1 |
|
|
! |
2 |
|
|
! $Header$ |
3 |
|
|
! |
4 |
|
|
SUBROUTINE pentes_ini (q,w,masse,pbaru,pbarv,mode) |
5 |
|
|
|
6 |
|
|
USE comconst_mod, ONLY: pi, dtvr |
7 |
|
|
|
8 |
|
|
IMPLICIT NONE |
9 |
|
|
|
10 |
|
|
c======================================================================= |
11 |
|
|
c Adaptation LMDZ: A.Armengaud (LGGE) |
12 |
|
|
c ---------------- |
13 |
|
|
c |
14 |
|
|
c ******************************************************************** |
15 |
|
|
c Transport des traceurs par la methode des pentes |
16 |
|
|
c ******************************************************************** |
17 |
|
|
c Reference possible : Russel. G.L., Lerner J.A.: |
18 |
|
|
c A new Finite-Differencing Scheme for Traceur Transport |
19 |
|
|
c Equation , Journal of Applied Meteorology, pp 1483-1498,dec. 81 |
20 |
|
|
c ******************************************************************** |
21 |
|
|
c q,w,masse,pbaru et pbarv |
22 |
|
|
c sont des arguments d'entree pour le s-pg .... |
23 |
|
|
c |
24 |
|
|
c======================================================================= |
25 |
|
|
|
26 |
|
|
|
27 |
|
|
include "dimensions.h" |
28 |
|
|
include "paramet.h" |
29 |
|
|
include "comgeom2.h" |
30 |
|
|
|
31 |
|
|
c Arguments: |
32 |
|
|
c ---------- |
33 |
|
|
integer mode |
34 |
|
|
REAL pbaru( ip1jmp1,llm ),pbarv( ip1jm,llm ) |
35 |
|
|
REAL q( iip1,jjp1,llm,0:3) |
36 |
|
|
REAL w( ip1jmp1,llm ) |
37 |
|
|
REAL masse( iip1,jjp1,llm) |
38 |
|
|
c Local: |
39 |
|
|
c ------ |
40 |
|
|
LOGICAL limit |
41 |
|
|
REAL sm ( iip1,jjp1, llm ) |
42 |
|
|
REAL s0( iip1,jjp1,llm ), sx( iip1,jjp1,llm ) |
43 |
|
|
REAL sy( iip1,jjp1,llm ), sz( iip1,jjp1,llm ) |
44 |
|
|
real masn,mass,zz |
45 |
|
|
INTEGER i,j,l,iq |
46 |
|
|
|
47 |
|
|
c modif Fred 24 03 96 |
48 |
|
|
|
49 |
|
|
real sinlon(iip1),sinlondlon(iip1) |
50 |
|
|
real coslon(iip1),coslondlon(iip1) |
51 |
|
|
save sinlon,coslon,sinlondlon,coslondlon |
52 |
|
|
real dyn1,dyn2,dys1,dys2 |
53 |
|
|
real qpn,qps,dqzpn,dqzps |
54 |
|
|
real smn,sms,s0n,s0s,sxn(iip1),sxs(iip1) |
55 |
|
|
real qmin,zq,pente_max |
56 |
|
|
c |
57 |
|
|
REAL SSUM |
58 |
|
|
integer ismax,ismin,lati,latf |
59 |
|
|
EXTERNAL SSUM, ismin,ismax |
