GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
! |
||
2 |
! $Id: surf_ocean_mod.F90 4526 2023-05-08 12:35:08Z evignon $ |
||
3 |
! |
||
4 |
MODULE surf_ocean_mod |
||
5 |
|||
6 |
IMPLICIT NONE |
||
7 |
|||
8 |
CONTAINS |
||
9 |
! |
||
10 |
!****************************************************************************** |
||
11 |
! |
||
12 |
219456 |
SUBROUTINE surf_ocean(rlon, rlat, swnet, lwnet, alb1, & |
|
13 |
windsp, rmu0, fder, tsurf_in, & |
||
14 |
itime, dtime, jour, knon, knindex, & |
||
15 |
p1lay, z1lay, cdragh, cdragm, precip_rain, precip_snow, precip_bs, temp_air, spechum, & |
||
16 |
AcoefH, AcoefQ, BcoefH, BcoefQ, & |
||
17 |
AcoefU, AcoefV, BcoefU, BcoefV, & |
||
18 |
288 |
ps, u1, v1, gustiness, rugoro, pctsrf, & |
|
19 |
snow, qsurf, agesno, & |
||
20 |
288 |
z0m, z0h, SFRWL, alb_dir_new, alb_dif_new, evap, fluxsens, fluxlat, & |
|
21 |
tsurf_new, dflux_s, dflux_l, lmt_bils, & |
||
22 |
✗✓✗✓ ✗✓✗✓ |
576 |
flux_u1, flux_v1, delta_sst, delta_sal, ds_ns, dt_ns, dter, dser, & |
23 |
✗✓✗✓ ✗✓✗✓ ✗✓✗✓ ✗✓ |
576 |
dt_ds, tkt, tks, taur, sss) |
24 |
|||
25 |
use albedo, only: alboc, alboc_cd |
||
26 |
use bulk_flux_m, only: bulk_flux |
||
27 |
USE dimphy, ONLY: klon, zmasq |
||
28 |
USE surface_data, ONLY : type_ocean |
||
29 |
USE ocean_forced_mod, ONLY : ocean_forced_noice |
||
30 |
USE ocean_slab_mod, ONLY : ocean_slab_noice |
||
31 |
USE ocean_cpl_mod, ONLY : ocean_cpl_noice |
||
32 |
USE indice_sol_mod, ONLY : nbsrf, is_oce |
||
33 |
USE limit_read_mod |
||
34 |
use config_ocean_skin_m, only: activate_ocean_skin |
||
35 |
! |
||
36 |
! This subroutine will make a call to ocean_XXX_noice according to the ocean mode (force, |
||
37 |
! slab or couple). The calculations of albedo and rugosity for the ocean surface are |
||
38 |
! done in here because they are identical for the different modes of ocean. |
||
39 |
|||
40 |
|||
41 |
INCLUDE "YOMCST.h" |
||
42 |
|||
43 |
include "clesphys.h" |
||
44 |
! for cycle_diurne and for iflag_z0_oce==-1 (prescribed z0) |
||
45 |
|||
46 |
! Input variables |
||
47 |
!****************************************************************************** |
||
48 |
INTEGER, INTENT(IN) :: itime, jour, knon |
||
49 |
INTEGER, DIMENSION(klon), INTENT(IN) :: knindex |
||
50 |
REAL, INTENT(IN) :: dtime |
||
51 |
REAL, DIMENSION(klon), INTENT(IN) :: rlon, rlat |
||
52 |
REAL, DIMENSION(klon), INTENT(IN) :: swnet ! net shortwave radiation at surface |
||
53 |
REAL, DIMENSION(klon), INTENT(IN) :: lwnet ! net longwave radiation at surface |
||
54 |
REAL, DIMENSION(klon), INTENT(IN) :: alb1 ! albedo in visible SW interval |
||
55 |
REAL, DIMENSION(klon), INTENT(IN) :: windsp ! wind at 10 m, in m s-1 |
||
56 |
REAL, DIMENSION(klon), INTENT(IN) :: rmu0 |
||
57 |
REAL, DIMENSION(klon), INTENT(IN) :: fder |
||
58 |
REAL, DIMENSION(klon), INTENT(IN) :: tsurf_in ! defined only for subscripts 1:knon |
