) |
4605 |
|
|
REAL (KIND=8) zadju(kdlon, kflev+1) |
4606 |
|
|
REAL (KIND=8) zdbdt(kdlon, ninter, kflev) |
4607 |
|
|
REAL (KIND=8) zdisd(kdlon, kflev+1) |
4608 |
|
|
REAL (KIND=8) zdisu(kdlon, kflev+1) |
4609 |
|
|
|
4610 |
|
|
INTEGER jk, jl |
4611 |
|
|
! ----------------------------------------------------------------------- |
4612 |
|
|
|
4613 |
|
|
DO jk = 1, kflev + 1 |
4614 |
|
|
DO jl = 1, kdlon |
4615 |
|
|
zadjd(jl, jk) = 0. |
4616 |
|
|
zadju(jl, jk) = 0. |
4617 |
|
|
zdisd(jl, jk) = 0. |
4618 |
|
|
zdisu(jl, jk) = 0. |
4619 |
|
|
END DO |
4620 |
|
|
END DO |
4621 |
|
|
|
4622 |
|
|
DO jk = 1, kflev |
4623 |
|
|
DO jl = 1, kdlon |
4624 |
|
|
pcts(jl, jk) = 0. |
4625 |
|
|
END DO |
4626 |
|
|
END DO |
4627 |
|
|
|
4628 |
|
|
! * CONTRIBUTION FROM ADJACENT LAYERS |
4629 |
|
|
|
4630 |
|
|
CALL lwvn_lmdar4(kuaer, ktraer, pabcu, pdbsl, pga, pgb, zadjd, zadju, & |
4631 |
|
|
pcntrb, zdbdt) |
4632 |
|
|
! * CONTRIBUTION FROM DISTANT LAYERS |
4633 |
|
|
|
4634 |
|
|
CALL lwvd_lmdar4(kuaer, ktraer, pabcu, zdbdt, pga, pgb, pcntrb, zdisd, & |
4635 |
|
|
zdisu) |
4636 |
|
|
|
4637 |
|
|
! * EXCHANGE WITH THE BOUNDARIES |
4638 |
|
|
|
4639 |
|
|
CALL lwvb_lmdar4(kuaer, ktraer, klim, pabcu, zadjd, zadju, pb, pbint, & |
4640 |
|
|
pbsuin, pbsur, pbtop, zdisd, zdisu, pemis, ppmb, pga, pgb, pgasur, & |
4641 |
|
|
pgbsur, pgatop, pgbtop, pcts, pfluc) |
4642 |
|
|
|
4643 |
|
|
|
4644 |
|
|
RETURN |
4645 |
|
|
END SUBROUTINE lwv_lmdar4 |
4646 |
|
|
SUBROUTINE lwvb_lmdar4(kuaer, ktraer, klim, pabcu, padjd, padju, pb, pbint, & |
4647 |
|
|
pbsui, pbsur, pbtop, pdisd, pdisu, pemis, ppmb, pga, pgb, pgasur, pgbsur, & |
4648 |
|
|
pgatop, pgbtop, pcts, pfluc) |
4649 |
|
|
USE dimphy |
4650 |
|
|
IMPLICIT NONE |
4651 |
|
|
include "raddimlw.h" |
4652 |
|
|
include "radopt.h" |
4653 |
|
|
|
4654 |
|
|
! ----------------------------------------------------------------------- |
4655 |
|
|
! PURPOSE. |
4656 |
|
|
! -------- |
4657 |
|
|
! INTRODUCES THE EFFECTS OF THE BOUNDARIES IN THE VERTICAL |
4658 |
|
|
! INTEGRATION |
4659 |
|
|
|
4660 |
|
|
! METHOD. |
4661 |
|
|
! ------- |
4662 |
|
|
|
4663 |
|
|
! 1. COMPUTES THE ENERGY EXCHANGE WITH TOP AND SURFACE OF THE |
4664 |
|
|
! ATMOSPHERE |
4665 |
|
|
! 2. COMPUTES THE COOLING-TO-SPACE AND HEATING-FROM-GROUND |
4666 |
|
|
! TERMS FOR THE APPROXIMATE COOLING RATE ABOVE 10 HPA |
4667 |
|
|
! 3. ADDS UP ALL CONTRIBUTIONS TO GET THE CLEAR-SKY FLUXES |
4668 |
|
|
|
4669 |
|
|
! REFERENCE. |
4670 |
|
|
! ---------- |
4671 |
|
|
|
4672 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
4673 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
4674 |
|
|
|
4675 |
|
|
! AUTHOR. |
4676 |
|
|
! ------- |
4677 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
4678 |
|
|
|
4679 |
|
|
! MODIFICATIONS. |
4680 |
|
|
! -------------- |
4681 |
|
|
! ORIGINAL : 89-07-14 |
4682 |
|
|
! Voigt lines (loop 2413 to 2427) - JJM & PhD - 01/96 |
4683 |
|
|
! ----------------------------------------------------------------------- |
4684 |
|
|
|
4685 |
|
|
! * 0.1 ARGUMENTS |
4686 |
|
|
! --------- |
4687 |
|
|
|
4688 |
|
|
INTEGER kuaer, ktraer, klim |
4689 |
|
|
|
4690 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
4691 |
|
|
REAL (KIND=8) padjd(kdlon, kflev+1) ! CONTRIBUTION BY ADJACENT LAYERS |
4692 |
|
|
REAL (KIND=8) padju(kdlon, kflev+1) ! CONTRIBUTION BY ADJACENT LAYERS |
4693 |
|
|
REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
4694 |
|
|
REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF-LEVEL PLANCK FUNCTIONS |
4695 |
|
|
REAL (KIND=8) pbsur(kdlon, ninter) ! SPECTRAL SURFACE PLANCK FUNCTION |
4696 |
|
|
REAL (KIND=8) pbsui(kdlon) ! SURFACE PLANCK FUNCTION |
4697 |
|
|
REAL (KIND=8) pbtop(kdlon, ninter) ! SPECTRAL T.O.A. PLANCK FUNCTION |
4698 |
|
|
REAL (KIND=8) pdisd(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
4699 |
|
|
REAL (KIND=8) pdisu(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
4700 |
|
|
REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
4701 |
|
|
REAL (KIND=8) ppmb(kdlon, kflev+1) ! PRESSURE MB |
4702 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
4703 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
4704 |
|
|
REAL (KIND=8) pgasur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
4705 |
|
|
REAL (KIND=8) pgbsur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
4706 |
|
|
REAL (KIND=8) pgatop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
4707 |
|
|
REAL (KIND=8) pgbtop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
4708 |
|
|
|
4709 |
|
|
REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
4710 |
|
|
REAL (KIND=8) pcts(kdlon, kflev) ! COOLING-TO-SPACE TERM |
4711 |
|
|
|
4712 |
|
|
! * LOCAL VARIABLES: |
4713 |
|
|
|
4714 |
|
|
REAL (KIND=8) zbgnd(kdlon) |
4715 |
|
|
REAL (KIND=8) zfd(kdlon) |
4716 |
|
|
REAL (KIND=8) zfn10(kdlon) |
4717 |
|
|
REAL (KIND=8) zfu(kdlon) |
4718 |
|
|
REAL (KIND=8) ztt(kdlon, ntra) |
4719 |
|
|
REAL (KIND=8) ztt1(kdlon, ntra) |
4720 |
|
|
REAL (KIND=8) ztt2(kdlon, ntra) |
4721 |
|
|
REAL (KIND=8) zuu(kdlon, nua) |
4722 |