60 |
|
|
logical first |
61 |
|
|
save first |
62 |
|
|
c fin modif |
63 |
|
|
|
64 |
|
|
c EXTERNAL masskg |
65 |
|
|
EXTERNAL advx |
66 |
|
|
EXTERNAL advy |
67 |
|
|
EXTERNAL advz |
68 |
|
|
|
69 |
|
|
c modif Fred 24 03 96 |
70 |
|
|
data first/.true./ |
71 |
|
|
|
72 |
|
|
limit = .TRUE. |
73 |
|
|
pente_max=2 |
74 |
|
|
c if (mode.eq.1.or.mode.eq.3) then |
75 |
|
|
c if (mode.eq.1) then |
76 |
|
|
if (mode.ge.1) then |
77 |
|
|
lati=2 |
78 |
|
|
latf=jjm |
79 |
|
|
else |
80 |
|
|
lati=1 |
81 |
|
|
latf=jjp1 |
82 |
|
|
endif |
83 |
|
|
|
84 |
|
|
qmin=0.4995 |
85 |
|
|
qmin=0. |
86 |
|
|
if(first) then |
87 |
|
|
print*,'SCHEMA AMONT NOUVEAU' |
88 |
|
|
first=.false. |
89 |
|
|
do i=2,iip1 |
90 |
|
|
coslon(i)=cos(rlonv(i)) |
91 |
|
|
sinlon(i)=sin(rlonv(i)) |
92 |
|
|
coslondlon(i)=coslon(i)*(rlonu(i)-rlonu(i-1))/pi |
93 |
|
|
sinlondlon(i)=sinlon(i)*(rlonu(i)-rlonu(i-1))/pi |
94 |
|
|
print*,coslondlon(i),sinlondlon(i) |
95 |
|
|
enddo |
96 |
|
|
coslon(1)=coslon(iip1) |
97 |
|
|
coslondlon(1)=coslondlon(iip1) |
98 |
|
|
sinlon(1)=sinlon(iip1) |
99 |
|
|
sinlondlon(1)=sinlondlon(iip1) |
100 |
|
|
print*,'sum sinlondlon ',ssum(iim,sinlondlon,1)/sinlondlon(1) |
101 |
|
|
print*,'sum coslondlon ',ssum(iim,coslondlon,1)/coslondlon(1) |
102 |
|
|
DO l = 1,llm |
103 |
|
|
DO j = 1,jjp1 |
104 |
|
|
DO i = 1,iip1 |
105 |
|
|
q ( i,j,l,1 )=0. |
106 |
|
|
q ( i,j,l,2 )=0. |
107 |
|
|
q ( i,j,l,3 )=0. |
108 |
|
|
ENDDO |
109 |
|
|
ENDDO |
110 |
|
|
ENDDO |
111 |
|
|
|
112 |
|
|
endif |
113 |
|
|
c Fin modif Fred |
114 |
|
|
|
115 |
|
|
c *** q contient les qqtes de traceur avant l'advection |
116 |
|
|
|
117 |
|
|
c *** Affectation des tableaux S a partir de Q |
118 |
|
|
c *** Rem : utilisation de SCOPY ulterieurement |
119 |
|
|
|
120 |
|
|
DO l = 1,llm |
121 |
|
|
DO j = 1,jjp1 |
122 |
|
|
DO i = 1,iip1 |
123 |
|
|
s0( i,j,llm+1-l ) = q ( i,j,l,0 ) |
124 |
|
|
sx( i,j,llm+1-l ) = q ( i,j,l,1 ) |
125 |
|
|
sy( i,j,llm+1-l ) = q ( i,j,l,2 ) |
126 |
|
|
sz( i,j,llm+1-l ) = q ( i,j,l,3 ) |
127 |
|
|
ENDDO |
128 |
|
|
ENDDO |
129 |
|
|
ENDDO |
130 |
|
|
|
131 |
|
|
c PRINT*,'----- S0 just before conversion -------' |
132 |
|
|