||
59 |
REAL, DIMENSION(klon), INTENT(IN) :: p1lay,z1lay ! pression (Pa) et altitude (m) du premier niveau |
||
60 |
REAL, DIMENSION(klon), INTENT(IN) :: cdragh |
||
61 |
REAL, DIMENSION(klon), INTENT(IN) :: cdragm |
||
62 |
REAL, DIMENSION(klon), INTENT(IN) :: precip_rain, precip_snow, precip_bs |
||
63 |
REAL, DIMENSION(klon), INTENT(IN) :: temp_air, spechum |
||
64 |
REAL, DIMENSION(klon), INTENT(IN) :: AcoefH, AcoefQ, BcoefH, BcoefQ |
||
65 |
REAL, DIMENSION(klon), INTENT(IN) :: AcoefU, AcoefV, BcoefU, BcoefV |
||
66 |
REAL, DIMENSION(klon), INTENT(IN) :: ps |
||
67 |
REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, gustiness |
||
68 |
REAL, DIMENSION(klon), INTENT(IN) :: rugoro |
||
69 |
REAL, DIMENSION(klon,nbsrf), INTENT(IN) :: pctsrf |
||
70 |
|||
71 |
! In/Output variables |
||
72 |
!****************************************************************************** |
||
73 |
REAL, DIMENSION(klon), INTENT(INOUT) :: snow |
||
74 |
REAL, DIMENSION(klon), INTENT(INOUT) :: qsurf |
||
75 |
REAL, DIMENSION(klon), INTENT(INOUT) :: agesno |
||
76 |
REAL, DIMENSION(klon), INTENT(inOUT) :: z0h |
||
77 |
|||
78 |
REAL, intent(inout):: delta_sst(:) ! (knon) |
||
79 |
! Ocean-air interface temperature minus bulk SST, in K. Defined |
||
80 |
! only if activate_ocean_skin >= 1. |
||
81 |
|||
82 |
real, intent(inout):: delta_sal(:) ! (knon) |
||
83 |
! Ocean-air interface salinity minus bulk salinity, in ppt. Defined |
||
84 |
! only if activate_ocean_skin >= 1. |
||
85 |
|||
86 |
REAL, intent(inout):: ds_ns(:) ! (knon) |
||
87 |
! "delta salinity near surface". Salinity variation in the |
||
88 |
! near-surface turbulent layer. That is subskin salinity minus |
||
89 |
! foundation salinity. In ppt. |
||
90 |
|||
91 |
REAL, intent(inout):: dt_ns(:) ! (knon) |
||
92 |
! "delta temperature near surface". Temperature variation in the |
||
93 |
! near-surface turbulent layer. That is subskin temperature |
||
94 |
! minus foundation temperature. (Can be negative.) In K. |
||
95 |
|||
96 |
REAL, intent(inout):: dter(:) ! (knon) |
||
97 |
! Temperature variation in the diffusive microlayer, that is |
||
98 |
! ocean-air interface temperature minus subskin temperature. In |
||
99 |
! K. |
||
100 |
|||
101 |
REAL, intent(inout):: dser(:) ! (knon) |
||
102 |
! Salinity variation in the diffusive microlayer, that is |
||
103 |
! ocean-air interface salinity minus subskin salinity. In ppt. |
||
104 |
|||
105 |
real, intent(inout):: dt_ds(:) ! (knon) |
||
106 |
! (tks / tkt) * dTer, in K |
||
107 |
|||
108 |
! Output variables |
||
109 |
!************************************************************************** |
||
110 |
REAL, DIMENSION(klon), INTENT(OUT) :: z0m |
||
111 |
!albedo SB >>> |
||
112 |
! REAL, DIMENSION(klon), INTENT(OUT) :: alb1_new ! new albedo in visible SW interval |
||
113 |