|
|
REAL (KIND=8) zcnsol(kdlon) |
4723 |
|
|
REAL (KIND=8) zcntop(kdlon) |
4724 |
|
|
|
4725 |
|
|
INTEGER jk, jl, ja |
4726 |
|
|
INTEGER jstra, jstru |
4727 |
|
|
INTEGER ind1, ind2, ind3, ind4, in, jlim |
4728 |
|
|
REAL (KIND=8) zctstr |
4729 |
|
|
|
4730 |
|
|
! ----------------------------------------------------------------------- |
4731 |
|
|
|
4732 |
|
|
! * 1. INITIALIZATION |
4733 |
|
|
! -------------- |
4734 |
|
|
|
4735 |
|
|
|
4736 |
|
|
|
4737 |
|
|
! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
4738 |
|
|
! --------------------------------- |
4739 |
|
|
|
4740 |
|
|
|
4741 |
|
|
DO ja = 1, ntra |
4742 |
|
|
DO jl = 1, kdlon |
4743 |
|
|
ztt(jl, ja) = 1.0 |
4744 |
|
|
ztt1(jl, ja) = 1.0 |
4745 |
|
|
ztt2(jl, ja) = 1.0 |
4746 |
|
|
END DO |
4747 |
|
|
END DO |
4748 |
|
|
|
4749 |
|
|
DO ja = 1, nua |
4750 |
|
|
DO jl = 1, kdlon |
4751 |
|
|
zuu(jl, ja) = 1.0 |
4752 |
|
|
END DO |
4753 |
|
|
END DO |
4754 |
|
|
|
4755 |
|
|
! ------------------------------------------------------------------ |
4756 |
|
|
|
4757 |
|
|
! * 2. VERTICAL INTEGRATION |
4758 |
|
|
! -------------------- |
4759 |
|
|
|
4760 |
|
|
|
4761 |
|
|
ind1 = 0 |
4762 |
|
|
ind3 = 0 |
4763 |
|
|
ind4 = 1 |
4764 |
|
|
ind2 = 1 |
4765 |
|
|
|
4766 |
|
|
! * 2.3 EXCHANGE WITH TOP OF THE ATMOSPHERE |
4767 |
|
|
! ----------------------------------- |
4768 |
|
|
|
4769 |
|
|
|
4770 |
|
|
DO jk = 1, kflev |
4771 |
|
|
in = (jk-1)*ng1p1 + 1 |
4772 |
|
|
|
4773 |
|
|
DO ja = 1, kuaer |
4774 |
|
|
DO jl = 1, kdlon |
4775 |
|
|
zuu(jl, ja) = pabcu(jl, ja, in) |
4776 |
|
|
END DO |
4777 |
|
|
END DO |
4778 |
|
|
|
4779 |
|
|
|
4780 |
|
|
CALL lwtt_lmdar4(pgatop(1,1,1), pgbtop(1,1,1), zuu, ztt) |
4781 |
|
|
|
4782 |
|
|
DO jl = 1, kdlon |
4783 |
|
|
zcntop(jl) = pbtop(jl, 1)*ztt(jl, 1)*ztt(jl, 10) + & |
4784 |
|
|
pbtop(jl, 2)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
4785 |
|
|
pbtop(jl, 3)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
4786 |
|
|
pbtop(jl, 4)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
4787 |
|
|
pbtop(jl, 5)*ztt(jl, 3)*ztt(jl, 14) + pbtop(jl, 6)*ztt(jl, 6)*ztt(jl, & |
4788 |
|
|
15) |
4789 |
|
|
zfd(jl) = zcntop(jl) - pbint(jl, jk) - pdisd(jl, jk) - padjd(jl, jk) |
4790 |
|
|
pfluc(jl, 2, jk) = zfd(jl) |
4791 |
|
|
END DO |
4792 |
|
|
|
4793 |
|
|
END DO |
4794 |
|
|
|
4795 |
|
|
jk = kflev + 1 |
4796 |
|
|
in = (jk-1)*ng1p1 + 1 |
4797 |
|
|
|
4798 |
|
|
DO jl = 1, kdlon |
4799 |
|
|
zcntop(jl) = pbtop(jl, 1) + pbtop(jl, 2) + pbtop(jl, 3) + pbtop(jl, 4) + & |
4800 |
|
|
pbtop(jl, 5) + pbtop(jl, 6) |
4801 |
|
|
zfd(jl) = zcntop(jl) - pbint(jl, jk) - pdisd(jl, jk) - padjd(jl, jk) |
4802 |
|
|
pfluc(jl, 2, jk) = zfd(jl) |
4803 |
|
|
END DO |
4804 |
|
|
|
4805 |
|
|
! * 2.4 COOLING-TO-SPACE OF LAYERS ABOVE 10 HPA |
4806 |
|
|
! --------------------------------------- |
4807 |
|
|
|
4808 |
|
|
|
4809 |
|
|
|
4810 |
|
|
! * 2.4.1 INITIALIZATION |
4811 |
|
|
! -------------- |
4812 |
|
|
|
4813 |
|
|
|
4814 |
|
|
jlim = kflev |
4815 |
|
|
|
4816 |
|
|
IF (.NOT. levoigt) THEN |
4817 |
|
|
DO jk = kflev, 1, -1 |
4818 |
|
|
IF (ppmb(1,jk)<10.0) THEN |
4819 |
|
|
jlim = jk |
4820 |
|
|
END IF |
4821 |
|
|
END DO |
4822 |
|
|
END IF |
4823 |
|
|
klim = jlim |
4824 |
|
|
|
4825 |
|
|
IF (.NOT. levoigt) THEN |
4826 |
|
|
DO ja = 1, ktraer |
4827 |
|
|
DO jl = 1, kdlon |
4828 |
|
|
ztt1(jl, ja) = 1.0 |
4829 |
|
|
END DO |
4830 |
|
|
END DO |
4831 |
|
|
|
4832 |
|
|
! * 2.4.2 LOOP OVER LAYERS ABOVE 10 HPA |
4833 |
|
|
! ----------------------------- |
4834 |
|
|
|
4835 |
|
|
|
4836 |
|
|
DO jstra = kflev, jlim, -1 |
4837 |
|
|
jstru = (jstra-1)*ng1p1 + 1 |
4838 |
|
|
|
4839 |
|
|
DO ja = 1, kuaer |
4840 |
|
|
DO jl = 1, kdlon |
4841 |
|
|
zuu(jl, ja) = pabcu(jl, ja, jstru) |
4842 |
|
|
END DO |
4843 |
|
|
END DO |
4844 |
|
|
|
4845 |
|
|
|
4846 |
|
|
CALL lwtt_lmdar4(pga(1,1,1,jstra), pgb(1,1,1,jstra), zuu, ztt) |
4847 |
|
|
|
4848 |
|
|
DO jl = 1, kdlon |
4849 |
|
|
zctstr = (pb(jl,1,jstra)+pb(jl,1,jstra+1))* & |
4850 |
|
|
(ztt1(jl,1)*ztt1(jl,10)-ztt(jl,1)*ztt(jl,10)) + & |
4851 |
|
|
(pb(jl,2,jstra)+pb(jl,2,jstra+1))*(ztt1(jl,2)*ztt1(jl,7)*ztt1(jl,11 & |
4852 |
|
|
)-ztt(jl,2)*ztt(jl,7)*ztt(jl,11)) + (pb(jl,3,jstra)+pb(jl,3,jstra+1 & |
4853 |
|
|
))*(ztt1(jl,4)*ztt1(jl,8)*ztt1(jl,12)-ztt(jl,4)*ztt(jl,8)*ztt(jl,12 & |
4854 |
|
|
)) + (pb(jl,4,jstra)+pb(jl,4,jstra+1))*(ztt1(jl,5)*ztt1(jl,9)*ztt1( & |
4855 |
|
|
jl,13)-ztt(jl,5)*ztt(jl,9)*ztt(jl,13)) + (pb(jl,5,jstra)+pb(jl,5, & |
4856 |
|
|
jstra+1))*(ztt1(jl,3)*ztt1(jl,14)-ztt(jl,3)*ztt(jl,14)) + & |
4857 |
|
|
(pb(jl,6,jstra)+pb(jl,6,jstra+1))*(ztt1(jl,6)*ztt1(jl,15)-ztt(jl,6) & |
4858 |
|
|
*ztt(jl,15)) |
4859 |
|
|
pcts(jl, jstra) = zctstr*0.5 |
4860 |
|
|
END DO |
4861 |
|
|
DO ja = 1, ktraer |
4862 |
|
|
DO jl = 1, kdlon |
4863 |
|
|
ztt1(jl, ja) = ztt(jl, ja) |
4864 |
|
|
END DO |
4865 |
|
|
END DO |
4866 |
|
|
END DO |
4867 |
|
|
END IF |
4868 |
|
|
! Mise a zero de securite pour PCTS en cas de LEVOIGT |
4869 |
|
|
IF (levoigt) THEN |
4870 |
|
|
DO jstra = 1, kflev |
4871 |
|
|
DO jl = 1, kdlon |
4872 |
