GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
! |
||
2 |
! $Id$ |
||
3 |
! |
||
4 |
MODULE filtreg_mod |
||
5 |
|||
6 |
REAL, DIMENSION(:,:,:), ALLOCATABLE :: matriceun,matriceus,matricevn |
||
7 |
REAL, DIMENSION(:,:,:), ALLOCATABLE :: matricevs,matrinvn,matrinvs |
||
8 |
|||
9 |
CONTAINS |
||
10 |
|||
11 |
1 |
SUBROUTINE inifilr |
|
12 |
#ifdef CPP_PARA |
||
13 |
USE mod_filtre_fft, ONLY : use_filtre_fft,Init_filtre_fft |
||
14 |
USE mod_filtre_fft_loc, ONLY : Init_filtre_fft_loc=>Init_filtre_fft ! |
||
15 |
#endif |
||
16 |
USE serre_mod, ONLY: alphax |
||
17 |
USE logic_mod, ONLY: fxyhypb, ysinus |
||
18 |
USE comconst_mod, ONLY: maxlatfilter |
||
19 |
|||
20 |
! ... H. Upadhyaya, O.Sharma ... |
||
21 |
! |
||
22 |
IMPLICIT NONE |
||
23 |
! |
||
24 |
! version 3 ..... |
||
25 |
|||
26 |
! Correction le 28/10/97 P. Le Van . |
||
27 |
! ------------------------------------------------------------------- |
||
28 |
include "dimensions.h" |
||
29 |
include "paramet.h" |
||
30 |
! ------------------------------------------------------------------- |
||
31 |
include "comgeom.h" |
||
32 |
include "coefils.h" |
||
33 |
|||
34 |
REAL dlonu(iim),dlatu(jjm) |
||
35 |
REAL rlamda( iim ), eignvl( iim ) |
||
36 |
! |
||
37 |
|||
38 |
REAL lamdamax,pi,cof |
||
39 |
INTEGER i,j,modemax,imx,k,kf,ii |
||
40 |
REAL dymin,dxmin,colat0 |
||
41 |
REAL eignft(iim,iim), coff |
||
42 |
|||
43 |
LOGICAL, SAVE :: first_call_inifilr = .TRUE. |
||
44 |
|||
45 |
#ifdef CRAY |
||
46 |
INTEGER ISMIN |
||
47 |
EXTERNAL ISMIN |
||
48 |
INTEGER iymin |
||
49 |
INTEGER ixmineq |
||
50 |
#endif |
||
51 |
! |
||
52 |
! ------------------------------------------------------------ |
||
53 |
! This routine computes the eigenfunctions of the laplacien |
||
54 |
! on the stretched grid, and the filtering coefficients |
||
55 |
! |
||
56 |
! We designate: |
||
57 |
! eignfn eigenfunctions of the discrete laplacien |
||
58 |
! eigenvl eigenvalues |
||
59 |
! jfiltn indexof the last scalar line filtered in NH |
||
60 |
! jfilts index of the first line filtered in SH |
||
61 |
! modfrst index of the mode from WHERE modes are filtered |
||
62 |
! modemax maximum number of modes ( im ) |
||
63 |
! coefil filtering coefficients ( lamda_max*COS(rlat)/lamda ) |
||
64 |
! sdd SQRT( dx ) |
||
65 |
! |
||
66 |
! the modes are filtered from modfrst to modemax |
||
67 |
! |
||
68 |
!----------------------------------------------------------- |
