1 |
|
|
! |
2 |
|
|
! $Header$ |
3 |
|
|
! |
4 |
|
|
SUBROUTINE yamada_c(ngrid,timestep,plev,play & |
5 |
|
|
& ,pu,pv,pt,d_u,d_v,d_t,cd,q2,km,kn,kq,d_t_diss,ustar & |
6 |
|
|
& ,iflag_pbl) |
7 |
|
|
USE dimphy, ONLY: klon, klev |
8 |
|
|
USE print_control_mod, ONLY: prt_level |
9 |
|
|
USE ioipsl_getin_p_mod, ONLY : getin_p |
10 |
|
|
|
11 |
|
|
IMPLICIT NONE |
12 |
|
|
INCLUDE "YOMCST.h" |
13 |
|
|
! |
14 |
|
|
! timestep : pas de temps |
15 |
|
|
! g : g |
16 |
|
|
! zlev : altitude a chaque niveau (interface inferieure de la couche |
17 |
|
|
! de meme indice) |
18 |
|
|
! zlay : altitude au centre de chaque couche |
19 |
|
|
! u,v : vitesse au centre de chaque couche |
20 |
|
|
! (en entree : la valeur au debut du pas de temps) |
21 |
|
|
! teta : temperature potentielle au centre de chaque couche |
22 |
|
|
! (en entree : la valeur au debut du pas de temps) |
23 |
|
|
! cd : cdrag |
24 |
|
|
! (en entree : la valeur au debut du pas de temps) |
25 |
|
|
! q2 : $q^2$ au bas de chaque couche |
26 |
|
|
! (en entree : la valeur au debut du pas de temps) |
27 |
|
|
! (en sortie : la valeur a la fin du pas de temps) |
28 |
|
|
! km : diffusivite turbulente de quantite de mouvement (au bas de chaque |
29 |
|
|
! couche) |
30 |
|
|
! (en sortie : la valeur a la fin du pas de temps) |
31 |
|
|
! kn : diffusivite turbulente des scalaires (au bas de chaque couche) |
32 |
|
|
! (en sortie : la valeur a la fin du pas de temps) |
33 |
|
|
! |
34 |
|
|
! iflag_pbl doit valoir entre 6 et 9 |
35 |
|
|
! l=6, on prend systematiquement une longueur d'equilibre |
36 |
|
|
! iflag_pbl=6 : MY 2.0 |
37 |
|
|
! iflag_pbl=7 : MY 2.0.Fournier |
38 |
|
|
! iflag_pbl=8/9 : MY 2.5 |
39 |
|
|
! iflag_pbl=8 with special obsolete treatments for convergence |
40 |
|
|
! with Cmpi5 NPv3.1 simulations |
41 |
|
|
! iflag_pbl=10/11 : New scheme M2 and N2 explicit and dissiptation exact |
42 |
|
|
! iflag_pbl=12 = 11 with vertical diffusion off q2 |
43 |
|
|
! |
44 |
|
|
! 2013/04/01 (FH hourdin@lmd.jussieu.fr) |
45 |
|
|
! Correction for very stable PBLs (iflag_pbl=10 and 11) |
46 |
|
|
! iflag_pbl=8 converges numerically with NPv3.1 |
47 |
|
|
! iflag_pbl=11 -> the model starts with NP from start files created by ce0l |
48 |
|
|
! -> the model can run with longer time-steps. |
49 |
|
|
!....................................................................... |
50 |
|
|
|
51 |
|
|
REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t |
52 |
|
|
REAL, DIMENSION(klon,klev) :: pu,pv,pt |
53 |
|
|
REAL, DIMENSION(klon,klev) :: d_t_diss |
54 |
|
|
|
55 |
|
|
REAL timestep |
56 |
|
|
real plev(klon,klev+1) |
57 |
|
|
real play(klon,klev) |