! REAL, DIMENSION(klon), INTENT(OUT) :: alb2_new ! new albedo in near IR interval |
||
114 |
REAL, DIMENSION(6), INTENT(IN) :: SFRWL |
||
115 |
REAL, DIMENSION(klon,nsw), INTENT(OUT) :: alb_dir_new,alb_dif_new |
||
116 |
!albedo SB <<< |
||
117 |
REAL, DIMENSION(klon), INTENT(OUT) :: evap, fluxsens, fluxlat |
||
118 |
REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new ! sea surface temperature, in K |
||
119 |
REAL, DIMENSION(klon), INTENT(OUT) :: dflux_s, dflux_l |
||
120 |
REAL, DIMENSION(klon), INTENT(OUT) :: lmt_bils |
||
121 |
REAL, DIMENSION(klon), INTENT(OUT) :: flux_u1, flux_v1 |
||
122 |
|||
123 |
REAL, intent(out):: tkt(:) ! (knon) |
||
124 |
! �paisseur (m) de la couche de diffusion thermique (microlayer) |
||
125 |
! cool skin thickness |
||
126 |
|||
127 |
REAL, intent(out):: tks(:) ! (knon) |
||
128 |
! �paisseur (m) de la couche de diffusion de masse (microlayer) |
||
129 |
|||
130 |
REAL, intent(out):: taur(:) ! (knon) |
||
131 |
! momentum flux due to rain, in Pa |
||
132 |
|||
133 |
real, intent(out):: sss(:) ! (klon) |
||
134 |
! Bulk salinity of the surface layer of the ocean, in ppt. (Only |
||
135 |
! defined for subscripts 1:knon, but we have to declare it with |
||
136 |
! size klon because of the coupling machinery.) |
||
137 |
|||
138 |
! Local variables |
||
139 |
!************************************************************************* |
||
140 |
INTEGER :: i, k |
||
141 |
REAL :: tmp |
||
142 |
REAL, PARAMETER :: cepdu2=(0.1)**2 |
||
143 |
576 |
REAL, DIMENSION(klon) :: alb_eau, z0_lim |
|
144 |
576 |
REAL, DIMENSION(klon) :: radsol |
|
145 |
576 |
REAL, DIMENSION(klon) :: cdragq ! Cdrag pour l'evaporation |
|
146 |
576 |
REAL, DIMENSION(klon) :: precip_totsnow |
|
147 |
CHARACTER(len=20),PARAMETER :: modname="surf_ocean" |
||
148 |
576 |
real rhoa(knon) ! density of moist air (kg / m3) |
|
149 |
576 |
REAL sens_prec_liq(knon) |
|
150 |
|||
151 |
576 |
REAL t_int(knon) ! ocean-air interface temperature, in K |
|
152 |
288 |
real s_int(knon) ! ocean-air interface salinity, in ppt |
|
153 |
|||
154 |
!************************************************************************** |
||
155 |
|||
156 |
|||
157 |
!****************************************************************************** |
||
158 |
! Calculate total net radiance at surface |
||
159 |
! |
||
160 |
!****************************************************************************** |
||
161 |
✓✓ | 286560 |
radsol(1:klon) = 0.0 ! initialisation a priori inutile |
162 |
✓✓ | 218016 |
radsol(1:knon) = swnet(1:knon) + lwnet(1:knon) |
163 |
|||
164 |
|||
165 |
!**************************************************************************************** |
||
166 |
!Total solid precip |
||
167 |
|||
168 |
✗✓ | 288 |
IF (ok_bs) THEN |
169 |
precip_totsnow(:)=precip_snow(:)+precip_bs(:) |
||
170 |
ELSE |
||
171 |
✓✓ | 286560 |
precip_totsnow(:)=precip_snow(:) |