||
69 |
! |
||
70 |
if ( iim == 1 ) return ! No filtre in 2D y-z |
||
71 |
|||
72 |
pi = 2. * ASIN( 1. ) |
||
73 |
|||
74 |
✓✓ | 33 |
DO i = 1,iim |
75 |
33 |
dlonu(i) = xprimu( i ) |
|
76 |
ENDDO |
||
77 |
! |
||
78 |
1 |
CALL inifgn(eignvl) |
|
79 |
! |
||
80 |
1 |
PRINT *,'inifilr: EIGNVL ' |
|
81 |
1 |
PRINT 250,eignvl |
|
82 |
250 FORMAT( 1x,5e14.6) |
||
83 |
! |
||
84 |
! compute eigenvalues and eigenfunctions |
||
85 |
! |
||
86 |
! |
||
87 |
!................................................................. |
||
88 |
! |
||
89 |
! compute the filtering coefficients for scalar lines and |
||
90 |
! meridional wind v-lines |
||
91 |
! |
||
92 |
! we filter all those latitude lines WHERE coefil < 1 |
||
93 |
! NO FILTERING AT POLES |
||
94 |
! |
||
95 |
! colat0 is to be used when alpha (stretching coefficient) |
||
96 |
! is set equal to zero for the regular grid CASE |
||
97 |
! |
||
98 |
! ....... Calcul de colat0 ......... |
||
99 |
! ..... colat0 = minimum de ( 0.5, min dy/ min dx ) ... |
||
100 |
! |
||
101 |
! |
||
102 |
✓✓ | 33 |
DO j = 1,jjm |
103 |
33 |
dlatu( j ) = rlatu( j ) - rlatu( j+1 ) |
|
104 |
ENDDO |
||
105 |
! |
||
106 |
#ifdef CRAY |
||
107 |
iymin = ISMIN( jjm, dlatu, 1 ) |
||
108 |
ixmineq = ISMIN( iim, dlonu, 1 ) |
||
109 |
dymin = dlatu( iymin ) |
||
110 |
dxmin = dlonu( ixmineq ) |
||
111 |
#else |
||
112 |
1 |
dxmin = dlonu(1) |
|
113 |
✓✓ | 32 |
DO i = 2, iim |
114 |
32 |
dxmin = MIN( dxmin,dlonu(i) ) |
|
115 |
ENDDO |
||
116 |
1 |
dymin = dlatu(1) |
|
117 |
✓✓ | 32 |
DO j = 2, jjm |
118 |
32 |
dymin = MIN( dymin,dlatu(j) ) |
|
119 |
ENDDO |
||
120 |
#endif |
||
121 |
! |
||
122 |
! For a regular grid, we want the filter to start at latitudes |
||
123 |
! corresponding to lengths dx of the same size as dy (in terms |
||
124 |
! of angles: dx=2*dy) => at colat0=0.5 (i.e. colatitude=30 degrees |
||
125 |
! <=> latitude=60 degrees). |
||
126 |
! Same idea for the zoomed grid: start filtering polewards as soon |
||
127 |
! as length dx becomes of the same size as dy |
||
128 |
! |
||
129 |
! if maxlatfilter >0, prescribe the colat0 value from the .def files |
||
130 |
|||
131 |
✓✗ | 1 |
IF (maxlatfilter .LT. 0.) THEN |
132 |
|||
133 |
1 |
colat0 = MIN( 0.5, dymin/dxmin ) |
|
134 |
! colat0 = 1. |
||
135 |
! |
||
136 |
✗✓✗✗ |
1 |
IF( .NOT.fxyhypb.AND.ysinus ) THEN |
137 |
colat0 = 0.6 |
||
138 |
! ...... a revoir pour ysinus ! ....... |
||
139 |
alphax = 0. |
||
140 |