c PRINT*,'S0(16,12,1)=',s0(16,12,1) |
133 |
|
|
c PRINT*,'Q(16,12,1,4)=',q(16,12,1,4) |
134 |
|
|
|
135 |
|
|
c *** On calcule la masse d'air en kg |
136 |
|
|
|
137 |
|
|
DO l = 1,llm |
138 |
|
|
DO j = 1,jjp1 |
139 |
|
|
DO i = 1,iip1 |
140 |
|
|
sm ( i,j,llm+1-l)=masse( i,j,l ) |
141 |
|
|
ENDDO |
142 |
|
|
ENDDO |
143 |
|
|
ENDDO |
144 |
|
|
|
145 |
|
|
c *** On converti les champs S en atome (resp. kg) |
146 |
|
|
c *** Les routines d'advection traitent les champs |
147 |
|
|
c *** a advecter si ces derniers sont en atome (resp. kg) |
148 |
|
|
c *** A optimiser !!! |
149 |
|
|
|
150 |
|
|
DO l = 1,llm |
151 |
|
|
DO j = 1,jjp1 |
152 |
|
|
DO i = 1,iip1 |
153 |
|
|
s0(i,j,l) = s0(i,j,l) * sm ( i,j,l ) |
154 |
|
|
sx(i,j,l) = sx(i,j,l) * sm ( i,j,l ) |
155 |
|
|
sy(i,j,l) = sy(i,j,l) * sm ( i,j,l ) |
156 |
|
|
sz(i,j,l) = sz(i,j,l) * sm ( i,j,l ) |
157 |
|
|
ENDDO |
158 |
|
|
ENDDO |
159 |
|
|
ENDDO |
160 |
|
|
|
161 |
|
|
c ss0 = 0. |
162 |
|
|
c DO l = 1,llm |
163 |
|
|
c DO j = 1,jjp1 |
164 |
|
|
c DO i = 1,iim |
165 |
|
|
c ss0 = ss0 + s0 ( i,j,l ) |
166 |
|
|
c ENDDO |
167 |
|
|
c ENDDO |
168 |
|
|
c ENDDO |
169 |
|
|
c PRINT*, 'valeur tot s0 avant advection=',ss0 |
170 |
|
|
|
171 |
|
|
c *** Appel des subroutines d'advection en X, en Y et en Z |
172 |
|
|
c *** Advection avec "time-splitting" |
173 |
|
|
|
174 |
|
|
c----------------------------------------------------------- |
175 |
|
|
c PRINT*,'----- S0 just before ADVX -------' |
176 |
|
|
c PRINT*,'S0(16,12,1)=',s0(16,12,1) |
177 |
|
|
|
178 |
|
|
c----------------------------------------------------------- |
179 |
|
|
c do l=1,llm |
180 |
|
|
c do j=1,jjp1 |
181 |
|
|
c do i=1,iip1 |
182 |
|
|
c zq=s0(i,j,l)/sm(i,j,l) |
183 |
|
|
c if(zq.lt.qmin) |
184 |
|
|
c , print*,'avant advx1, s0(',i,',',j,',',l,')=',zq |
185 |
|
|
c enddo |
186 |
|
|
c enddo |
187 |
|
|
c enddo |
188 |
|
|
CCC |
189 |
|
|
if(mode.eq.2) then |
190 |
|
|
do l=1,llm |
191 |
|
|
s0s=0. |
192 |
|
|
s0n=0. |
193 |
|
|
dyn1=0. |
194 |
|
|
dys1=0. |
195 |
|
|
dyn2=0. |
196 |
|
|
dys2=0. |
197 |
|
|
smn=0. |
198 |
|
|
sms=0. |
199 |
|
|
do i=1,iim |
200 |
|
|
smn=smn+sm(i,1,l) |
201 |
|
|
sms=sms+sm(i,jjp1,l) |
202 |
|
|
s0n=s0n+s0(i,1,l) |