58 |
|
|
real ustar(klon) |
59 |
|
|
real kmin,qmin,pblhmin(klon),coriol(klon) |
60 |
|
|
REAL zlev(klon,klev+1) |
61 |
|
|
REAL zlay(klon,klev) |
62 |
|
|
REAL zu(klon,klev) |
63 |
|
|
REAL zv(klon,klev) |
64 |
|
|
REAL zt(klon,klev) |
65 |
|
|
REAL teta(klon,klev) |
66 |
|
|
REAL cd(klon) |
67 |
|
|
REAL q2(klon,klev+1),qpre |
68 |
|
|
REAL unsdz(klon,klev) |
69 |
|
|
REAL unsdzdec(klon,klev+1) |
70 |
|
|
|
71 |
|
|
REAL km(klon,klev) |
72 |
|
|
REAL kmpre(klon,klev+1),tmp2 |
73 |
|
|
REAL mpre(klon,klev+1) |
74 |
|
|
REAL kn(klon,klev) |
75 |
|
|
REAL kq(klon,klev) |
76 |
|
|
real ff(klon,klev+1),delta(klon,klev+1) |
77 |
|
|
real aa(klon,klev+1),aa0,aa1 |
78 |
|
|
integer iflag_pbl,ngrid |
79 |
|
|
integer nlay,nlev |
80 |
|
|
|
81 |
|
|
logical first |
82 |
|
|
integer ipas |
83 |
|
|
save first,ipas |
84 |
|
|
!FH/IM data first,ipas/.true.,0/ |
85 |
|
|
data first,ipas/.false.,0/ |
86 |
|
|
!$OMP THREADPRIVATE( first,ipas) |
87 |
|
|
INTEGER, SAVE :: iflag_tke_diff=0 |
88 |
|
|
!$OMP THREADPRIVATE(iflag_tke_diff) |
89 |
|
|
|
90 |
|
|
|
91 |
|
|
integer ig,k |
92 |
|
|
|
93 |
|
|
|
94 |
|
|
real ri,zrif,zalpha,zsm,zsn |
95 |
|
|
real rif(klon,klev+1),sm(klon,klev+1),alpha(klon,klev) |
96 |
|
|
|
97 |
|
|
real m2(klon,klev+1),dz(klon,klev+1),zq,n2(klon,klev+1) |
98 |
|
|
REAL, DIMENSION(klon,klev+1) :: km2,kn2,sqrtq |
99 |
|
|
real dtetadz(klon,klev+1) |
100 |
|
|
real m2cstat,mcstat,kmcstat |
101 |
|
|
real l(klon,klev+1) |
102 |
|
|
real leff(klon,klev+1) |
103 |
|
|
real,allocatable,save :: l0(:) |
104 |
|
|
!$OMP THREADPRIVATE(l0) |
105 |
|
|
real sq(klon),sqz(klon),zz(klon,klev+1) |
106 |
|
|
integer iter |
107 |
|
|
|
108 |
|
|
real ric,rifc,b1,kap |
109 |
|
|
save ric,rifc,b1,kap |
110 |
|
|
data ric,rifc,b1,kap/0.195,0.191,16.6,0.4/ |
111 |
|
|
!$OMP THREADPRIVATE(ric,rifc,b1,kap) |
112 |
|
|
real frif,falpha,fsm |
113 |
|
|
real fl,zzz,zl0,zq2,zn2 |
114 |
|
|
|
115 |
|
|
real rino(klon,klev+1),smyam(klon,klev),styam(klon,klev) |
116 |
|
|
real lyam(klon,klev),knyam(klon,klev) |
117 |
|
|
real w2yam(klon,klev),t2yam(klon,klev) |
118 |
|
|
logical,save :: firstcall=.true. |
119 |
|
|
!$OMP THREADPRIVATE(firstcall) |
120 |
|
|
CHARACTER(len=20),PARAMETER :: modname="yamada_c" |
121 |
|
|
REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt |
122 |
|
|
REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt |
123 |
|
|
REAL, DIMENSION(klon,klev) :: exner,masse |
124 |
|
|
REAL, DIMENSION(klon,klev+1) :: masseb,q2old,q2neg |
125 |
|
|
LOGICAL okiophys |
126 |
|
|
|
127 |
|
|
frif(ri)=0.6588*(ri+0.1776-sqrt(ri*ri-0.3221*ri+0.03156)) |
128 |
|
|
falpha(ri)=1.318*(0.2231-ri)/(0.2341-ri) |
129 |
|
|