|
|
pcts(jl, jstra) = 0. |
4873 |
|
|
END DO |
4874 |
|
|
END DO |
4875 |
|
|
END IF |
4876 |
|
|
|
4877 |
|
|
! * 2.5 EXCHANGE WITH LOWER LIMIT |
4878 |
|
|
! ------------------------- |
4879 |
|
|
|
4880 |
|
|
|
4881 |
|
|
DO jl = 1, kdlon |
4882 |
|
|
zbgnd(jl) = pbsui(jl)*pemis(jl) - (1.-pemis(jl))*pfluc(jl, 2, 1) - & |
4883 |
|
|
pbint(jl, 1) |
4884 |
|
|
END DO |
4885 |
|
|
|
4886 |
|
|
jk = 1 |
4887 |
|
|
in = (jk-1)*ng1p1 + 1 |
4888 |
|
|
|
4889 |
|
|
DO jl = 1, kdlon |
4890 |
|
|
zcnsol(jl) = pbsur(jl, 1) + pbsur(jl, 2) + pbsur(jl, 3) + pbsur(jl, 4) + & |
4891 |
|
|
pbsur(jl, 5) + pbsur(jl, 6) |
4892 |
|
|
zcnsol(jl) = zcnsol(jl)*zbgnd(jl)/pbsui(jl) |
4893 |
|
|
zfu(jl) = zcnsol(jl) + pbint(jl, jk) - pdisu(jl, jk) - padju(jl, jk) |
4894 |
|
|
pfluc(jl, 1, jk) = zfu(jl) |
4895 |
|
|
END DO |
4896 |
|
|
|
4897 |
|
|
DO jk = 2, kflev + 1 |
4898 |
|
|
in = (jk-1)*ng1p1 + 1 |
4899 |
|
|
|
4900 |
|
|
|
4901 |
|
|
DO ja = 1, kuaer |
4902 |
|
|
DO jl = 1, kdlon |
4903 |
|
|
zuu(jl, ja) = pabcu(jl, ja, 1) - pabcu(jl, ja, in) |
4904 |
|
|
END DO |
4905 |
|
|
END DO |
4906 |
|
|
|
4907 |
|
|
|
4908 |
|
|
CALL lwtt_lmdar4(pgasur(1,1,1), pgbsur(1,1,1), zuu, ztt) |
4909 |
|
|
|
4910 |
|
|
DO jl = 1, kdlon |
4911 |
|
|
zcnsol(jl) = pbsur(jl, 1)*ztt(jl, 1)*ztt(jl, 10) + & |
4912 |
|
|
pbsur(jl, 2)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
4913 |
|
|
pbsur(jl, 3)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
4914 |
|
|
pbsur(jl, 4)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
4915 |
|
|
pbsur(jl, 5)*ztt(jl, 3)*ztt(jl, 14) + pbsur(jl, 6)*ztt(jl, 6)*ztt(jl, & |
4916 |
|
|
15) |
4917 |
|
|
zcnsol(jl) = zcnsol(jl)*zbgnd(jl)/pbsui(jl) |
4918 |
|
|
zfu(jl) = zcnsol(jl) + pbint(jl, jk) - pdisu(jl, jk) - padju(jl, jk) |
4919 |
|
|
pfluc(jl, 1, jk) = zfu(jl) |
4920 |
|
|
END DO |
4921 |
|
|
|
4922 |
|
|
|
4923 |
|
|
END DO |
4924 |
|
|
|
4925 |
|
|
! * 2.7 CLEAR-SKY FLUXES |
4926 |
|
|
! ---------------- |
4927 |
|
|
|
4928 |
|
|
|
4929 |
|
|
IF (.NOT. levoigt) THEN |
4930 |
|
|
DO jl = 1, kdlon |
4931 |
|
|
zfn10(jl) = pfluc(jl, 1, jlim) + pfluc(jl, 2, jlim) |
4932 |
|
|
END DO |
4933 |
|
|
DO jk = jlim + 1, kflev + 1 |
4934 |
|
|
DO jl = 1, kdlon |
4935 |
|
|
zfn10(jl) = zfn10(jl) + pcts(jl, jk-1) |
4936 |
|
|
pfluc(jl, 1, jk) = zfn10(jl) |
4937 |
|
|
pfluc(jl, 2, jk) = 0. |
4938 |
|
|
END DO |
4939 |
|
|
END DO |
4940 |
|
|
END IF |
4941 |
|
|
|
4942 |
|
|
! ------------------------------------------------------------------ |
4943 |
|
|
|
4944 |
|
|
RETURN |
4945 |
|
|
END SUBROUTINE lwvb_lmdar4 |
4946 |
|
|
SUBROUTINE lwvd_lmdar4(kuaer, ktraer, pabcu, pdbdt, pga, pgb, pcntrb, pdisd, & |
4947 |
|
|
pdisu) |
4948 |
|
|
USE dimphy |
4949 |
|
|
IMPLICIT NONE |
4950 |
|
|
include "raddimlw.h" |
4951 |
|
|
|
4952 |
|
|
! ----------------------------------------------------------------------- |
4953 |
|
|
! PURPOSE. |
4954 |
|
|
! -------- |
4955 |
|
|
! CARRIES OUT THE VERTICAL INTEGRATION ON THE DISTANT LAYERS |
4956 |
|
|
|
4957 |
|
|
! METHOD. |
4958 |
|
|
! ------- |
4959 |
|
|
|
4960 |
|
|
! 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
4961 |
|
|
! CONTRIBUTIONS OF THE DISTANT LAYERS USING TRAPEZOIDAL RULE |
4962 |
|
|
|
4963 |
|
|
! REFERENCE. |
4964 |
|
|
! ---------- |
4965 |
|
|
|
4966 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
4967 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
4968 |
|
|
|
4969 |
|
|
! AUTHOR. |
4970 |
|
|
! ------- |
4971 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
4972 |
|
|
|
4973 |
|
|
! MODIFICATIONS. |
4974 |
|
|
! -------------- |
4975 |
|
|
! ORIGINAL : 89-07-14 |
4976 |
|
|
! ----------------------------------------------------------------------- |
4977 |
|
|
! * ARGUMENTS: |
4978 |
|
|
|
4979 |
|
|
INTEGER kuaer, ktraer |
4980 |
|
|
|
4981 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
4982 |
|
|
REAL (KIND=8) pdbdt(kdlon, ninter, kflev) ! LAYER PLANCK FUNCTION GRADIENT |
4983 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
4984 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
4985 |
|
|
|
4986 |
|
|
REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! ENERGY EXCHANGE MATRIX |
4987 |
|
|
REAL (KIND=8) pdisd(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
4988 |
|
|
REAL (KIND=8) pdisu(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
4989 |
|
|
|
4990 |
|
|
! * LOCAL VARIABLES: |
4991 |
|
|
|
4992 |
|
|
REAL (KIND=8) zglayd(kdlon) |
4993 |
|
|
REAL (KIND=8) zglayu(kdlon) |
4994 |
|
|
REAL (KIND=8) ztt(kdlon, ntra) |
4995 |
|
|
REAL (KIND=8) ztt1(kdlon, ntra) |
4996 |
|
|
REAL (KIND=8) ztt2(kdlon, ntra) |
4997 |
|
|
|
4998 |
|
|
INTEGER jl, jk, ja, ikp1, ikn, ikd1, jkj, ikd2 |
4999 |
|
|
INTEGER ikjp1, ikm1, ikj, jlk, iku1, ijkl, iku2 |
5000 |
|
|
INTEGER ind1, ind2, ind3, ind4, itt |
5001 |
|
|
REAL (KIND=8) zww, zdzxdg, zdzxmg |
5002 |
|
|
|
5003 |
|
|
! * 1. INITIALIZATION |
5004 |
|
|
! -------------- |
5005 |
|
|
|
5006 |
|
|
|
5007 |
|
|
! * 1.1 INITIALIZE LAYER CONTRIBUTIONS |
5008 |
|
|
! ------------------------------ |
5009 |
|
|
|
5010 |
|
|