172 |
ENDIF |
||
173 |
|||
174 |
|||
175 |
!****************************************************************************** |
||
176 |
! Cdragq computed from cdrag |
||
177 |
! The difference comes only from a factor (f_z0qh_oce) on z0, so that |
||
178 |
! it can be computed inside surf_ocean |
||
179 |
! More complicated appraches may require the propagation through |
||
180 |
! pbl_surface of an independant cdragq variable. |
||
181 |
!****************************************************************************** |
||
182 |
|||
183 |
✓✗ | 288 |
IF ( f_z0qh_oce .ne. 1.) THEN |
184 |
! Si on suit les formulations par exemple de Tessel, on |
||
185 |
! a z0h=0.4*nu/u*, z0q=0.62*nu/u*, d'ou f_z0qh_oce=0.62/0.4=1.55 |
||
186 |
cdragq(1:knon)=cdragh(1:knon)* & |
||
187 |
✓✓ | 218016 |
log(z1lay(1:knon)/z0h(1:knon))/log(z1lay(1:knon)/(f_z0qh_oce*z0h(1:knon))) |
188 |
ELSE |
||
189 |
cdragq(1:knon)=cdragh(1:knon) |
||
190 |
ENDIF |
||
191 |
|||
192 |
✓✓ | 218016 |
rhoa = PS(:KNON) / (Rd * temp_air(:knon) * (1. + retv * spechum(:knon))) |
193 |
!****************************************************************************** |
||
194 |
! Switch according to type of ocean (couple, slab or forced) |
||
195 |
!****************************************************************************** |
||
196 |
SELECT CASE(type_ocean) |
||
197 |
CASE('couple') |
||
198 |
CALL ocean_cpl_noice( & |
||
199 |
swnet, lwnet, alb1, & |
||
200 |
windsp, fder, & |
||
201 |
itime, dtime, knon, knindex, & |
||
202 |
p1lay, cdragh, cdragq, cdragm, precip_rain, precip_totsnow,temp_air,spechum,& |
||
203 |
AcoefH, AcoefQ, BcoefH, BcoefQ, & |
||
204 |
AcoefU, AcoefV, BcoefU, BcoefV, & |
||
205 |
ps, u1, v1, gustiness, tsurf_in, & |
||
206 |
radsol, snow, agesno, & |
||
207 |
qsurf, evap, fluxsens, fluxlat, flux_u1, flux_v1, & |
||
208 |
tsurf_new, dflux_s, dflux_l, sens_prec_liq, sss, delta_sal, rhoa, & |
||
209 |
delta_sst, dTer, dSer, dt_ds) |
||
210 |
|||
211 |
CASE('slab') |
||
212 |
CALL ocean_slab_noice( & |
||
213 |
itime, dtime, jour, knon, knindex, & |
||
214 |
p1lay, cdragh, cdragq, cdragm, precip_rain, precip_totsnow, temp_air, spechum,& |
||
215 |
AcoefH, AcoefQ, BcoefH, BcoefQ, & |
||
216 |
AcoefU, AcoefV, BcoefU, BcoefV, & |
||
217 |
ps, u1, v1, gustiness, tsurf_in, & |
||
218 |
radsol, snow, & |
||
219 |
qsurf, evap, fluxsens, fluxlat, flux_u1, flux_v1, & |
||
220 |
tsurf_new, dflux_s, dflux_l, lmt_bils) |
||
221 |
|||
222 |
CASE('force') |
||
223 |
CALL ocean_forced_noice( & |
||
224 |
itime, dtime, jour, knon, knindex, & |
||
225 |
p1lay, cdragh, cdragq, cdragm, precip_rain, precip_totsnow, & |
||
226 |
temp_air, spechum, & |
||
227 |
AcoefH, AcoefQ, BcoefH, BcoefQ, & |
||
228 |
AcoefU, AcoefV, BcoefU, BcoefV, & |
||
229 |
ps, u1, v1, gustiness, tsurf_in, & |
||
230 |
radsol, snow, agesno, & |
||
231 |