fsm(ri)=1.96*(0.1912-ri)*(0.2341-ri)/((1.-ri)*(0.2231-ri)) |
130 |
|
|
fl(zzz,zl0,zq2,zn2)= & |
131 |
|
|
& max(min(l0(ig)*kap*zlev(ig,k)/(kap*zlev(ig,k)+l0(ig)) & |
132 |
|
|
& ,0.5*sqrt(q2(ig,k))/sqrt(max(n2(ig,k),1.e-10))) ,1.) |
133 |
|
|
|
134 |
|
|
|
135 |
|
|
okiophys=klon==1 |
136 |
|
|
if (firstcall) then |
137 |
|
|
CALL getin_p('iflag_tke_diff',iflag_tke_diff) |
138 |
|
|
allocate(l0(klon)) |
139 |
|
|
#define IOPHYS |
140 |
|
|
#ifdef IOPHYS |
141 |
|
|
! call iophys_ini(timestep) |
142 |
|
|
#endif |
143 |
|
|
firstcall=.false. |
144 |
|
|
endif |
145 |
|
|
|
146 |
|
|
IF (ngrid<=0) RETURN ! Bizarre : on n a pas ce probeleme pour coef_diff_turb |
147 |
|
|
|
148 |
|
|
#ifdef IOPHYS |
149 |
|
|
if (okiophys) then |
150 |
|
|
call iophys_ecrit('q2i',klev,'q2 debut my','m2/s2',q2(:,1:klev)) |
151 |
|
|
call iophys_ecrit('kmi',klev,'Kz debut my','m/s2',km(:,1:klev)) |
152 |
|
|
endif |
153 |
|
|
#endif |
154 |
|
|
|
155 |
|
|
nlay=klev |
156 |
|
|
nlev=klev+1 |
157 |
|
|
|
158 |
|
|
|
159 |
|
|
!------------------------------------------------------------------------- |
160 |
|
|
! Computation of conservative source terms from the turbulent tendencies |
161 |
|
|
!------------------------------------------------------------------------- |
162 |
|
|
|
163 |
|
|
|
164 |
|
|
zalpha=0.5 ! Anciennement 0.5. Essayer de voir pourquoi ? |
165 |
|
|
zu(:,:)=pu(:,:)+zalpha*d_u(:,:) |
166 |
|
|
zv(:,:)=pv(:,:)+zalpha*d_v(:,:) |
167 |
|
|
zt(:,:)=pt(:,:)+zalpha*d_t(:,:) |
168 |
|
|
|
169 |
|
|
do k=1,klev |
170 |
|
|
exner(:,k)=(play(:,k)/plev(:,1))**RKAPPA |
171 |
|
|
masse(:,k)=(plev(:,k)-plev(:,k+1))/RG |
172 |
|
|
teta(:,k)=zt(:,k)/exner(:,k) |
173 |
|
|
enddo |
174 |
|
|
|
175 |
|
|
! Atmospheric mass at layer interfaces, where the TKE is computed |
176 |
|
|
masseb(:,:)=0. |
177 |
|
|
do k=1,klev |
178 |
|
|
masseb(:,k)=masseb(:,k)+masse(:,k) |
179 |
|
|
masseb(:,k+1)=masseb(:,k+1)+masse(:,k) |
180 |
|
|
enddo |
181 |
|
|
masseb(:,:)=0.5*masseb(:,:) |
182 |
|
|
|
183 |
|
|
zlev(:,1)=0. |
184 |
|
|
zlay(:,1)=RCPD*teta(:,1)*(1.-exner(:,1)) |
185 |
|
|
do k=1,klev-1 |
186 |
|
|
zlay(:,k+1)=zlay(:,k)+0.5*RCPD*(teta(:,k)+teta(:,k+1))*(exner(:,k)-exner(:,k+1))/RG |
187 |
|
|
zlev(:,k)=0.5*(zlay(:,k)+zlay(:,k+1)) ! PASBO |
188 |
|
|
enddo |
189 |
|
|
|
190 |
|
|
fluxu(:,klev+1)=0. |
191 |
|
|
fluxv(:,klev+1)=0. |
192 |
|
|
fluxt(:,klev+1)=0. |
193 |
|
|
|
194 |
|
|
do k=klev,1,-1 |
195 |
|
|
fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k) |
196 |
|
|
fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k) |
197 |
|
|
fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k) ! Flux de theta |
198 |
|
|
