1 |
|
|
!OPTIONS XOPT(HSFUN) |
2 |
|
|
SUBROUTINE LWTTM ( KIDIA, KFDIA, KLON, PGA , PGB, PUU1 , PUU2 , PTT ) |
3 |
|
|
|
4 |
|
|
!**** *LWTTM* - LONGWAVE TRANSMISSION FUNCTIONS |
5 |
|
|
|
6 |
|
|
! PURPOSE. |
7 |
|
|
! -------- |
8 |
|
|
! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
9 |
|
|
! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
10 |
|
|
! INTERVALS. |
11 |
|
|
|
12 |
|
|
!** INTERFACE. |
13 |
|
|
! ---------- |
14 |
|
|
! *LWTTM* IS CALLED FROM *LWVD* |
15 |
|
|
|
16 |
|
|
! EXPLICIT ARGUMENTS : |
17 |
|
|
! -------------------- |
18 |
|
|
! ==== INPUTS === |
19 |
|
|
! PGA, PGB ; PADE APPROXIMANTS |
20 |
|
|
! PUU1 : (KLON,NUA) ; ABSORBER AMOUNTS FROM TOP TO LEVEL 1 |
21 |
|
|
! PUU2 : (KLON,NUA) ; ABSORBER AMOUNTS FROM TOP TO LEVEL 2 |
22 |
|
|
! ==== OUTPUTS === |
23 |
|
|
! PTT : (KLON,NTRA) ; TRANSMISSION FUNCTIONS |
24 |
|
|
|
25 |
|
|
! IMPLICIT ARGUMENTS : NONE |
26 |
|
|
! -------------------- |
27 |
|
|
|
28 |
|
|
! METHOD. |
29 |
|
|
! ------- |
30 |
|
|
|
31 |
|
|
! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
32 |
|
|
! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
33 |
|
|
! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
34 |
|
|
! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
35 |
|
|
! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
36 |
|
|
|
37 |
|
|
! EXTERNALS. |
38 |
|
|
! ---------- |
39 |
|
|
|
40 |
|
|
! NONE |
41 |
|
|
|
42 |
|
|
! REFERENCE. |
43 |
|
|
! ---------- |
44 |
|
|
|
45 |
|
|
! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
46 |
|
|
! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
47 |
|
|
|
48 |
|
|
! AUTHOR. |
49 |
|
|
! ------- |
50 |
|
|
! JEAN-JACQUES MORCRETTE *ECMWF* |
51 |
|
|
|
52 |
|
|
! MODIFICATIONS. |
53 |
|
|
! -------------- |
54 |
|
|
! ORIGINAL : 88-12-15 |
55 |
|
|
! 97-04-18 JJ Morcrette Revised continuum |
56 |
|
|
! M.Hamrud 01-Oct-2003 CY28 Cleaning |
57 |
|
|
|
58 |
|
|
!----------------------------------------------------------------------- |
59 |
|
|
|
60 |
|
|
USE PARKIND1 ,ONLY : JPIM ,JPRB |
61 |
|
|
USE YOMHOOK ,ONLY : LHOOK, DR_HOOK |
62 |
|
|
|
63 |
|
|
USE YOELW , ONLY : NTRA ,NUA ,RPTYPE ,RETYPE ,& |
64 |
|
|
& RO1H ,RO2H ,RPIALF0 |
65 |
|
|
|
66 |
|
|
IMPLICIT NONE |
67 |
|
|
|
68 |
|
|
INTEGER(KIND=JPIM),INTENT(IN) :: KLON |
69 |
|
|
INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA |
70 |
|
|
INTEGER(KIND=JPIM),INTENT(IN) :: KFDIA |
71 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: PGA(KLON,8,2) |
72 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: PGB(KLON,8,2) |
73 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: PUU1(KLON,NUA) |
74 |
|
|