qsurf, evap, fluxsens, fluxlat, flux_u1, flux_v1, & |
||
232 |
✗✗✓✗ |
288 |
tsurf_new, dflux_s, dflux_l, sens_prec_liq, rhoa) |
233 |
END SELECT |
||
234 |
|||
235 |
!****************************************************************************** |
||
236 |
! fcodron: compute lmt_bils forced case (same as wfbils_oce / 1.-contfracatm) |
||
237 |
!****************************************************************************** |
||
238 |
✓✗ | 288 |
IF (type_ocean.NE.'slab') THEN |
239 |
✓✓ | 286560 |
lmt_bils(1:klon)=0. |
240 |
✓✓ | 218016 |
DO i=1,knon |
241 |
lmt_bils(knindex(i))=(swnet(i)+lwnet(i)+fluxsens(i)+fluxlat(i)) & |
||
242 |
218016 |
*pctsrf(knindex(i),is_oce)/(1.-zmasq(knindex(i))) |
|
243 |
END DO |
||
244 |
END IF |
||
245 |
|||
246 |
!****************************************************************************** |
||
247 |
! Calculate ocean surface albedo |
||
248 |
!****************************************************************************** |
||
249 |
!albedo SB >>> |
||
250 |
✗✓ | 288 |
IF (iflag_albedo==0) THEN |
251 |
!--old parametrizations of ocean surface albedo |
||
252 |
! |
||
253 |
IF (iflag_cycle_diurne.GE.1) THEN |
||
254 |
! |
||
255 |
CALL alboc_cd(rmu0,alb_eau) |
||
256 |
! |
||
257 |
!--ad-hoc correction for model radiative balance tuning |
||
258 |
!--now outside alboc_cd routine |
||
259 |
alb_eau(1:klon) = fmagic*alb_eau(1:klon) + pmagic |
||
260 |
alb_eau(1:klon)=MIN(MAX(alb_eau(1:klon),0.0),1.0) |
||
261 |
! |
||
262 |
ELSE |
||
263 |
! |
||
264 |
CALL alboc(REAL(jour),rlat,alb_eau) |
||
265 |
!--ad-hoc correction for model radiative balance tuning |
||
266 |
!--now outside alboc routine |
||
267 |
alb_eau(1:klon) = fmagic*alb_eau(1:klon) + pmagic |
||
268 |
alb_eau(1:klon)=MIN(MAX(alb_eau(1:klon),0.04),0.60) |
||
269 |
! |
||
270 |
ENDIF |
||
271 |
! |
||
272 |
DO i =1, knon |
||
273 |
DO k=1,nsw |
||
274 |
alb_dir_new(i,k) = alb_eau(knindex(i)) |
||
275 |
ENDDO |
||
276 |
ENDDO |
||
277 |
!IM 09122015 next line corresponds to the old way of doing in LMDZ5A/IPSLCM5A versions |
||
278 |
!albedo for diffuse radiation is taken the same as for direct radiation |
||
279 |
alb_dif_new(1:knon,:)=alb_dir_new(1:knon,:) |
||
280 |
!IM 09122015 end |
||
281 |
! |
||
282 |
✓✗ | 288 |
ELSE IF (iflag_albedo==1) THEN |
283 |
!--new parametrization of ocean surface albedo by Sunghye Baek |
||
284 |
!--albedo for direct and diffuse radiation are different |
||
285 |
! |
||
286 |
288 |
CALL ocean_albedo(knon,rmu0,knindex,windsp,SFRWL,alb_dir_new,alb_dif_new) |
|
287 |
! |
||
288 |
!--ad-hoc correction for model radiative balance tuning |
||
289 |
✓✓✓✓ |
1308384 |
alb_dir_new(1:knon,:) = fmagic*alb_dir_new(1:knon,:) + pmagic |
290 |
✓✓✓✓ |
1308384 |
alb_dif_new(1:knon,:) = fmagic*alb_dif_new(1:knon,:) + pmagic |
291 |
✓✓✓✓ |
1308384 |
alb_dir_new(1:knon,:)=MIN(MAX(alb_dir_new(1:knon,:),0.0),1.0) |
292 |
✓✓✓✓ |