|
5011 |
|
|
DO jk = 1, kflev + 1 |
5012 |
|
|
DO jl = 1, kdlon |
5013 |
|
|
pdisd(jl, jk) = 0. |
5014 |
|
|
pdisu(jl, jk) = 0. |
5015 |
|
|
END DO |
5016 |
|
|
END DO |
5017 |
|
|
|
5018 |
|
|
! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
5019 |
|
|
! --------------------------------- |
5020 |
|
|
|
5021 |
|
|
|
5022 |
|
|
|
5023 |
|
|
DO ja = 1, ntra |
5024 |
|
|
DO jl = 1, kdlon |
5025 |
|
|
ztt(jl, ja) = 1.0 |
5026 |
|
|
ztt1(jl, ja) = 1.0 |
5027 |
|
|
ztt2(jl, ja) = 1.0 |
5028 |
|
|
END DO |
5029 |
|
|
END DO |
5030 |
|
|
|
5031 |
|
|
! ------------------------------------------------------------------ |
5032 |
|
|
|
5033 |
|
|
! * 2. VERTICAL INTEGRATION |
5034 |
|
|
! -------------------- |
5035 |
|
|
|
5036 |
|
|
|
5037 |
|
|
ind1 = 0 |
5038 |
|
|
ind3 = 0 |
5039 |
|
|
ind4 = 1 |
5040 |
|
|
ind2 = 1 |
5041 |
|
|
|
5042 |
|
|
! * 2.2 CONTRIBUTION FROM DISTANT LAYERS |
5043 |
|
|
! --------------------------------- |
5044 |
|
|
|
5045 |
|
|
|
5046 |
|
|
|
5047 |
|
|
! * 2.2.1 DISTANT AND ABOVE LAYERS |
5048 |
|
|
! ------------------------ |
5049 |
|
|
|
5050 |
|
|
|
5051 |
|
|
|
5052 |
|
|
|
5053 |
|
|
! * 2.2.2 FIRST UPPER LEVEL |
5054 |
|
|
! ----------------- |
5055 |
|
|
|
5056 |
|
|
|
5057 |
|
|
DO jk = 1, kflev - 1 |
5058 |
|
|
ikp1 = jk + 1 |
5059 |
|
|
ikn = (jk-1)*ng1p1 + 1 |
5060 |
|
|
ikd1 = jk*ng1p1 + 1 |
5061 |
|
|
|
5062 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), pabcu(1,1,ikn), & |
5063 |
|
|
pabcu(1,1,ikd1), ztt1) |
5064 |
|
|
|
5065 |
|
|
! * 2.2.3 HIGHER UP |
5066 |
|
|
! --------- |
5067 |
|
|
|
5068 |
|
|
|
5069 |
|
|
itt = 1 |
5070 |
|
|
DO jkj = ikp1, kflev |
5071 |
|
|
IF (itt==1) THEN |
5072 |
|
|
itt = 2 |
5073 |
|
|
ELSE |
5074 |
|
|
itt = 1 |
5075 |
|
|
END IF |
5076 |
|
|
ikjp1 = jkj + 1 |
5077 |
|
|
ikd2 = jkj*ng1p1 + 1 |
5078 |
|
|
|
5079 |
|
|
IF (itt==1) THEN |
5080 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,jkj), pgb(1,1,1,jkj), pabcu(1,1,ikn), & |
5081 |
|
|
pabcu(1,1,ikd2), ztt1) |
5082 |
|
|
ELSE |
5083 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,jkj), pgb(1,1,1,jkj), pabcu(1,1,ikn), & |
5084 |
|
|
pabcu(1,1,ikd2), ztt2) |
5085 |
|
|
END IF |
5086 |
|
|
|
5087 |
|
|
DO ja = 1, ktraer |
5088 |
|
|
DO jl = 1, kdlon |
5089 |
|
|
ztt(jl, ja) = (ztt1(jl,ja)+ztt2(jl,ja))*0.5 |
5090 |
|
|
END DO |
5091 |
|
|
END DO |
5092 |
|
|
|
5093 |
|
|
DO jl = 1, kdlon |
5094 |
|
|
zww = pdbdt(jl, 1, jkj)*ztt(jl, 1)*ztt(jl, 10) + & |
5095 |
|
|
pdbdt(jl, 2, jkj)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
5096 |
|
|
pdbdt(jl, 3, jkj)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
5097 |
|
|
pdbdt(jl, 4, jkj)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
5098 |
|
|
pdbdt(jl, 5, jkj)*ztt(jl, 3)*ztt(jl, 14) + & |
5099 |
|
|
pdbdt(jl, 6, jkj)*ztt(jl, 6)*ztt(jl, 15) |
5100 |
|
|
zglayd(jl) = zww |
5101 |
|
|
zdzxdg = zglayd(jl) |
5102 |
|
|
pdisd(jl, jk) = pdisd(jl, jk) + zdzxdg |
5103 |
|
|
pcntrb(jl, jk, ikjp1) = zdzxdg |
5104 |
|
|
END DO |
5105 |
|
|
|
5106 |
|
|
|
5107 |
|
|
END DO |
5108 |
|
|
END DO |
5109 |
|
|
|
5110 |
|
|
! * 2.2.4 DISTANT AND BELOW LAYERS |
5111 |
|
|
! ------------------------ |
5112 |
|
|
|
5113 |
|
|
|
5114 |
|
|
|
5115 |
|
|
|
5116 |
|
|
! * 2.2.5 FIRST LOWER LEVEL |
5117 |
|
|
! ----------------- |
5118 |
|
|
|
5119 |
|
|
|
5120 |
|
|
DO jk = 3, kflev + 1 |
5121 |
|
|
ikn = (jk-1)*ng1p1 + 1 |
5122 |
|
|
ikm1 = jk - 1 |
5123 |
|
|
ikj = jk - 2 |
5124 |
|
|
iku1 = ikj*ng1p1 + 1 |
5125 |
|
|
|
5126 |
|
|
|
5127 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,ikj), pgb(1,1,1,ikj), pabcu(1,1,iku1), & |
5128 |
|
|
pabcu(1,1,ikn), ztt1) |
5129 |
|
|
|
5130 |
|
|
! * 2.2.6 DOWN BELOW |
5131 |
|
|
! ---------- |
5132 |
|
|
|
5133 |
|
|
|
5134 |
|
|
itt = 1 |
5135 |
|
|
DO jlk = 1, ikj |
5136 |
|
|
IF (itt==1) THEN |
5137 |
|
|
itt = 2 |
5138 |
|
|
ELSE |
5139 |
|
|
itt = 1 |
5140 |
|
|
END IF |
5141 |
|
|
ijkl = ikm1 - jlk |
5142 |
|
|
iku2 = (ijkl-1)*ng1p1 + 1 |
5143 |
|
|
|
5144 |
|
|
|
5145 |
|
|
IF (itt==1) THEN |
5146 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,ijkl), pgb(1,1,1,ijkl), pabcu(1,1,iku2), & |
5147 |
|
|
pabcu(1,1,ikn), ztt1) |
5148 |
|
|
ELSE |
5149 |
|
|
CALL lwttm_lmdar4(pga(1,1,1,ijkl), pgb(1,1,1,ijkl), pabcu(1,1,iku2), & |
5150 |
|
|
pabcu(1,1,ikn), ztt2) |
5151 |
|
|
END IF |
5152 |
|
|
|
5153 |
|
|
DO ja = 1, ktraer |
5154 |
|
|
DO jl = 1, kdlon |
5155 |
|
|
ztt(jl, ja) = (ztt1(jl,ja)+ztt2(jl,ja))*0.5 |
5156 |
|
|
END DO |
5157 |
|
|
END DO |
5158 |
|
|
|
5159 |
|
|
DO jl = 1, kdlon |
5160 |
|
|
zww = pdbdt(jl, 1, ijkl)*ztt(jl, 1)*ztt(jl, 10) + & |
5161 |
|
|
pdbdt(jl, 2, ijkl)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
5162 |
|
|
pdbdt(jl, 3, ijkl)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
5163 |
|
|
pdbdt(jl, 4, ijkl)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
5164 |
|
|
pdbdt(jl, 5, ijkl)*ztt(jl, 3)*ztt(jl, 14) + & |
5165 |
|
|
pdbdt(jl, 6, ijkl)*ztt(jl, 6)*ztt(jl, 15) |
5166 |
|
|
zglayu(jl) = zww |
5167 |
|
|
zdzxmg = zglayu(jl) |
5168 |
|
|
pdisu(jl, jk) = pdisu(jl, jk) + zdzxmg |
5169 |