203 |
|
|
s0s=s0s+s0(i,jjp1,l) |
204 |
|
|
zz=sy(i,1,l)/sm(i,1,l) |
205 |
|
|
dyn1=dyn1+sinlondlon(i)*zz |
206 |
|
|
dyn2=dyn2+coslondlon(i)*zz |
207 |
|
|
zz=sy(i,jjp1,l)/sm(i,jjp1,l) |
208 |
|
|
dys1=dys1+sinlondlon(i)*zz |
209 |
|
|
dys2=dys2+coslondlon(i)*zz |
210 |
|
|
enddo |
211 |
|
|
do i=1,iim |
212 |
|
|
sy(i,1,l)=dyn1*sinlon(i)+dyn2*coslon(i) |
213 |
|
|
sy(i,jjp1,l)=dys1*sinlon(i)+dys2*coslon(i) |
214 |
|
|
enddo |
215 |
|
|
do i=1,iim |
216 |
|
|
s0(i,1,l)=s0n/smn+sy(i,1,l) |
217 |
|
|
s0(i,jjp1,l)=s0s/sms-sy(i,jjp1,l) |
218 |
|
|
enddo |
219 |
|
|
|
220 |
|
|
s0(iip1,1,l)=s0(1,1,l) |
221 |
|
|
s0(iip1,jjp1,l)=s0(1,jjp1,l) |
222 |
|
|
|
223 |
|
|
do i=1,iim |
224 |
|
|
sxn(i)=s0(i+1,1,l)-s0(i,1,l) |
225 |
|
|
sxs(i)=s0(i+1,jjp1,l)-s0(i,jjp1,l) |
226 |
|
|
c on rerentre les masses |
227 |
|
|
enddo |
228 |
|
|
do i=1,iim |
229 |
|
|
sy(i,1,l)=sy(i,1,l)*sm(i,1,l) |
230 |
|
|
sy(i,jjp1,l)=sy(i,jjp1,l)*sm(i,jjp1,l) |
231 |
|
|
s0(i,1,l)=s0(i,1,l)*sm(i,1,l) |
232 |
|
|
s0(i,jjp1,l)=s0(i,jjp1,l)*sm(i,jjp1,l) |
233 |
|
|
enddo |
234 |
|
|
sxn(iip1)=sxn(1) |
235 |
|
|
sxs(iip1)=sxs(1) |
236 |
|
|
do i=1,iim |
237 |
|
|
sx(i+1,1,l)=0.25*(sxn(i)+sxn(i+1))*sm(i+1,1,l) |
238 |
|
|
sx(i+1,jjp1,l)=0.25*(sxs(i)+sxs(i+1))*sm(i+1,jjp1,l) |
239 |
|
|
enddo |
240 |
|
|
s0(iip1,1,l)=s0(1,1,l) |
241 |
|
|
s0(iip1,jjp1,l)=s0(1,jjp1,l) |
242 |
|
|
sy(iip1,1,l)=sy(1,1,l) |
243 |
|
|
sy(iip1,jjp1,l)=sy(1,jjp1,l) |
244 |
|
|
sx(1,1,l)=sx(iip1,1,l) |
245 |
|
|
sx(1,jjp1,l)=sx(iip1,jjp1,l) |
246 |
|
|
enddo |
247 |
|
|
endif |
248 |
|
|
|
249 |
|
|
if (mode.eq.4) then |
250 |
|
|
do l=1,llm |
251 |
|
|
do i=1,iip1 |
252 |
|
|
sx(i,1,l)=0. |
253 |
|
|
sx(i,jjp1,l)=0. |
254 |
|
|
sy(i,1,l)=0. |
255 |
|
|
sy(i,jjp1,l)=0. |
256 |
|
|
enddo |
257 |
|
|
enddo |
258 |
|
|
endif |
259 |
|
|
call limx(s0,sx,sm,pente_max) |
260 |
|
|
c call minmaxq(zq,1.e33,-1.e33,'avant advx ') |
261 |
|
|
call advx( limit,.5*dtvr,pbaru,sm,s0,sx,sy,sz,lati,latf) |
262 |
|
|
c call minmaxq(zq,1.e33,-1.e33,'avant advy ') |
263 |
|
|
if (mode.eq.4) then |
264 |
|
|
do l=1,llm |
265 |
|
|
do i=1,iip1 |
266 |
|
|
sx(i,1,l)=0. |
267 |
|
|
sx(i,jjp1,l)=0. |
268 |
|
|
sy(i,1,l)=0. |
269 |