enddo |
199 |
|
|
|
200 |
|
|
dddu(:,1)=2*zu(:,1)*fluxu(:,1) |
201 |
|
|
dddv(:,1)=2*zv(:,1)*fluxv(:,1) |
202 |
|
|
dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1) |
203 |
|
|
|
204 |
|
|
do k=2,klev |
205 |
|
|
dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k) |
206 |
|
|
dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k) |
207 |
|
|
dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k) |
208 |
|
|
enddo |
209 |
|
|
dddu(:,klev+1)=0. |
210 |
|
|
dddv(:,klev+1)=0. |
211 |
|
|
dddt(:,klev+1)=0. |
212 |
|
|
|
213 |
|
|
#ifdef IOPHYS |
214 |
|
|
if (okiophys) then |
215 |
|
|
call iophys_ecrit('zlay',klev,'Geop','m',zlay) |
216 |
|
|
call iophys_ecrit('teta',klev,'teta','K',teta) |
217 |
|
|
call iophys_ecrit('temp',klev,'temp','K',zt) |
218 |
|
|
call iophys_ecrit('pt',klev,'temp','K',pt) |
219 |
|
|
call iophys_ecrit('pu',klev,'u','m/s',pu) |
220 |
|
|
call iophys_ecrit('pv',klev,'v','m/s',pv) |
221 |
|
|
call iophys_ecrit('d_u',klev,'d_u','m/s2',d_u) |
222 |
|
|
call iophys_ecrit('d_v',klev,'d_v','m/s2',d_v) |
223 |
|
|
call iophys_ecrit('d_t',klev,'d_t','K/s',d_t) |
224 |
|
|
call iophys_ecrit('exner',klev,'exner','',exner) |
225 |
|
|
call iophys_ecrit('masse',klev,'masse','',masse) |
226 |
|
|
call iophys_ecrit('masseb',klev,'masseb','',masseb) |
227 |
|
|
endif |
228 |
|
|
#endif |
229 |
|
|
|
230 |
|
|
|
231 |
|
|
|
232 |
|
|
ipas=ipas+1 |
233 |
|
|
|
234 |
|
|
|
235 |
|
|
!....................................................................... |
236 |
|
|
! les increments verticaux |
237 |
|
|
!....................................................................... |
238 |
|
|
! |
239 |
|
|
!!!!!! allerte !!!!!c |
240 |
|
|
!!!!!! zlev n'est pas declare a nlev !!!!!c |
241 |
|
|
!!!!!! ----> |
242 |
|
|
DO ig=1,ngrid |
243 |
|
|
zlev(ig,nlev)=zlay(ig,nlay) & |
244 |
|
|
& +( zlay(ig,nlay) - zlev(ig,nlev-1) ) |
245 |
|
|
ENDDO |
246 |
|
|
!!!!!! <---- |
247 |
|
|
!!!!!! allerte !!!!!c |
248 |
|
|
! |
249 |
|
|
DO k=1,nlay |
250 |
|
|
DO ig=1,ngrid |
251 |
|
|
unsdz(ig,k)=1.E+0/(zlev(ig,k+1)-zlev(ig,k)) |
252 |
|
|
ENDDO |
253 |
|
|
ENDDO |
254 |
|
|
DO ig=1,ngrid |
255 |
|
|
unsdzdec(ig,1)=1.E+0/(zlay(ig,1)-zlev(ig,1)) |
256 |
|
|
ENDDO |
257 |
|
|
DO k=2,nlay |
258 |
|
|
DO ig=1,ngrid |
259 |
|
|
unsdzdec(ig,k)=1.E+0/(zlay(ig,k)-zlay(ig,k-1)) |
260 |
|
|
ENDDO |
261 |
|
|
ENDDO |
262 |
|
|
DO ig=1,ngrid |
263 |
|
|
unsdzdec(ig,nlay+1)=1.E+0/(zlev(ig,nlay+1)-zlay(ig,nlay)) |
264 |
|
|
ENDDO |
265 |
|
|
! |
266 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
267 |
|
|
! Computing M^2, N^2, Richardson numbers, stability functions |
268 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