|
|
pcntrb(jl, jk, ijkl) = zdzxmg |
5170 |
|
|
END DO |
5171 |
|
|
|
5172 |
|
|
|
5173 |
|
|
END DO |
5174 |
|
|
END DO |
5175 |
|
|
|
5176 |
|
|
RETURN |
5177 |
|
|
END SUBROUTINE lwvd_lmdar4 |
5178 |
|
|
SUBROUTINE lwvn_lmdar4(kuaer, ktraer, pabcu, pdbsl, pga, pgb, padjd, padju, & |
5179 |
|
|
pcntrb, pdbdt) |
5180 |
|
|
USE dimphy |
5181 |
|
|
USE radiation_ar4_param, ONLY: wg1 |
5182 |
|
|
IMPLICIT NONE |
5183 |
|
|
include "raddimlw.h" |
5184 |
|
|
|
5185 |
|
|
! ----------------------------------------------------------------------- |
5186 |
|
|
! PURPOSE. |
5187 |
|
|
! -------- |
5188 |
|
|
! CARRIES OUT THE VERTICAL INTEGRATION ON NEARBY LAYERS |
5189 |
|
|
! TO GIVE LONGWAVE FLUXES OR RADIANCES |
5190 |
|
|
|
5191 |
|
|
! METHOD. |
5192 |
|
|
! ------- |
5193 |
|
|
|
5194 |
|
|
! 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
5195 |
|
|
! CONTRIBUTIONS OF THE ADJACENT LAYERS USING A GAUSSIAN QUADRATURE |
5196 |
|
|
|
5197 |
|
|
! REFERENCE. |
5198 |
|
|
! ---------- |
5199 |
|
|
|
5200 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
5201 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
5202 |
|
|
|
5203 |
|
|
! AUTHOR. |
5204 |
|
|
! ------- |
5205 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
5206 |
|
|
|
5207 |
|
|
! MODIFICATIONS. |
5208 |
|
|
! -------------- |
5209 |
|
|
! ORIGINAL : 89-07-14 |
5210 |
|
|
! ----------------------------------------------------------------------- |
5211 |
|
|
|
5212 |
|
|
! * ARGUMENTS: |
5213 |
|
|
|
5214 |
|
|
INTEGER kuaer, ktraer |
5215 |
|
|
|
5216 |
|
|
REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
5217 |
|
|
REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
5218 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
5219 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
5220 |
|
|
|
5221 |
|
|
REAL (KIND=8) padjd(kdlon, kflev+1) ! CONTRIBUTION OF ADJACENT LAYERS |
5222 |
|
|
REAL (KIND=8) padju(kdlon, kflev+1) ! CONTRIBUTION OF ADJACENT LAYERS |
5223 |
|
|
REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
5224 |
|
|
REAL (KIND=8) pdbdt(kdlon, ninter, kflev) ! LAYER PLANCK FUNCTION GRADIENT |
5225 |
|
|
|
5226 |
|
|
! * LOCAL ARRAYS: |
5227 |
|
|
|
5228 |
|
|
REAL (KIND=8) zglayd(kdlon) |
5229 |
|
|
REAL (KIND=8) zglayu(kdlon) |
5230 |
|
|
REAL (KIND=8) ztt(kdlon, ntra) |
5231 |
|
|
REAL (KIND=8) ztt1(kdlon, ntra) |
5232 |
|
|
REAL (KIND=8) ztt2(kdlon, ntra) |
5233 |
|
|
REAL (KIND=8) zuu(kdlon, nua) |
5234 |
|
|
|
5235 |
|
|
INTEGER jk, jl, ja, im12, ind, inu, ixu, jg |
5236 |
|
|
INTEGER ixd, ibs, idd, imu, jk1, jk2, jnu |
5237 |
|
|
REAL (KIND=8) zwtr |
5238 |
|
|
|
5239 |
|
|
! ----------------------------------------------------------------------- |
5240 |
|
|
|
5241 |
|
|
! * 1. INITIALIZATION |
5242 |
|
|
! -------------- |
5243 |
|
|
|
5244 |
|
|
|
5245 |
|
|
! * 1.1 INITIALIZE LAYER CONTRIBUTIONS |
5246 |
|
|
! ------------------------------ |
5247 |
|
|
|
5248 |
|
|
|
5249 |
|
|
DO jk = 1, kflev + 1 |
5250 |
|
|
DO jl = 1, kdlon |
5251 |
|
|
padjd(jl, jk) = 0. |
5252 |
|
|
padju(jl, jk) = 0. |
5253 |
|
|
END DO |
5254 |
|
|
END DO |
5255 |
|
|
|
5256 |
|
|
! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
5257 |
|
|
! --------------------------------- |
5258 |
|
|
|
5259 |
|
|
|
5260 |
|
|
DO ja = 1, ntra |
5261 |
|
|
DO jl = 1, kdlon |
5262 |
|
|
ztt(jl, ja) = 1.0 |
5263 |
|
|
ztt1(jl, ja) = 1.0 |
5264 |
|
|
ztt2(jl, ja) = 1.0 |
5265 |
|
|
END DO |
5266 |
|
|
END DO |
5267 |
|
|
|
5268 |
|
|
DO ja = 1, nua |
5269 |
|
|
DO jl = 1, kdlon |
5270 |
|
|
zuu(jl, ja) = 0. |
5271 |
|
|
END DO |
5272 |
|
|
END DO |
5273 |
|
|
|
5274 |
|
|
! ------------------------------------------------------------------ |
5275 |
|
|
|
5276 |
|
|
! * 2. VERTICAL INTEGRATION |
5277 |
|
|
! -------------------- |
5278 |
|
|
|
5279 |
|
|
|
5280 |
|
|
|
5281 |
|
|
! * 2.1 CONTRIBUTION FROM ADJACENT LAYERS |
5282 |
|
|
! --------------------------------- |
5283 |
|
|
|
5284 |
|
|
|
5285 |
|
|
DO jk = 1, kflev |
5286 |
|
|
! * 2.1.1 DOWNWARD LAYERS |
5287 |
|
|
! --------------- |
5288 |
|
|
|
5289 |
|
|
|
5290 |
|
|
im12 = 2*(jk-1) |
5291 |
|
|
ind = (jk-1)*ng1p1 + 1 |
5292 |
|
|
ixd = ind |
5293 |
|
|
inu = jk*ng1p1 + 1 |
5294 |
|
|
ixu = ind |
5295 |
|
|
|
5296 |
|
|
DO jl = 1, kdlon |
5297 |
|
|
zglayd(jl) = 0. |
5298 |
|
|
zglayu(jl) = 0. |
5299 |
|
|
END DO |
5300 |
|
|
|
5301 |
|
|
DO jg = 1, ng1 |
5302 |
|
|
ibs = im12 + jg |
5303 |
|
|
idd = ixd + jg |
5304 |
|
|
DO ja = 1, kuaer |
5305 |
|
|
DO jl = 1, kdlon |
5306 |
|
|
zuu(jl, ja) = pabcu(jl, ja, ind) - pabcu(jl, ja, idd) |
5307 |
|
|
END DO |
5308 |
|
|
END DO |
5309 |
|
|
|
5310 |
|
|
|
5311 |
|
|
CALL lwtt_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), zuu, ztt) |
5312 |
|
|
|
5313 |
|
|
DO jl = 1, kdlon |
5314 |
|
|
zwtr = pdbsl(jl, 1, ibs)*ztt(jl, 1)*ztt(jl, 10) + & |
5315 |
|
|
pdbsl(jl, 2, ibs)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
5316 |
|
|
pdbsl(jl, 3, ibs)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
5317 |
|
|
pdbsl(jl, 4, ibs)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