|
|
sy(i,jjp1,l)=0. |
270 |
|
|
enddo |
271 |
|
|
enddo |
272 |
|
|
endif |
273 |
|
|
call limy(s0,sy,sm,pente_max) |
274 |
|
|
call advy( limit,.5*dtvr,pbarv,sm,s0,sx,sy,sz ) |
275 |
|
|
c call minmaxq(zq,1.e33,-1.e33,'avant advz ') |
276 |
|
|
do j=1,jjp1 |
277 |
|
|
do i=1,iip1 |
278 |
|
|
sz(i,j,1)=0. |
279 |
|
|
sz(i,j,llm)=0. |
280 |
|
|
enddo |
281 |
|
|
enddo |
282 |
|
|
call limz(s0,sz,sm,pente_max) |
283 |
|
|
call advz( limit,dtvr,w,sm,s0,sx,sy,sz ) |
284 |
|
|
if (mode.eq.4) then |
285 |
|
|
do l=1,llm |
286 |
|
|
do i=1,iip1 |
287 |
|
|
sx(i,1,l)=0. |
288 |
|
|
sx(i,jjp1,l)=0. |
289 |
|
|
sy(i,1,l)=0. |
290 |
|
|
sy(i,jjp1,l)=0. |
291 |
|
|
enddo |
292 |
|
|
enddo |
293 |
|
|
endif |
294 |
|
|
call limy(s0,sy,sm,pente_max) |
295 |
|
|
call advy( limit,.5*dtvr,pbarv,sm,s0,sx,sy,sz ) |
296 |
|
|
do l=1,llm |
297 |
|
|
do j=1,jjp1 |
298 |
|
|
sm(iip1,j,l)=sm(1,j,l) |
299 |
|
|
s0(iip1,j,l)=s0(1,j,l) |
300 |
|
|
sx(iip1,j,l)=sx(1,j,l) |
301 |
|
|
sy(iip1,j,l)=sy(1,j,l) |
302 |
|
|
sz(iip1,j,l)=sz(1,j,l) |
303 |
|
|
enddo |
304 |
|
|
enddo |
305 |
|
|
|
306 |
|
|
|
307 |
|
|
c call minmaxq(zq,1.e33,-1.e33,'avant advx ') |
308 |
|
|
if (mode.eq.4) then |
309 |
|
|
do l=1,llm |
310 |
|
|
do i=1,iip1 |
311 |
|
|
sx(i,1,l)=0. |
312 |
|
|
sx(i,jjp1,l)=0. |
313 |
|
|
sy(i,1,l)=0. |
314 |
|
|
sy(i,jjp1,l)=0. |
315 |
|
|
enddo |
316 |
|
|
enddo |
317 |
|
|
endif |
318 |
|
|
call limx(s0,sx,sm,pente_max) |
319 |
|
|
call advx( limit,.5*dtvr,pbaru,sm,s0,sx,sy,sz,lati,latf) |
320 |
|
|
c call minmaxq(zq,1.e33,-1.e33,'apres advx ') |
321 |
|
|
c do l=1,llm |
322 |
|
|
c do j=1,jjp1 |
323 |
|
|
c do i=1,iip1 |
324 |
|
|
c zq=s0(i,j,l)/sm(i,j,l) |
325 |
|
|
c if(zq.lt.qmin) |
326 |
|
|
c , print*,'apres advx2, s0(',i,',',j,',',l,')=',zq |
327 |
|
|
c enddo |
328 |
|
|
c enddo |
329 |
|
|
c enddo |
330 |
|
|
c *** On repasse les S dans la variable q directement 14/10/94 |
331 |
|
|
c On revient a des rapports de melange en divisant par la masse |
332 |
|
|
|
333 |
|
|
c En dehors des poles: |
334 |
|
|
|
335 |
|
|
DO l = 1,llm |
336 |
|
|
DO j = 1,jjp1 |
337 |
|
|
DO i = 1,iim |
338 |
|
|
q(i,j,llm+1-l,0)=s0(i,j,l)/sm(i,j,l) |
339 |
|
|