REAL(KIND=JPRB) ,INTENT(IN) :: PUU2(KLON,NUA) |
75 |
|
|
REAL(KIND=JPRB) ,INTENT(OUT) :: PTT(KLON,NTRA) |
76 |
|
|
! ------------------------------------------------------------------ |
77 |
|
|
|
78 |
|
|
!* 0.1 ARGUMENTS |
79 |
|
|
! --------- |
80 |
|
|
|
81 |
|
|
INTEGER(KIND=JPIM) :: JA, JL |
82 |
|
|
|
83 |
|
|
REAL(KIND=JPRB) :: ZA11, ZA12, ZAERCN, ZEU, ZEU10, ZEU11, ZEU12,& |
84 |
|
|
& ZEU13, ZODH41, ZODH42, ZODN21, ZODN22, ZPU, & |
85 |
|
|
& ZPU10, ZPU11, ZPU12, ZPU13, ZSQ1, ZSQ2, ZSQH41, & |
86 |
|
|
& ZSQH42, ZSQN21, ZSQN22, ZTO1, ZTO2, ZTTF11, & |
87 |
|
|
& ZTTF12, ZUU11, ZUU12, ZUXY, ZVXY, ZX, ZXCH4, & |
88 |
|
|
& ZXD, ZXN, ZXN2O, ZY, ZYCH4, ZYN2O, ZZ |
89 |
|
|
REAL(KIND=JPRB) :: ZHOOK_HANDLE |
90 |
|
|
|
91 |
|
|
! ------------------------------------------------------------------ |
92 |
|
|
!DIR$ VFUNCTION SQRTHF |
93 |
|
|
|
94 |
|
|
!* 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
95 |
|
|
! ----------------------------------------------- |
96 |
|
|
|
97 |
|
|
IF (LHOOK) CALL DR_HOOK('LWTTM',0,ZHOOK_HANDLE) |
98 |
|
|
DO JA = 1 , 8 |
99 |
|
|
DO JL = KIDIA,KFDIA |
100 |
|
|
ZZ = SQRT(PUU1(JL,JA) - PUU2(JL,JA)) |
101 |
|
|
ZXD = PGB( JL,JA,1) + ZZ * (PGB( JL,JA,2) + ZZ ) |
102 |
|
|
ZXN = PGA( JL,JA,1) + ZZ * (PGA( JL,JA,2) ) |
103 |
|
|
PTT(JL,JA) = ZXN / ZXD |
104 |
|
|
ENDDO |
105 |
|
|
ENDDO |
106 |
|
|
|
107 |
|
|
DO JL = KIDIA,KFDIA |
108 |
|
|
PTT(JL,3)=MAX(PTT(JL,3),0.0_JPRB) |
109 |
|
|
ENDDO |
110 |
|
|
! ------------------------------------------------------------------ |
111 |
|
|
|
112 |
|
|
!* 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
113 |
|
|
! --------------------------------------------------- |
114 |
|
|
|
115 |
|
|
DO JL = KIDIA,KFDIA |
116 |
|
|
PTT(JL, 9) = PTT(JL, 8) |
117 |
|
|
|
118 |
|
|
!- CONTINUUM ABSORPTION: E- AND P-TYPE |
119 |
|
|
|
120 |
|
|
ZPU = (PUU1(JL,10) - PUU2(JL,10)) |
121 |
|
|
ZPU10 = RPTYPE(1) * ZPU |
122 |
|
|
ZPU11 = RPTYPE(2) * ZPU |
123 |
|
|
ZPU12 = RPTYPE(3) * ZPU |
124 |
|
|
ZPU13 = RPTYPE(4) * ZPU |
125 |
|
|
ZEU = (PUU1(JL,11) - PUU2(JL,11)) |
126 |
|
|
ZEU10 = RETYPE(1) * ZEU |
127 |
|
|
ZEU11 = RETYPE(2) * ZEU |
128 |
|
|
ZEU12 = RETYPE(3) * ZEU |
129 |
|
|
ZEU13 = RETYPE(4) * ZEU |
130 |
|
|
|
131 |
|
|
!- OZONE ABSORPTION |
132 |
|
|
|
133 |
|
|
ZX = (PUU1(JL,12) - PUU2(JL,12)) |
134 |
|
|
ZY = (PUU1(JL,13) - PUU2(JL,13)) |
135 |
|
|
ZUXY = 4._JPRB * ZX * ZX / (RPIALF0 * ZY) |
136 |
|
|
ZSQ1 = SQRT(1.0_JPRB + RO1H * ZUXY ) - 1.0_JPRB |
137 |
|
|
ZSQ2 = SQRT(1.0_JPRB + RO2H * ZUXY ) - 1.0_JPRB |
138 |
|
|
ZVXY = RPIALF0 * ZY / (2.0_JPRB * ZX) |
139 |
|
|
ZAERCN = (PUU1(JL,17) -PUU2(JL,17)) + ZEU12 + ZPU12 |
140 |
|
|
