1 |
|
|
! |
2 |
|
|
! $Id: top_bound.F 2600 2016-07-23 05:45:38Z emillour $ |
3 |
|
|
! |
4 |
|
298 |
SUBROUTINE top_bound(vcov,ucov,teta,masse,dt) |
5 |
|
|
|
6 |
|
|
USE comconst_mod, ONLY: iflag_top_bound, mode_top_bound, |
7 |
|
|
& tau_top_bound |
8 |
|
|
USE comvert_mod, ONLY: presnivs, preff, scaleheight |
9 |
|
|
|
10 |
|
|
IMPLICIT NONE |
11 |
|
|
c |
12 |
|
|
include "dimensions.h" |
13 |
|
|
include "paramet.h" |
14 |
|
|
include "comgeom2.h" |
15 |
|
|
|
16 |
|
|
|
17 |
|
|
c .. DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO, |
18 |
|
|
C F. LOTT DEC. 2006 |
19 |
|
|
c ( 10/12/06 ) |
20 |
|
|
|
21 |
|
|
c======================================================================= |
22 |
|
|
c |
23 |
|
|
c Auteur: F. LOTT |
24 |
|
|
c ------- |
25 |
|
|
c |
26 |
|
|
c Objet: |
27 |
|
|
c ------ |
28 |
|
|
c |
29 |
|
|
c Dissipation lin�aire (ex top_bound de la physique) |
30 |
|
|
c |
31 |
|
|
c======================================================================= |
32 |
|
|
|
33 |
|
|
! top_bound sponge layer model: |
34 |
|
|
! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*t) |
35 |
|
|
! where Am is the zonal average of the field (or zero), and lambda the inverse |
36 |
|
|
! of the characteristic quenching/relaxation time scale |
37 |
|
|
! Thus, assuming Am to be time-independent, field at time t+dt is given by: |
38 |
|
|
! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*t)) |
39 |
|
|
! Moreover lambda can be a function of model level (see below), and relaxation |
40 |
|
|
! can be toward the average zonal field or just zero (see below). |
41 |
|
|
|
42 |
|
|
! NB: top_bound sponge is only called from leapfrog if ok_strato=.true. |
43 |
|
|
|
44 |
|
|
! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst_mod) |
45 |
|
|
! iflag_top_bound=0 for no sponge |
46 |
|
|
! iflag_top_bound=1 for sponge over 4 topmost layers |
47 |
|
|
! iflag_top_bound=2 for sponge from top to ~1% of top layer pressure |
48 |
|
|
! mode_top_bound=0: no relaxation |
49 |
|
|
! mode_top_bound=1: u and v relax towards 0 |
50 |
|
|
! mode_top_bound=2: u and v relax towards their zonal mean |
51 |
|
|
! mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean |
52 |
|
|
! tau_top_bound : inverse of charactericstic relaxation time scale at |
53 |
|
|
! the topmost layer (Hz) |
54 |
|
|
|
55 |
|
|
|
56 |
|
|
#include "comdissipn.h" |
57 |
|
|
#include "iniprint.h" |
58 |
|
|
|
59 |
|
|
c Arguments: |
60 |
|
|
c ---------- |
61 |
|
|
|
62 |
|
|
real,intent(inout) :: ucov(iip1,jjp1,llm) ! covariant zonal wind |