q(i,j,llm+1-l,1)=sx(i,j,l)/sm(i,j,l) |
340 |
|
|
q(i,j,llm+1-l,2)=sy(i,j,l)/sm(i,j,l) |
341 |
|
|
q(i,j,llm+1-l,3)=sz(i,j,l)/sm(i,j,l) |
342 |
|
|
ENDDO |
343 |
|
|
ENDDO |
344 |
|
|
ENDDO |
345 |
|
|
|
346 |
|
|
c Traitements specifiques au pole |
347 |
|
|
|
348 |
|
|
if(mode.ge.1) then |
349 |
|
|
DO l=1,llm |
350 |
|
|
c filtrages aux poles |
351 |
|
|
masn=ssum(iim,sm(1,1,l),1) |
352 |
|
|
mass=ssum(iim,sm(1,jjp1,l),1) |
353 |
|
|
qpn=ssum(iim,s0(1,1,l),1)/masn |
354 |
|
|
qps=ssum(iim,s0(1,jjp1,l),1)/mass |
355 |
|
|
dqzpn=ssum(iim,sz(1,1,l),1)/masn |
356 |
|
|
dqzps=ssum(iim,sz(1,jjp1,l),1)/mass |
357 |
|
|
do i=1,iip1 |
358 |
|
|
q( i,1,llm+1-l,3)=dqzpn |
359 |
|
|
q( i,jjp1,llm+1-l,3)=dqzps |
360 |
|
|
q( i,1,llm+1-l,0)=qpn |
361 |
|
|
q( i,jjp1,llm+1-l,0)=qps |
362 |
|
|
enddo |
363 |
|
|
if(mode.eq.3) then |
364 |
|
|
dyn1=0. |
365 |
|
|
dys1=0. |
366 |
|
|
dyn2=0. |
367 |
|
|
dys2=0. |
368 |
|
|
do i=1,iim |
369 |
|
|
dyn1=dyn1+sinlondlon(i)*sy(i,1,l)/sm(i,1,l) |
370 |
|
|
dyn2=dyn2+coslondlon(i)*sy(i,1,l)/sm(i,1,l) |
371 |
|
|
dys1=dys1+sinlondlon(i)*sy(i,jjp1,l)/sm(i,jjp1,l) |
372 |
|
|
dys2=dys2+coslondlon(i)*sy(i,jjp1,l)/sm(i,jjp1,l) |
373 |
|
|
enddo |
374 |
|
|
do i=1,iim |
375 |
|
|
q(i,1,llm+1-l,2)= |
376 |
|
|
s (sinlon(i)*dyn1+coslon(i)*dyn2) |
377 |
|
|
q(i,1,llm+1-l,0)=q(i,1,llm+1-l,0)+q(i,1,llm+1-l,2) |
378 |
|
|
q(i,jjp1,llm+1-l,2)= |
379 |
|
|
s (sinlon(i)*dys1+coslon(i)*dys2) |
380 |
|
|
q(i,jjp1,llm+1-l,0)=q(i,jjp1,llm+1-l,0) |
381 |
|
|
s -q(i,jjp1,llm+1-l,2) |
382 |
|
|
enddo |
383 |
|
|
endif |
384 |
|
|
if(mode.eq.1) then |
385 |
|
|
c on filtre les valeurs au bord de la "grande maille pole" |
386 |
|
|
dyn1=0. |
387 |
|
|
dys1=0. |
388 |
|
|
dyn2=0. |
389 |
|
|
dys2=0. |
390 |
|
|
do i=1,iim |
391 |
|
|
zz=s0(i,2,l)/sm(i,2,l)-q(i,1,llm+1-l,0) |
392 |
|
|
dyn1=dyn1+sinlondlon(i)*zz |
393 |
|
|
dyn2=dyn2+coslondlon(i)*zz |
394 |
|
|
zz=q(i,jjp1,llm+1-l,0)-s0(i,jjm,l)/sm(i,jjm,l) |
395 |
|
|
dys1=dys1+sinlondlon(i)*zz |
396 |
|
|
dys2=dys2+coslondlon(i)*zz |
397 |
|
|
enddo |
398 |
|
|
do i=1,iim |
399 |
|
|
q(i,1,llm+1-l,2)= |
400 |
|
|
s (sinlon(i)*dyn1+coslon(i)*dyn2)/2. |
401 |
|
|
q(i,1,llm+1-l,0)=q(i,1,llm+1-l,0)+q(i,1,llm+1-l,2) |