ZTO1 = EXP( - ZVXY * ZSQ1 - ZAERCN ) |
141 |
|
|
ZTO2 = EXP( - ZVXY * ZSQ2 - ZAERCN ) |
142 |
|
|
|
143 |
|
|
!-- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
144 |
|
|
|
145 |
|
|
!* CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
146 |
|
|
|
147 |
|
|
ZXCH4 = (PUU1(JL,19) - PUU2(JL,19)) |
148 |
|
|
ZYCH4 = (PUU1(JL,20) - PUU2(JL,20)) |
149 |
|
|
ZUXY = 4._JPRB * ZXCH4*ZXCH4/(0.103_JPRB*ZYCH4) |
150 |
|
|
ZSQH41 = SQRT(1.0_JPRB + 33.7_JPRB * ZUXY) - 1.0_JPRB |
151 |
|
|
ZVXY = 0.103_JPRB * ZYCH4 / (2.0_JPRB * ZXCH4) |
152 |
|
|
ZODH41 = ZVXY * ZSQH41 |
153 |
|
|
|
154 |
|
|
!* N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
155 |
|
|
|
156 |
|
|
ZXN2O = (PUU1(JL,21) - PUU2(JL,21)) |
157 |
|
|
ZYN2O = (PUU1(JL,22) - PUU2(JL,22)) |
158 |
|
|
ZUXY = 4._JPRB * ZXN2O*ZXN2O/(0.416_JPRB*ZYN2O) |
159 |
|
|
ZSQN21 = SQRT(1.0_JPRB + 21.3_JPRB * ZUXY) - 1.0_JPRB |
160 |
|
|
ZVXY = 0.416_JPRB * ZYN2O / (2.0_JPRB * ZXN2O) |
161 |
|
|
ZODN21 = ZVXY * ZSQN21 |
162 |
|
|
|
163 |
|
|
!* CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
164 |
|
|
|
165 |
|
|
ZUXY = 4._JPRB * ZXCH4*ZXCH4/(0.113_JPRB*ZYCH4) |
166 |
|
|
ZSQH42 = SQRT(1.0_JPRB + 400._JPRB * ZUXY) - 1.0_JPRB |
167 |
|
|
ZVXY = 0.113_JPRB * ZYCH4 / (2.0_JPRB * ZXCH4) |
168 |
|
|
ZODH42 = ZVXY * ZSQH42 |
169 |
|
|
|
170 |
|
|
!* N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
171 |
|
|
|
172 |
|
|
ZUXY = 4._JPRB * ZXN2O*ZXN2O/(0.197_JPRB*ZYN2O) |
173 |
|
|
ZSQN22 = SQRT(1.0_JPRB + 2000._JPRB * ZUXY) - 1.0_JPRB |
174 |
|
|
ZVXY = 0.197_JPRB * ZYN2O / (2.0_JPRB * ZXN2O) |
175 |
|
|
ZODN22 = ZVXY * ZSQN22 |
176 |
|
|
|
177 |
|
|
!* CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
178 |
|
|
|
179 |
|
|
ZA11 = (PUU1(JL,23) - PUU2(JL,23)) * 4.404E+05_JPRB |
180 |
|
|
ZTTF11 = 1.0_JPRB - ZA11 * 0.003225_JPRB |
181 |
|
|
|
182 |
|
|
!* CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
183 |
|
|
|
184 |
|
|
ZA12 = (PUU1(JL,24) - PUU2(JL,24)) * 6.7435E+05_JPRB |
185 |
|
|
ZTTF12 = 1.0_JPRB - ZA12 * 0.003225_JPRB |
186 |
|
|
|
187 |
|
|
ZUU11 = - (PUU1(JL,15) - PUU2(JL,15)) - ZEU10 - ZPU10 |
188 |
|
|
ZUU12 = - (PUU1(JL,16) - PUU2(JL,16)) - ZEU11 - ZPU11 -ZODH41 - ZODN21 |
189 |
|
|
PTT(JL,10) = EXP( - (PUU1(JL,14)- PUU2(JL,14)) ) |
190 |
|
|
PTT(JL,11) = EXP( ZUU11 ) |
191 |
|
|
PTT(JL,12) = EXP( ZUU12 ) * ZTTF11 * ZTTF12 |
192 |
|
|
PTT(JL,13) = 0.7554_JPRB * ZTO1 + 0.2446_JPRB * ZTO2 |
193 |
|
|
PTT(JL,14) = PTT(JL,10) * EXP( - ZEU13 - ZPU13 ) |
194 |
|
|
PTT(JL,15) = EXP( - (PUU1(JL,14) - PUU2(JL,14)) - ZODH42-ZODN22 ) |
195 |
|
|
|
196 |
|
|
ENDDO |
197 |
|
|
|
198 |
|
|
IF (LHOOK) CALL DR_HOOK('LWTTM',1,ZHOOK_HANDLE) |
199 |
|
|
END SUBROUTINE LWTTM |