269 |
|
|
|
270 |
|
|
|
271 |
|
|
do k=2,klev |
272 |
|
|
do ig=1,ngrid |
273 |
|
|
dz(ig,k)=zlay(ig,k)-zlay(ig,k-1) |
274 |
|
|
m2(ig,k)=((zu(ig,k)-zu(ig,k-1))**2+(zv(ig,k)-zv(ig,k-1))**2)/(dz(ig,k)*dz(ig,k)) |
275 |
|
|
dtetadz(ig,k)=(teta(ig,k)-teta(ig,k-1))/dz(ig,k) |
276 |
|
|
n2(ig,k)=RG*2.*dtetadz(ig,k)/(teta(ig,k-1)+teta(ig,k)) |
277 |
|
|
! n2(ig,k)=0. |
278 |
|
|
ri=n2(ig,k)/max(m2(ig,k),1.e-10) |
279 |
|
|
if (ri.lt.ric) then |
280 |
|
|
rif(ig,k)=frif(ri) |
281 |
|
|
else |
282 |
|
|
rif(ig,k)=rifc |
283 |
|
|
endif |
284 |
|
|
if(rif(ig,k)<0.16) then |
285 |
|
|
alpha(ig,k)=falpha(rif(ig,k)) |
286 |
|
|
sm(ig,k)=fsm(rif(ig,k)) |
287 |
|
|
else |
288 |
|
|
alpha(ig,k)=1.12 |
289 |
|
|
sm(ig,k)=0.085 |
290 |
|
|
endif |
291 |
|
|
zz(ig,k)=b1*m2(ig,k)*(1.-rif(ig,k))*sm(ig,k) |
292 |
|
|
enddo |
293 |
|
|
enddo |
294 |
|
|
|
295 |
|
|
|
296 |
|
|
|
297 |
|
|
!==================================================================== |
298 |
|
|
! Computing the mixing length |
299 |
|
|
!==================================================================== |
300 |
|
|
|
301 |
|
|
! Mise a jour de l0 |
302 |
|
|
if (iflag_pbl==8.or.iflag_pbl==10) then |
303 |
|
|
|
304 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
305 |
|
|
! Iterative computation of l0 |
306 |
|
|
! This version is kept for iflag_pbl only for convergence |
307 |
|
|
! with NPv3.1 Cmip5 simulations |
308 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
309 |
|
|
|
310 |
|
|
do ig=1,ngrid |
311 |
|
|
sq(ig)=1.e-10 |
312 |
|
|
sqz(ig)=1.e-10 |
313 |
|
|
enddo |
314 |
|
|
do k=2,klev-1 |
315 |
|
|
do ig=1,ngrid |
316 |
|
|
zq=sqrt(q2(ig,k)) |
317 |
|
|
sqz(ig)=sqz(ig)+zq*zlev(ig,k)*(zlay(ig,k)-zlay(ig,k-1)) |
318 |
|
|
sq(ig)=sq(ig)+zq*(zlay(ig,k)-zlay(ig,k-1)) |
319 |
|
|
enddo |
320 |
|
|
enddo |
321 |
|
|
do ig=1,ngrid |
322 |
|
|
l0(ig)=0.2*sqz(ig)/sq(ig) |
323 |
|
|
enddo |
324 |
|
|
do k=2,klev |
325 |
|
|
do ig=1,ngrid |
326 |
|
|
l(ig,k)=fl(zlev(ig,k),l0(ig),q2(ig,k),n2(ig,k)) |
327 |
|
|
enddo |
328 |
|
|
enddo |
329 |
|
|
! print*,'L0 cas 8 ou 10 ',l0 |
330 |
|
|
|
331 |
|
|
else |
332 |
|
|
|
333 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
334 |
|
|
! In all other case, the assymptotic mixing length l0 is imposed (100m) |
335 |
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
336 |
|
|
|
337 |
|
|
l0(:)=150. |
338 |
|
|
do k=2,klev |
339 |
|
|
do ig=1,ngrid |
340 |
|
|
l(ig,k)=fl(zlev(ig,k),l0(ig),q2(ig,k),n2(ig,k)) |
341 |
|
|
enddo |
342 |
|
|
enddo |
343 |
|
|
! print*,'L0 cas autres ',l0 |
344 |
|
|
|
345 |
|
|
endif |
346 |
|
|
|
347 |
|
|
|
348 |
|
|
#ifdef IOPHYS |
349 |
|
|