5318 |
|
|
pdbsl(jl, 5, ibs)*ztt(jl, 3)*ztt(jl, 14) + & |
5319 |
|
|
pdbsl(jl, 6, ibs)*ztt(jl, 6)*ztt(jl, 15) |
5320 |
|
|
zglayd(jl) = zglayd(jl) + zwtr*wg1(jg) |
5321 |
|
|
END DO |
5322 |
|
|
|
5323 |
|
|
! * 2.1.2 DOWNWARD LAYERS |
5324 |
|
|
! --------------- |
5325 |
|
|
|
5326 |
|
|
|
5327 |
|
|
imu = ixu + jg |
5328 |
|
|
DO ja = 1, kuaer |
5329 |
|
|
DO jl = 1, kdlon |
5330 |
|
|
zuu(jl, ja) = pabcu(jl, ja, imu) - pabcu(jl, ja, inu) |
5331 |
|
|
END DO |
5332 |
|
|
END DO |
5333 |
|
|
|
5334 |
|
|
|
5335 |
|
|
CALL lwtt_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), zuu, ztt) |
5336 |
|
|
|
5337 |
|
|
DO jl = 1, kdlon |
5338 |
|
|
zwtr = pdbsl(jl, 1, ibs)*ztt(jl, 1)*ztt(jl, 10) + & |
5339 |
|
|
pdbsl(jl, 2, ibs)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
5340 |
|
|
pdbsl(jl, 3, ibs)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
5341 |
|
|
pdbsl(jl, 4, ibs)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
5342 |
|
|
pdbsl(jl, 5, ibs)*ztt(jl, 3)*ztt(jl, 14) + & |
5343 |
|
|
pdbsl(jl, 6, ibs)*ztt(jl, 6)*ztt(jl, 15) |
5344 |
|
|
zglayu(jl) = zglayu(jl) + zwtr*wg1(jg) |
5345 |
|
|
END DO |
5346 |
|
|
|
5347 |
|
|
END DO |
5348 |
|
|
|
5349 |
|
|
DO jl = 1, kdlon |
5350 |
|
|
padjd(jl, jk) = zglayd(jl) |
5351 |
|
|
pcntrb(jl, jk, jk+1) = zglayd(jl) |
5352 |
|
|
padju(jl, jk+1) = zglayu(jl) |
5353 |
|
|
pcntrb(jl, jk+1, jk) = zglayu(jl) |
5354 |
|
|
pcntrb(jl, jk, jk) = 0.0 |
5355 |
|
|
END DO |
5356 |
|
|
|
5357 |
|
|
END DO |
5358 |
|
|
|
5359 |
|
|
DO jk = 1, kflev |
5360 |
|
|
jk2 = 2*jk |
5361 |
|
|
jk1 = jk2 - 1 |
5362 |
|
|
DO jnu = 1, ninter |
5363 |
|
|
DO jl = 1, kdlon |
5364 |
|
|
pdbdt(jl, jnu, jk) = pdbsl(jl, jnu, jk1) + pdbsl(jl, jnu, jk2) |
5365 |
|
|
END DO |
5366 |
|
|
END DO |
5367 |
|
|
END DO |
5368 |
|
|
|
5369 |
|
|
RETURN |
5370 |
|
|
|
5371 |
|
|
END SUBROUTINE lwvn_lmdar4 |
5372 |
|
|
SUBROUTINE lwtt_lmdar4(pga, pgb, puu, ptt) |
5373 |
|
|
USE dimphy |
5374 |
|
|
IMPLICIT NONE |
5375 |
|
|
include "raddimlw.h" |
5376 |
|
|
|
5377 |
|
|
! ----------------------------------------------------------------------- |
5378 |
|
|
! PURPOSE. |
5379 |
|
|
! -------- |
5380 |
|
|
! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
5381 |
|
|
! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
5382 |
|
|
! INTERVALS. |
5383 |
|
|
|
5384 |
|
|
! METHOD. |
5385 |
|
|
! ------- |
5386 |
|
|
|
5387 |
|
|
! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
5388 |
|
|
! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
5389 |
|
|
! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
5390 |
|
|
! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
5391 |
|
|
! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
5392 |
|
|
|
5393 |
|
|
! REFERENCE. |
5394 |
|
|
! ---------- |
5395 |
|
|
|
5396 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
5397 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
5398 |
|
|
|
5399 |
|
|
! AUTHOR. |
5400 |
|
|
! ------- |
5401 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
5402 |
|
|
|
5403 |
|
|
! MODIFICATIONS. |
5404 |
|
|
! -------------- |
5405 |
|
|
! ORIGINAL : 88-12-15 |
5406 |
|
|
|
5407 |
|
|
! ----------------------------------------------------------------------- |
5408 |
|
|
REAL (KIND=8) o1h, o2h |
5409 |
|
|
PARAMETER (o1h=2230.) |
5410 |
|
|
PARAMETER (o2h=100.) |
5411 |
|
|
REAL (KIND=8) rpialf0 |
5412 |
|
|
PARAMETER (rpialf0=2.0) |
5413 |
|
|
|
5414 |
|
|
! * ARGUMENTS: |
5415 |
|
|
|
5416 |
|
|
REAL (KIND=8) puu(kdlon, nua) |
5417 |
|
|
REAL (KIND=8) ptt(kdlon, ntra) |
5418 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2) |
5419 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2) |
5420 |
|
|
|
5421 |
|
|
! * LOCAL VARIABLES: |
5422 |
|
|
|
5423 |
|
|
REAL (KIND=8) zz, zxd, zxn |
5424 |
|
|
REAL (KIND=8) zpu, zpu10, zpu11, zpu12, zpu13 |
5425 |
|
|
REAL (KIND=8) zeu, zeu10, zeu11, zeu12, zeu13 |
5426 |
|
|
REAL (KIND=8) zx, zy, zsq1, zsq2, zvxy, zuxy |
5427 |
|
|
REAL (KIND=8) zaercn, zto1, zto2, zxch4, zych4, zxn2o, zyn2o |
5428 |
|
|
REAL (KIND=8) zsqn21, zodn21, zsqh42, zodh42 |
5429 |
|
|
REAL (KIND=8) zsqh41, zodh41, zsqn22, zodn22, zttf11, zttf12 |
5430 |
|
|
REAL (KIND=8) zuu11, zuu12, za11, za12 |
5431 |
|
|
INTEGER jl, ja |
5432 |
|
|
|
5433 |
|
|
! ------------------------------------------------------------------ |
5434 |
|
|
|
5435 |
|
|
! * 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
5436 |
|
|
! ----------------------------------------------- |
5437 |
|
|
|
5438 |
|
|
|
5439 |
|
|
|
5440 |
|
|
! cdir collapse |
5441 |
|
|
DO ja = 1, 8 |
5442 |
|
|
DO jl = 1, kdlon |
5443 |
|
|
zz = sqrt(puu(jl,ja)) |
5444 |
|
|
! ZXD(JL,1)=PGB( JL, 1,1) + ZZ(JL, 1)*(PGB( JL, 1,2) + ZZ(JL, 1)) |
5445 |
|
|
! ZXN(JL,1)=PGA( JL, 1,1) + ZZ(JL, 1)*(PGA( JL, 1,2) ) |
5446 |
|
|
! PTT(JL,1)=ZXN(JL,1)/ZXD(JL,1) |
5447 |
|
|
zxd = pgb(jl, ja, 1) + zz*(pgb(jl,ja,2)+zz) |
5448 |
|
|
zxn = pga(jl, ja, 1) + zz*(pga(jl,ja,2)) |
5449 |
|
|
ptt(jl, ja) = zxn/zxd |
5450 |
|
|
END DO |
5451 |
|
|
END DO |
5452 |
|
|
|
5453 |
|
|