63 |
|
|
real,intent(inout) :: vcov(iip1,jjm,llm) ! covariant meridional wind |
64 |
|
|
real,intent(inout) :: teta(iip1,jjp1,llm) ! potential temperature |
65 |
|
|
real,intent(in) :: masse(iip1,jjp1,llm) ! mass of atmosphere |
66 |
|
|
real,intent(in) :: dt ! time step (s) of sponge model |
67 |
|
|
|
68 |
|
|
c Local: |
69 |
|
|
c ------ |
70 |
|
|
|
71 |
|
|
REAL massebx(iip1,jjp1,llm),masseby(iip1,jjm,llm),zm |
72 |
|
|
REAL uzon(jjp1,llm),vzon(jjm,llm),tzon(jjp1,llm) |
73 |
|
|
|
74 |
|
|
integer i |
75 |
|
|
REAL,SAVE :: rdamp(llm) ! quenching coefficient |
76 |
|
|
real,save :: lambda(llm) ! inverse or quenching time scale (Hz) |
77 |
|
|
|
78 |
|
|
LOGICAL,SAVE :: first=.true. |
79 |
|
|
|
80 |
|
|
INTEGER j,l |
81 |
|
|
|
82 |
✗✓ |
288 |
if (iflag_top_bound.eq.0) return |
83 |
|
|
|
84 |
✓✓ |
288 |
if (first) then |
85 |
✗✓ |
1 |
if (iflag_top_bound.eq.1) then |
86 |
|
|
! sponge quenching over the topmost 4 atmospheric layers |
87 |
|
|
lambda(:)=0. |
88 |
|
|
lambda(llm)=tau_top_bound |
89 |
|
|
lambda(llm-1)=tau_top_bound/2. |
90 |
|
|
lambda(llm-2)=tau_top_bound/4. |
91 |
|
|
lambda(llm-3)=tau_top_bound/8. |
92 |
✓✗ |
1 |
else if (iflag_top_bound.eq.2) then |
93 |
|
|
! sponge quenching over topmost layers down to pressures which are |
94 |
|
|
! higher than 100 times the topmost layer pressure |
95 |
|
|
lambda(:)=tau_top_bound |
96 |
✓✓ |
40 |
s *max(presnivs(llm)/presnivs(:)-0.01,0.) |
97 |
|
|
endif |
98 |
|
|
|
99 |
|
|
! quenching coefficient rdamp(:) |
100 |
|
|
! rdamp(:)=dt*lambda(:) ! Explicit Euler approx. |
101 |
✓✓ |
40 |
rdamp(:)=1.-exp(-lambda(:)*dt) |
102 |
|
|
|
103 |
|
1 |
write(lunout,*)'TOP_BOUND mode',mode_top_bound |
104 |
|
1 |
write(lunout,*)'Sponge layer coefficients' |
105 |
|
1 |
write(lunout,*)'p (Pa) z(km) tau(s) 1./tau (Hz)' |
106 |
✓✓ |
40 |
do l=1,llm |
107 |
✓✓ |
40 |
if (rdamp(l).ne.0.) then |
108 |
|
|
write(lunout,'(6(1pe12.4,1x))') |
109 |
|
7 |
& presnivs(l),log(preff/presnivs(l))*scaleheight, |
110 |
|
14 |
& 1./lambda(l),lambda(l) |
111 |
|
|
endif |
112 |
|
|
enddo |
113 |
|
1 |
first=.false. |
114 |
|
|
endif ! of if (first) |
115 |
|
|
|
116 |
|
288 |
CALL massbar(masse,massebx,masseby) |
117 |
|
|
|
118 |
|
|
! compute zonal average of vcov and u |
119 |
✓✗ |
288 |
if (mode_top_bound.ge.2) then |
120 |
✓✓ |
11520 |
do l=1,llm |
121 |
✓✓ |
370944 |
do j=1,jjm |
122 |
|
359424 |
vzon(j,l)=0. |
123 |
|
|
zm=0. |
124 |
✓✓ |
11860992 |
do i=1,iim |
125 |
|
|
! NB: we can work using vcov zonal mean rather than v since the |
126 |
|
|