if (okiophys) then |
350 |
|
|
call iophys_ecrit('rif',klev,'Flux Richardson','m',rif(:,1:klev)) |
351 |
|
|
call iophys_ecrit('m2',klev,'m2 ','m/s',m2(:,1:klev)) |
352 |
|
|
call iophys_ecrit('Km2app',klev,'m2 conserv','m/s',km(:,1:klev)*m2(:,1:klev)) |
353 |
|
|
call iophys_ecrit('Km',klev,'Km','m2/s',km(:,1:klev)) |
354 |
|
|
endif |
355 |
|
|
#endif |
356 |
|
|
|
357 |
|
|
|
358 |
|
|
IF (iflag_pbl<20) then |
359 |
|
|
! For diagnostics only |
360 |
|
|
RETURN |
361 |
|
|
|
362 |
|
|
ELSE |
363 |
|
|
|
364 |
|
|
! print*,'OK1' |
365 |
|
|
|
366 |
|
|
! Evolution of TKE under source terms K M2 and K N2 |
367 |
|
|
leff(:,:)=max(l(:,:),1.) |
368 |
|
|
|
369 |
|
|
!################################################################## |
370 |
|
|
!# IF (iflag_pbl==29) THEN |
371 |
|
|
!# STOP'Ne pas utiliser iflag_pbl=29' |
372 |
|
|
!# km2(:,:)=km(:,:)*m2(:,:) |
373 |
|
|
!# kn2(:,:)=kn2(:,:)*rif(:,:) |
374 |
|
|
!# ELSEIF (iflag_pbl==25) THEN |
375 |
|
|
! VERSION AVEC LA TKE EN MILIEU DE COUCHE |
376 |
|
|
!# STOP'Ne pas utiliser iflag_pbl=25' |
377 |
|
|
!# DO k=1,klev |
378 |
|
|
!# km2(:,k)=-0.5*(dddu(:,k)+dddv(:,k)+dddu(:,k+1)+dddv(:,k+1)) & |
379 |
|
|
!# & /(masse(:,k)*timestep) |
380 |
|
|
!# kn2(:,k)=rcpd*0.5*(dddt(:,k)+dddt(:,k+1))/(masse(:,k)*timestep) |
381 |
|
|
!# leff(:,k)=0.5*(leff(:,k)+leff(:,k+1)) |
382 |
|
|
!# ENDDO |
383 |
|
|
!# km2(:,klev+1)=0. ; kn2(:,klev+1)=0. |
384 |
|
|
!# ELSE |
385 |
|
|
!################################################################# |
386 |
|
|
|
387 |
|
|
km2(:,:)=-(dddu(:,:)+dddv(:,:))/(masseb(:,:)*timestep) |
388 |
|
|
kn2(:,:)=rcpd*dddt(:,:)/(masseb(:,:)*timestep) |
389 |
|
|
! ENDIF |
390 |
|
|
q2neg(:,:)=q2(:,:)+timestep*(km2(:,:)-kn2(:,:)) |
391 |
|
|
q2(:,:)=min(max(q2neg(:,:),1.e-10),1.e4) |
392 |
|
|
|
393 |
|
|
|
394 |
|
|
#ifdef IOPHYS |
395 |
|
|
if (okiophys) then |
396 |
|
|
call iophys_ecrit('km2',klev,'m2 conserv','m/s',km2(:,1:klev)) |
397 |
|
|
call iophys_ecrit('kn2',klev,'n2 conserv','m/s',kn2(:,1:klev)) |
398 |
|
|
endif |
399 |
|
|
#endif |
400 |
|
|
|
401 |
|
|
! Dissipation of TKE |
402 |
|
|
q2old(:,:)=q2(:,:) |
403 |
|
|
q2(:,:)=1./(1./sqrt(q2(:,:))+timestep/(2*leff(:,:)*b1)) |
404 |
|
|
q2(:,:)=q2(:,:)*q2(:,:) |
405 |
|
|
! IF (iflag_pbl<=24) THEN |
406 |
|
|
DO k=1,klev |
407 |
|
|
d_t_diss(:,k)=(masseb(:,k)*(q2neg(:,k)-q2(:,k))+masseb(:,k+1)*(q2neg(:,k+1)-q2(:,k+1)))/(2.*rcpd*masse(:,k)) |
408 |
|
|
ENDDO |
409 |
|
|
|
410 |
|
|
!################################################################### |
411 |
|
|
! ELSE IF (iflag_pbl<=27) THEN |
412 |
|
|
! DO k=1,klev |
413 |
|
|
! d_t_diss(:,k)=(q2neg(:,k)-q2(:,k))/rcpd |
414 |
|
|
! ENDDO |