! ------------------------------------------------------------------ |
5454 |
|
|
|
5455 |
|
|
! * 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
5456 |
|
|
! --------------------------------------------------- |
5457 |
|
|
|
5458 |
|
|
|
5459 |
|
|
DO jl = 1, kdlon |
5460 |
|
|
ptt(jl, 9) = ptt(jl, 8) |
5461 |
|
|
|
5462 |
|
|
! - CONTINUUM ABSORPTION: E- AND P-TYPE |
5463 |
|
|
|
5464 |
|
|
zpu = 0.002*puu(jl, 10) |
5465 |
|
|
zpu10 = 112.*zpu |
5466 |
|
|
zpu11 = 6.25*zpu |
5467 |
|
|
zpu12 = 5.00*zpu |
5468 |
|
|
zpu13 = 80.0*zpu |
5469 |
|
|
zeu = puu(jl, 11) |
5470 |
|
|
zeu10 = 12.*zeu |
5471 |
|
|
zeu11 = 6.25*zeu |
5472 |
|
|
zeu12 = 5.00*zeu |
5473 |
|
|
zeu13 = 80.0*zeu |
5474 |
|
|
|
5475 |
|
|
! - OZONE ABSORPTION |
5476 |
|
|
|
5477 |
|
|
zx = puu(jl, 12) |
5478 |
|
|
zy = puu(jl, 13) |
5479 |
|
|
zuxy = 4.*zx*zx/(rpialf0*zy) |
5480 |
|
|
zsq1 = sqrt(1.+o1h*zuxy) - 1. |
5481 |
|
|
zsq2 = sqrt(1.+o2h*zuxy) - 1. |
5482 |
|
|
zvxy = rpialf0*zy/(2.*zx) |
5483 |
|
|
zaercn = puu(jl, 17) + zeu12 + zpu12 |
5484 |
|
|
zto1 = exp(-zvxy*zsq1-zaercn) |
5485 |
|
|
zto2 = exp(-zvxy*zsq2-zaercn) |
5486 |
|
|
|
5487 |
|
|
! -- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
5488 |
|
|
|
5489 |
|
|
! * CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
5490 |
|
|
|
5491 |
|
|
! NEXOTIC=1 |
5492 |
|
|
! IF (NEXOTIC.EQ.1) THEN |
5493 |
|
|
zxch4 = puu(jl, 19) |
5494 |
|
|
zych4 = puu(jl, 20) |
5495 |
|
|
zuxy = 4.*zxch4*zxch4/(0.103*zych4) |
5496 |
|
|
zsqh41 = sqrt(1.+33.7*zuxy) - 1. |
5497 |
|
|
zvxy = 0.103*zych4/(2.*zxch4) |
5498 |
|
|
zodh41 = zvxy*zsqh41 |
5499 |
|
|
|
5500 |
|
|
! * N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
5501 |
|
|
|
5502 |
|
|
zxn2o = puu(jl, 21) |
5503 |
|
|
zyn2o = puu(jl, 22) |
5504 |
|
|
zuxy = 4.*zxn2o*zxn2o/(0.416*zyn2o) |
5505 |
|
|
zsqn21 = sqrt(1.+21.3*zuxy) - 1. |
5506 |
|
|
zvxy = 0.416*zyn2o/(2.*zxn2o) |
5507 |
|
|
zodn21 = zvxy*zsqn21 |
5508 |
|
|
|
5509 |
|
|
! * CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
5510 |
|
|
|
5511 |
|
|
zuxy = 4.*zxch4*zxch4/(0.113*zych4) |
5512 |
|
|
zsqh42 = sqrt(1.+400.*zuxy) - 1. |
5513 |
|
|
zvxy = 0.113*zych4/(2.*zxch4) |
5514 |
|
|
zodh42 = zvxy*zsqh42 |
5515 |
|
|
|
5516 |
|
|
! * N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
5517 |
|
|
|
5518 |
|
|
zuxy = 4.*zxn2o*zxn2o/(0.197*zyn2o) |
5519 |
|
|
zsqn22 = sqrt(1.+2000.*zuxy) - 1. |
5520 |
|
|
zvxy = 0.197*zyn2o/(2.*zxn2o) |
5521 |
|
|
zodn22 = zvxy*zsqn22 |
5522 |
|
|
|
5523 |
|
|
! * CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
5524 |
|
|
|
5525 |
|
|
za11 = 2.*puu(jl, 23)*4.404E+05 |
5526 |
|
|
zttf11 = 1. - za11*0.003225 |
5527 |
|
|
|
5528 |
|
|
! * CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
5529 |
|
|
|
5530 |
|
|
za12 = 2.*puu(jl, 24)*6.7435E+05 |
5531 |
|
|
zttf12 = 1. - za12*0.003225 |
5532 |
|
|
|
5533 |
|
|
zuu11 = -puu(jl, 15) - zeu10 - zpu10 |
5534 |
|
|
zuu12 = -puu(jl, 16) - zeu11 - zpu11 - zodh41 - zodn21 |
5535 |
|
|
ptt(jl, 10) = exp(-puu(jl,14)) |
5536 |
|
|
ptt(jl, 11) = exp(zuu11) |
5537 |
|
|
ptt(jl, 12) = exp(zuu12)*zttf11*zttf12 |
5538 |
|
|
ptt(jl, 13) = 0.7554*zto1 + 0.2446*zto2 |
5539 |
|
|
ptt(jl, 14) = ptt(jl, 10)*exp(-zeu13-zpu13) |
5540 |
|
|
ptt(jl, 15) = exp(-puu(jl,14)-zodh42-zodn22) |
5541 |
|
|
END DO |
5542 |
|
|
|
5543 |
|
|
RETURN |
5544 |
|
|
END SUBROUTINE lwtt_lmdar4 |
5545 |
|
|
SUBROUTINE lwttm_lmdar4(pga, pgb, puu1, puu2, ptt) |
5546 |
|
|
USE dimphy |
5547 |
|
|
IMPLICIT NONE |
5548 |
|
|
include "raddimlw.h" |
5549 |
|
|
|
5550 |
|
|
! ------------------------------------------------------------------ |
5551 |
|
|
! PURPOSE. |
5552 |
|
|
! -------- |
5553 |
|
|
! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
5554 |
|
|
! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
5555 |
|
|
! INTERVALS. |
5556 |
|
|
|
5557 |
|
|
! METHOD. |
5558 |
|
|
! ------- |
5559 |
|
|
|
5560 |
|
|
! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
5561 |
|
|
! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
5562 |
|
|
! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
5563 |
|
|
! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
5564 |
|
|
! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
5565 |
|
|
|
5566 |
|
|
! REFERENCE. |
5567 |
|
|
! ---------- |
5568 |
|
|
|
5569 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
5570 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
5571 |
|
|
|
5572 |
|
|
! AUTHOR. |
5573 |
|
|
! ------- |
5574 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
5575 |
|
|
|
5576 |
|
|
! MODIFICATIONS. |
5577 |
|
|
! -------------- |
5578 |
|
|
! ORIGINAL : 88-12-15 |
5579 |
|
|
|
5580 |
|
|
! ----------------------------------------------------------------------- |
5581 |
|
|
REAL (KIND=8) o1h, o2h |
5582 |
|
|
PARAMETER (o1h=2230.) |
5583 |
|
|
PARAMETER (o2h=100.) |
5584 |
|
|
REAL (KIND=8) rpialf0 |
5585 |
|
|
PARAMETER (rpialf0=2.0) |
5586 |
|
|
|
5587 |
|
|
! * ARGUMENTS: |
5588 |
|
|
|
5589 |
|
|
REAL (KIND=8) pga(kdlon, 8, 2) ! PADE APPROXIMANTS |
5590 |
|
|
REAL (KIND=8) pgb(kdlon, 8, 2) ! PADE APPROXIMANTS |