1308384 |
alb_dif_new(1:knon,:)=MIN(MAX(alb_dif_new(1:knon,:),0.0),1.0) |
293 |
! |
||
294 |
ELSE IF (iflag_albedo==2) THEN |
||
295 |
! F. Codron albedo read from limit.nc |
||
296 |
CALL limit_read_rug_alb(itime, dtime, jour,& |
||
297 |
knon, knindex, z0_lim, alb_eau) |
||
298 |
DO i =1, knon |
||
299 |
DO k=1,nsw |
||
300 |
alb_dir_new(i,k) = alb_eau(i) |
||
301 |
ENDDO |
||
302 |
ENDDO |
||
303 |
alb_dif_new=alb_dir_new |
||
304 |
ENDIF |
||
305 |
!albedo SB <<< |
||
306 |
|||
307 |
!****************************************************************************** |
||
308 |
! Calculate the rugosity |
||
309 |
!****************************************************************************** |
||
310 |
✗✓ | 288 |
IF (iflag_z0_oce==0) THEN |
311 |
DO i = 1, knon |
||
312 |
tmp = MAX(cepdu2,gustiness(i)+u1(i)**2+v1(i)**2) |
||
313 |
z0m(i) = 0.018*cdragm(i) * (gustiness(i)+u1(i)**2+v1(i)**2)/RG & |
||
314 |
+ 0.11*14e-6 / SQRT(cdragm(i) * tmp) |
||
315 |
z0m(i) = MAX(1.5e-05,z0m(i)) |
||
316 |
ENDDO |
||
317 |
z0h(1:knon)=z0m(1:knon) ! En attendant mieux |
||
318 |
|||
319 |
✓✗ | 288 |
ELSE IF (iflag_z0_oce==1) THEN |
320 |
✓✓ | 218016 |
DO i = 1, knon |
321 |
217728 |
tmp = MAX(cepdu2,gustiness(i)+u1(i)**2+v1(i)**2) |
|
322 |
z0m(i) = 0.018*cdragm(i) * (gustiness(i)+u1(i)**2+v1(i)**2)/RG & |
||
323 |
217728 |
+ 0.11*14e-6 / SQRT(cdragm(i) * tmp) |
|
324 |
217728 |
z0m(i) = MAX(1.5e-05,z0m(i)) |
|
325 |
218016 |
z0h(i)=0.4*14e-6 / SQRT(cdragm(i) * tmp) |
|
326 |
ENDDO |
||
327 |
ELSE IF (iflag_z0_oce==-1) THEN |
||
328 |
DO i = 1, knon |
||
329 |
z0m(i) = z0min |
||
330 |
z0h(i) = z0min |
||
331 |
ENDDO |
||
332 |
ELSE |
||
333 |
CALL abort_physic(modname,'version non prevue',1) |
||
334 |
ENDIF |
||
335 |
|||
336 |
✗✓ | 288 |
if (activate_ocean_skin >= 1) then |
337 |
if (type_ocean /= 'couple') sss(:knon) = 35. |
||
338 |
call bulk_flux(tkt, tks, taur, dter, dser, t_int, s_int, ds_ns, dt_ns, & |
||
339 |
u = windsp(:knon), t_ocean_1 = tsurf_new(:knon), s1 = sss(:knon), & |
||
340 |
rain = precip_rain(:knon) + precip_totsnow(:knon), & |
||
341 |
hf = - fluxsens(:knon), hlb = - fluxlat(:knon), & |
||
342 |
rnl = - lwnet(:knon), & |
||
343 |
tau = sqrt(flux_u1(:knon)**2 + flux_v1(:knon)**2), rhoa = rhoa, & |
||
344 |
xlv = [(rlvtt, i = 1, knon)], rf = - sens_prec_liq, dtime = dtime, & |
||
345 |
rns = swnet(:knon)) |
||
346 |
delta_sst = t_int - tsurf_new(:knon) |
||
347 |
delta_sal = s_int - sss(:knon) |
||
348 |
|||
349 |
if (activate_ocean_skin == 2) then |
||
350 |
tsurf_new(:knon) = t_int |
||
351 |
if (type_ocean == 'couple') dt_ds = (tks / tkt) * dter |
||
352 |
end if |
||
353 |
end if |
||
354 |
|||
355 |
288 |
END SUBROUTINE surf_ocean |
|
356 |
!**************************************************************************** |
||
357 |
! |
||
358 |
END MODULE surf_ocean_mod |
Generated by: GCOVR (Version 4.2) |