415 |
|
|
! ENDIF |
416 |
|
|
! print*,'iflag_pbl ',d_t_diss |
417 |
|
|
!################################################################### |
418 |
|
|
|
419 |
|
|
|
420 |
|
|
! Compuation of stability functions |
421 |
|
|
! IF (iflag_pbl/=29) THEN |
422 |
|
|
DO k=1,klev |
423 |
|
|
DO ig=1,ngrid |
424 |
|
|
IF (ABS(km2(ig,k))<=1.e-20) THEN |
425 |
|
|
rif(ig,k)=0. |
426 |
|
|
ELSE |
427 |
|
|
rif(ig,k)=min(kn2(ig,k)/km2(ig,k),rifc) |
428 |
|
|
ENDIF |
429 |
|
|
IF (rif(ig,k).lt.0.16) THEN |
430 |
|
|
alpha(ig,k)=falpha(rif(ig,k)) |
431 |
|
|
sm(ig,k)=fsm(rif(ig,k)) |
432 |
|
|
else |
433 |
|
|
alpha(ig,k)=1.12 |
434 |
|
|
sm(ig,k)=0.085 |
435 |
|
|
endif |
436 |
|
|
ENDDO |
437 |
|
|
ENDDO |
438 |
|
|
! ENDIF |
439 |
|
|
|
440 |
|
|
! Computation of turbulent diffusivities |
441 |
|
|
! IF (25<=iflag_pbl.and.iflag_pbl<=28) THEN |
442 |
|
|
! DO k=2,klev |
443 |
|
|
! sqrtq(:,k)=sqrt(0.5*(q2(:,k)+q2(:,k-1))) |
444 |
|
|
! ENDDO |
445 |
|
|
! ELSE |
446 |
|
|
kq(:,:)=0. |
447 |
|
|
DO k=1,klev |
448 |
|
|
! Coefficient au milieu des couches pour diffuser la TKE |
449 |
|
|
kq(:,k)=0.5*leff(:,k)*sqrt(q2(:,k))*0.2 |
450 |
|
|
ENDDO |
451 |
|
|
|
452 |
|
|
#ifdef IOPHYS |
453 |
|
|
if (okiophys) then |
454 |
|
|
call iophys_ecrit('q2b',klev,'KTE inter','m2/s',q2(:,1:klev)) |
455 |
|
|
endif |
456 |
|
|
#endif |
457 |
|
|
|
458 |
|
|
IF (iflag_tke_diff==1) THEN |
459 |
|
|
CALL vdif_q2(timestep, RG, RD, ngrid, plev, pt, kq, q2) |
460 |
|
|
ENDIF |
461 |
|
|
|
462 |
|
|
km(:,:)=0. |
463 |
|
|
kn(:,:)=0. |
464 |
|
|
DO k=1,klev |
465 |
|
|
km(:,k)=leff(:,k)*sqrt(q2(:,k))*sm(:,k) |
466 |
|
|
kn(:,k)=km(:,k)*alpha(:,k) |
467 |
|
|
ENDDO |
468 |
|
|
|
469 |
|
|
|
470 |
|
|
#ifdef IOPHYS |
471 |
|
|
if (okiophys) then |
472 |
|
|
call iophys_ecrit('mixingl',klev,'Mixing length','m',leff(:,1:klev)) |
473 |
|
|
call iophys_ecrit('rife',klev,'Flux Richardson','m',rif(:,1:klev)) |
474 |
|
|
call iophys_ecrit('q2f',klev,'KTE finale','m2/s',q2(:,1:klev)) |
475 |
|
|
call iophys_ecrit('q2neg',klev,'KTE non bornee','m2/s',q2neg(:,1:klev)) |
476 |
|
|
call iophys_ecrit('alpha',klev,'alpha','',alpha(:,1:klev)) |
477 |
|
|
call iophys_ecrit('sm',klev,'sm','',sm(:,1:klev)) |
478 |
|
|
call iophys_ecrit('q2f',klev,'KTE finale','m2/s',q2(:,1:klev)) |
479 |
|
|
call iophys_ecrit('kmf',klev,'Kz final','m2/s',km(:,1:klev)) |
480 |
|
|
call iophys_ecrit('knf',klev,'Kz final','m2/s',kn(:,1:klev)) |
481 |
|
|
call iophys_ecrit('kqf',klev,'Kz final','m2/s',kq(:,1:klev)) |
482 |
|
|
endif |
483 |
|
|
#endif |
484 |
|
|
|
485 |
|
|
|
486 |
|
|
ENDIF |
487 |
|
|
|
488 |
|
|
|
489 |
|
|
! print*,'OK2' |
490 |
|
|
RETURN |
491 |
|
|
END |