402 |
|
|
q(i,jjp1,llm+1-l,2)= |
403 |
|
|
s (sinlon(i)*dys1+coslon(i)*dys2)/2. |
404 |
|
|
q(i,jjp1,llm+1-l,0)=q(i,jjp1,llm+1-l,0) |
405 |
|
|
s -q(i,jjp1,llm+1-l,2) |
406 |
|
|
enddo |
407 |
|
|
q(iip1,1,llm+1-l,0)=q(1,1,llm+1-l,0) |
408 |
|
|
q(iip1,jjp1,llm+1-l,0)=q(1,jjp1,llm+1-l,0) |
409 |
|
|
|
410 |
|
|
do i=1,iim |
411 |
|
|
sxn(i)=q(i+1,1,llm+1-l,0)-q(i,1,llm+1-l,0) |
412 |
|
|
sxs(i)=q(i+1,jjp1,llm+1-l,0)-q(i,jjp1,llm+1-l,0) |
413 |
|
|
enddo |
414 |
|
|
sxn(iip1)=sxn(1) |
415 |
|
|
sxs(iip1)=sxs(1) |
416 |
|
|
do i=1,iim |
417 |
|
|
q(i+1,1,llm+1-l,1)=0.25*(sxn(i)+sxn(i+1)) |
418 |
|
|
q(i+1,jjp1,llm+1-l,1)=0.25*(sxs(i)+sxs(i+1)) |
419 |
|
|
enddo |
420 |
|
|
q(1,1,llm+1-l,1)=q(iip1,1,llm+1-l,1) |
421 |
|
|
q(1,jjp1,llm+1-l,1)=q(iip1,jjp1,llm+1-l,1) |
422 |
|
|
|
423 |
|
|
endif |
424 |
|
|
|
425 |
|
|
ENDDO |
426 |
|
|
endif |
427 |
|
|
|
428 |
|
|
c bouclage en longitude |
429 |
|
|
do iq=0,3 |
430 |
|
|
do l=1,llm |
431 |
|
|
do j=1,jjp1 |
432 |
|
|
q(iip1,j,l,iq)=q(1,j,l,iq) |
433 |
|
|
enddo |
434 |
|
|
enddo |
435 |
|
|
enddo |
436 |
|
|
|
437 |
|
|
c PRINT*, ' SORTIE DE PENTES --- ca peut glisser ....' |
438 |
|
|
|
439 |
|
|
DO l = 1,llm |
440 |
|
|
DO j = 1,jjp1 |
441 |
|
|
DO i = 1,iip1 |
442 |
|
|
IF (q(i,j,l,0).lt.0.) THEN |
443 |
|
|
c PRINT*,'------------ BIP-----------' |
444 |
|
|
c PRINT*,'Q0(',i,j,l,')=',q(i,j,l,0) |
445 |
|
|
c PRINT*,'QX(',i,j,l,')=',q(i,j,l,1) |
446 |
|
|
c PRINT*,'QY(',i,j,l,')=',q(i,j,l,2) |
447 |
|
|
c PRINT*,'QZ(',i,j,l,')=',q(i,j,l,3) |
448 |
|
|
c PRINT*,' PBL EN SORTIE DE PENTES' |
449 |
|
|
q(i,j,l,0)=0. |
450 |
|
|
c STOP |
451 |
|
|
ENDIF |
452 |
|
|
ENDDO |
453 |
|
|
ENDDO |
454 |
|
|
ENDDO |
455 |
|
|
|
456 |
|
|
c PRINT*, '-------------------------------------------' |
457 |
|
|
|
458 |
|
|
do l=1,llm |
459 |
|
|
do j=1,jjp1 |
460 |
|
|
do i=1,iip1 |
461 |
|
|
if(q(i,j,l,0).lt.qmin) |
462 |
|
|
, print*,'apres pentes, s0(',i,',',j,',',l,')=',q(i,j,l,0) |
463 |
|
|
enddo |
464 |
|
|
enddo |
465 |
|
|
enddo |
466 |
|
|
RETURN |
467 |
|
|
END |
468 |
|
|
|
469 |
|
|
|
470 |
|
|
|
471 |
|
|
|
472 |
|
|
|
473 |
|
|
|
474 |
|
|
|
475 |
|
|
|
476 |
|
|
|
477 |
|
|
|
478 |
|
|
|
479 |
|
|
|