5591 |
|
|
REAL (KIND=8) puu1(kdlon, nua) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 1 |
5592 |
|
|
REAL (KIND=8) puu2(kdlon, nua) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 2 |
5593 |
|
|
REAL (KIND=8) ptt(kdlon, ntra) ! TRANSMISSION FUNCTIONS |
5594 |
|
|
|
5595 |
|
|
! * LOCAL VARIABLES: |
5596 |
|
|
|
5597 |
|
|
INTEGER ja, jl |
5598 |
|
|
REAL (KIND=8) zz, zxd, zxn |
5599 |
|
|
REAL (KIND=8) zpu, zpu10, zpu11, zpu12, zpu13 |
5600 |
|
|
REAL (KIND=8) zeu, zeu10, zeu11, zeu12, zeu13 |
5601 |
|
|
REAL (KIND=8) zx, zy, zuxy, zsq1, zsq2, zvxy, zaercn, zto1, zto2 |
5602 |
|
|
REAL (KIND=8) zxch4, zych4, zsqh41, zodh41 |
5603 |
|
|
REAL (KIND=8) zxn2o, zyn2o, zsqn21, zodn21, zsqh42, zodh42 |
5604 |
|
|
REAL (KIND=8) zsqn22, zodn22, za11, zttf11, za12, zttf12 |
5605 |
|
|
REAL (KIND=8) zuu11, zuu12 |
5606 |
|
|
|
5607 |
|
|
! ------------------------------------------------------------------ |
5608 |
|
|
|
5609 |
|
|
! * 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
5610 |
|
|
! ----------------------------------------------- |
5611 |
|
|
|
5612 |
|
|
|
5613 |
|
|
|
5614 |
|
|
|
5615 |
|
|
! CDIR ON_ADB(PUU1) |
5616 |
|
|
! CDIR ON_ADB(PUU2) |
5617 |
|
|
! CDIR COLLAPSE |
5618 |
|
|
DO ja = 1, 8 |
5619 |
|
|
DO jl = 1, kdlon |
5620 |
|
|
zz = sqrt(puu1(jl,ja)-puu2(jl,ja)) |
5621 |
|
|
zxd = pgb(jl, ja, 1) + zz*(pgb(jl,ja,2)+zz) |
5622 |
|
|
zxn = pga(jl, ja, 1) + zz*(pga(jl,ja,2)) |
5623 |
|
|
ptt(jl, ja) = zxn/zxd |
5624 |
|
|
END DO |
5625 |
|
|
END DO |
5626 |
|
|
|
5627 |
|
|
! ------------------------------------------------------------------ |
5628 |
|
|
|
5629 |
|
|
! * 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
5630 |
|
|
! --------------------------------------------------- |
5631 |
|
|
|
5632 |
|
|
|
5633 |
|
|
DO jl = 1, kdlon |
5634 |
|
|
ptt(jl, 9) = ptt(jl, 8) |
5635 |
|
|
|
5636 |
|
|
! - CONTINUUM ABSORPTION: E- AND P-TYPE |
5637 |
|
|
|
5638 |
|
|
zpu = 0.002*(puu1(jl,10)-puu2(jl,10)) |
5639 |
|
|
zpu10 = 112.*zpu |
5640 |
|
|
zpu11 = 6.25*zpu |
5641 |
|
|
zpu12 = 5.00*zpu |
5642 |
|
|
zpu13 = 80.0*zpu |
5643 |
|
|
zeu = (puu1(jl,11)-puu2(jl,11)) |
5644 |
|
|
zeu10 = 12.*zeu |
5645 |
|
|
zeu11 = 6.25*zeu |
5646 |
|
|
zeu12 = 5.00*zeu |
5647 |
|
|
zeu13 = 80.0*zeu |
5648 |
|
|
|
5649 |
|
|
! - OZONE ABSORPTION |
5650 |
|
|
|
5651 |
|
|
zx = (puu1(jl,12)-puu2(jl,12)) |
5652 |
|
|
zy = (puu1(jl,13)-puu2(jl,13)) |
5653 |
|
|
zuxy = 4.*zx*zx/(rpialf0*zy) |
5654 |
|
|
zsq1 = sqrt(1.+o1h*zuxy) - 1. |
5655 |
|
|
zsq2 = sqrt(1.+o2h*zuxy) - 1. |
5656 |
|
|
zvxy = rpialf0*zy/(2.*zx) |
5657 |
|
|
zaercn = (puu1(jl,17)-puu2(jl,17)) + zeu12 + zpu12 |
5658 |
|
|
zto1 = exp(-zvxy*zsq1-zaercn) |
5659 |
|
|
zto2 = exp(-zvxy*zsq2-zaercn) |
5660 |
|
|
|
5661 |
|
|
! -- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
5662 |
|
|
|
5663 |
|
|
! * CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
5664 |
|
|
|
5665 |
|
|
zxch4 = (puu1(jl,19)-puu2(jl,19)) |
5666 |
|
|
zych4 = (puu1(jl,20)-puu2(jl,20)) |
5667 |
|
|
zuxy = 4.*zxch4*zxch4/(0.103*zych4) |
5668 |
|
|
zsqh41 = sqrt(1.+33.7*zuxy) - 1. |
5669 |
|
|
zvxy = 0.103*zych4/(2.*zxch4) |
5670 |
|
|
zodh41 = zvxy*zsqh41 |
5671 |
|
|
|
5672 |
|
|
! * N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
5673 |
|
|
|
5674 |
|
|
zxn2o = (puu1(jl,21)-puu2(jl,21)) |
5675 |
|
|
zyn2o = (puu1(jl,22)-puu2(jl,22)) |
5676 |
|
|
zuxy = 4.*zxn2o*zxn2o/(0.416*zyn2o) |
5677 |
|
|
zsqn21 = sqrt(1.+21.3*zuxy) - 1. |
5678 |
|
|
zvxy = 0.416*zyn2o/(2.*zxn2o) |
5679 |
|
|
zodn21 = zvxy*zsqn21 |
5680 |
|
|
|
5681 |
|
|
! * CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
5682 |
|
|
|
5683 |
|
|
zuxy = 4.*zxch4*zxch4/(0.113*zych4) |
5684 |
|
|
zsqh42 = sqrt(1.+400.*zuxy) - 1. |
5685 |
|
|
zvxy = 0.113*zych4/(2.*zxch4) |
5686 |
|
|
zodh42 = zvxy*zsqh42 |
5687 |
|
|
|
5688 |
|
|
! * N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
5689 |
|
|
|
5690 |
|
|
zuxy = 4.*zxn2o*zxn2o/(0.197*zyn2o) |
5691 |
|
|
zsqn22 = sqrt(1.+2000.*zuxy) - 1. |
5692 |
|
|
zvxy = 0.197*zyn2o/(2.*zxn2o) |
5693 |
|
|
zodn22 = zvxy*zsqn22 |
5694 |
|
|
|
5695 |
|
|
! * CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
5696 |
|
|
|
5697 |
|
|
za11 = (puu1(jl,23)-puu2(jl,23))*4.404E+05 |
5698 |
|
|
zttf11 = 1. - za11*0.003225 |
5699 |
|
|
|
5700 |
|
|
! * CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
5701 |
|
|
|
5702 |
|
|
za12 = (puu1(jl,24)-puu2(jl,24))*6.7435E+05 |
5703 |
|
|
zttf12 = 1. - za12*0.003225 |
5704 |
|
|
|
5705 |
|
|
zuu11 = -(puu1(jl,15)-puu2(jl,15)) - zeu10 - zpu10 |
5706 |
|
|
zuu12 = -(puu1(jl,16)-puu2(jl,16)) - zeu11 - zpu11 - zodh41 - zodn21 |
5707 |
|
|
ptt(jl, 10) = exp(-(puu1(jl,14)-puu2(jl,14))) |
5708 |
|
|
ptt(jl, 11) = exp(zuu11) |
5709 |
|
|
ptt(jl, 12) = exp(zuu12)*zttf11*zttf12 |
5710 |
|
|
ptt(jl, 13) = 0.7554*zto1 + 0.2446*zto2 |
5711 |
|
|
ptt(jl, 14) = ptt(jl, 10)*exp(-zeu13-zpu13) |
5712 |
|
|
ptt(jl, 15) = exp(-(puu1(jl,14)-puu2(jl,14))-zodh42-zodn22) |
5713 |
|
|
END DO |
5714 |
|
|
|
5715 |
|
|
RETURN |
5716 |
|
|
END SUBROUTINE lwttm_lmdar4 |