1 |
|
|
! |
2 |
|
|
! $Header$ |
3 |
|
|
! |
4 |
|
|
SUBROUTINE gradiv(klevel, xcov, ycov, ld, gdx, gdy ) |
5 |
|
|
c |
6 |
|
|
c Auteur : P. Le Van |
7 |
|
|
c |
8 |
|
|
c *************************************************************** |
9 |
|
|
c |
10 |
|
|
c ld |
11 |
|
|
c calcul de (grad (div) ) du vect. v .... |
12 |
|
|
c |
13 |
|
|
c xcov et ycov etant les composant.covariantes de v |
14 |
|
|
c **************************************************************** |
15 |
|
|
c xcov , ycov et ld sont des arguments d'entree pour le s-prog |
16 |
|
|
c gdx et gdy sont des arguments de sortie pour le s-prog |
17 |
|
|
c |
18 |
|
|
c |
19 |
|
|
IMPLICIT NONE |
20 |
|
|
c |
21 |
|
|
include "dimensions.h" |
22 |
|
|
include "paramet.h" |
23 |
|
|
include "comdissipn.h" |
24 |
|
|
|
25 |
|
|
INTEGER klevel |
26 |
|
|
c |
27 |
|
|
REAL xcov( ip1jmp1,klevel ), ycov( ip1jm,klevel ) |
28 |
|
|
REAL gdx( ip1jmp1,klevel ), gdy( ip1jm,klevel ) |
29 |
|
|
|
30 |
|
|
REAL div(ip1jmp1,llm) |
31 |
|
|
|
32 |
|
|
INTEGER l,ij,iter,ld |
33 |
|
|
c |
34 |
|
|
c |
35 |
|
|
c |
36 |
|
|
CALL SCOPY( ip1jmp1*klevel,xcov,1,gdx,1 ) |
37 |
|
|
CALL SCOPY( ip1jm*klevel, ycov,1,gdy,1 ) |
38 |
|
|
c |
39 |
|
|
DO 10 iter = 1,ld |
40 |
|
|
c |
41 |
|
|
CALL diverg( klevel, gdx , gdy, div ) |
42 |
|
|
CALL filtreg( div, jjp1, klevel, 2,1, .true.,2 ) |
43 |
|
|
CALL grad( klevel, div, gdx, gdy ) |
44 |
|
|
c |
45 |
|
|
DO 5 l = 1, klevel |
46 |
|
|
DO 3 ij = 1, ip1jmp1 |
47 |
|
|
gdx( ij,l ) = - gdx( ij,l ) * cdivu |
48 |
|
|
3 CONTINUE |
49 |
|
|
DO 4 ij = 1, ip1jm |
50 |
|
|
gdy( ij,l ) = - gdy( ij,l ) * cdivu |
51 |
|
|
4 CONTINUE |
52 |
|
|
5 CONTINUE |
53 |
|
|
c |
54 |
|
|
10 CONTINUE |
55 |
|
|
RETURN |
56 |
|
|
END |