! cv coefficient (which relates the two) only varies with latitudes |
127 |
|
11501568 |
vzon(j,l)=vzon(j,l)+vcov(i,j,l)*masseby(i,j,l) |
128 |
|
11860992 |
zm=zm+masseby(i,j,l) |
129 |
|
|
enddo |
130 |
|
370656 |
vzon(j,l)=vzon(j,l)/zm |
131 |
|
|
enddo |
132 |
|
|
enddo |
133 |
|
|
|
134 |
✓✓ |
11520 |
do l=1,llm |
135 |
✓✓ |
359712 |
do j=2,jjm ! excluding poles |
136 |
|
348192 |
uzon(j,l)=0. |
137 |
|
|
zm=0. |
138 |
✓✓ |
11490336 |
do i=1,iim |
139 |
|
11142144 |
uzon(j,l)=uzon(j,l)+massebx(i,j,l)*ucov(i,j,l)/cu(i,j) |
140 |
|
11490336 |
zm=zm+massebx(i,j,l) |
141 |
|
|
enddo |
142 |
|
359424 |
uzon(j,l)=uzon(j,l)/zm |
143 |
|
|
enddo |
144 |
|
|
enddo |
145 |
|
|
else ! ucov and vcov will relax towards 0 |
146 |
|
|
vzon(:,:)=0. |
147 |
|
|
uzon(:,:)=0. |
148 |
|
|
endif ! of if (mode_top_bound.ge.2) |
149 |
|
|
|
150 |
|
|
! compute zonal average of potential temperature, if necessary |
151 |
✓✗ |
288 |
if (mode_top_bound.ge.3) then |
152 |
✓✓ |
11520 |
do l=1,llm |
153 |
✓✓ |
359712 |
do j=2,jjm ! excluding poles |
154 |
|
|
zm=0. |
155 |
|
348192 |
tzon(j,l)=0. |
156 |
✓✓ |
11490336 |
do i=1,iim |
157 |
|
11142144 |
tzon(j,l)=tzon(j,l)+teta(i,j,l)*masse(i,j,l) |
158 |
|
11490336 |
zm=zm+masse(i,j,l) |
159 |
|
|
enddo |
160 |
|
359424 |
tzon(j,l)=tzon(j,l)/zm |
161 |
|
|
enddo |
162 |
|
|
enddo |
163 |
|
|
endif ! of if (mode_top_bound.ge.3) |
164 |
|
|
|
165 |
✓✗ |
288 |
if (mode_top_bound.ge.1) then |
166 |
|
|
! Apply sponge quenching on vcov: |
167 |
✓✓ |
11520 |
do l=1,llm |
168 |
✓✓ |
382176 |
do i=1,iip1 |
169 |
✓✓ |
12242880 |
do j=1,jjm |
170 |
|
|
vcov(i,j,l)=vcov(i,j,l) |
171 |
|
12231648 |
& -rdamp(l)*(vcov(i,j,l)-vzon(j,l)) |
172 |
|
|
enddo |
173 |
|
|
enddo |
174 |
|
|
enddo |
175 |
|
|
|
176 |
|
|
! Apply sponge quenching on ucov: |
177 |
✓✓ |
11520 |
do l=1,llm |
178 |
✓✓ |
382176 |
do i=1,iip1 |
179 |
✓✓ |
11872224 |
do j=2,jjm ! excluding poles |
180 |
|
|
ucov(i,j,l)=ucov(i,j,l) |
181 |
|
11860992 |
& -rdamp(l)*(ucov(i,j,l)-cu(i,j)*uzon(j,l)) |
182 |
|
|
enddo |
183 |
|
|
enddo |
184 |
|
|
enddo |
185 |
|
|
endif ! of if (mode_top_bound.ge.1) |
186 |
|
|
|
187 |
✓✗ |
288 |
if (mode_top_bound.ge.3) then |
188 |
|
|
! Apply sponge quenching on teta: |
189 |
✓✓ |
11520 |
do l=1,llm |
190 |
✓✓ |
382176 |
do i=1,iip1 |
191 |
✓✓ |
11872224 |
do j=2,jjm ! excluding poles |
192 |
|
|
teta(i,j,l)=teta(i,j,l) |
193 |
|
11860992 |
& -rdamp(l)*(teta(i,j,l)-tzon(j,l)) |
194 |
|
|
enddo |
195 |
|
|
enddo |
196 |
|
|
enddo |
197 |
|
|
endif ! of if (mode_top_bound.ge.3) |
198 |
|
|
|
199 |
|
|
END |