ENDIF |
||
141 |
|||
142 |
ELSE |
||
143 |
|||
144 |
colat0=(90.0-maxlatfilter)/180.0*pi |
||
145 |
|||
146 |
ENDIF |
||
147 |
|||
148 |
|||
149 |
|||
150 |
! |
||
151 |
1 |
PRINT 50, colat0,alphax |
|
152 |
50 FORMAT(/15x,' Inifilr colat0 alphax ',2e16.7) |
||
153 |
! |
||
154 |
✗✓ | 1 |
IF(alphax.EQ.1. ) THEN |
155 |
PRINT *,' Inifilr alphax doit etre < a 1. Corriger ' |
||
156 |
STOP |
||
157 |
ENDIF |
||
158 |
! |
||
159 |
1 |
lamdamax = iim / ( pi * colat0 * ( 1. - alphax ) ) |
|
160 |
|||
161 |
! ... Correction le 28/10/97 ( P.Le Van ) .. |
||
162 |
! |
||
163 |
✓✓ | 32 |
DO i = 2,iim |
164 |
32 |
rlamda( i ) = lamdamax/ SQRT( ABS( eignvl(i) ) ) |
|
165 |
ENDDO |
||
166 |
! |
||
167 |
|||
168 |
✓✓ | 33 |
DO j = 1,jjm |
169 |
✓✓ | 1057 |
DO i = 1,iim |
170 |
1024 |
coefilu( i,j ) = 0.0 |
|
171 |
1024 |
coefilv( i,j ) = 0.0 |
|
172 |
1024 |
coefilu2( i,j ) = 0.0 |
|
173 |
1056 |
coefilv2( i,j ) = 0.0 |
|
174 |
ENDDO |
||
175 |
ENDDO |
||
176 |
|||
177 |
! |
||
178 |
! ... Determination de jfiltnu,jfiltnv,jfiltsu,jfiltsv .... |
||
179 |
! ......................................................... |
||
180 |
! |
||
181 |
modemax = iim |
||
182 |
|||
183 |
!!!! imx = modemax - 4 * (modemax/iim) |
||
184 |
|||
185 |
1 |
imx = iim |
|
186 |
! |
||
187 |
1 |
PRINT *,'inifilr: TRUNCATION AT ',imx |
|
188 |
! |
||
189 |
! Ehouarn: set up some defaults |
||
190 |
1 |
jfiltnu=2 ! avoid north pole |
|
191 |
1 |
jfiltsu=jjm ! avoid south pole (which is at jjm+1) |
|
192 |
1 |
jfiltnv=1 ! NB: no poles on the V grid |
|
193 |
1 |
jfiltsv=jjm |
|
194 |
|||
195 |
✓✓ | 17 |
DO j = 2, jjm/2+1 |
196 |
16 |
cof = COS( rlatu(j) )/ colat0 |
|
197 |
✓✓ | 16 |
IF ( cof .LT. 1. ) THEN |
198 |
✓✗ | 5 |
IF( rlamda(imx) * COS(rlatu(j) ).LT.1. ) THEN |
199 |
5 |
jfiltnu= j |
|
200 |
ENDIF |
||
201 |
ENDIF |
||
202 |
|||
203 |
16 |
cof = COS( rlatu(jjp1-j+1) )/ colat0 |
|
204 |
✓✓ | 17 |
IF ( cof .LT. 1. ) THEN |
205 |
✓✗ | 5 |
IF( rlamda(imx) * COS(rlatu(jjp1-j+1) ).LT.1. ) THEN |
206 |
5 |
jfiltsu= jjp1-j+1 |
|
207 |
ENDIF |
||
208 |
ENDIF |
||
209 |
ENDDO |
||
210 |
! |
||
211 |
✓✓ | 17 |
DO j = 1, jjm/2 |
212 |
16 |
cof = COS( rlatv(j) )/ colat0 |
|
213 |
✓✓ | 16 |
IF ( cof .LT. 1. ) THEN |
214 |
✓✗ | 5 |
IF( rlamda(imx) * COS(rlatv(j) ).LT.1. ) THEN |
215 |
5 |
jfiltnv= j |
|
216 |
ENDIF |
||
217 |
ENDIF |
||
218 |
|||
219 |
16 |
cof = COS( rlatv(jjm-j+1) )/ colat0 |
|
220 |
✓✓ | 17 |
IF ( cof .LT. 1. ) THEN |
221 |
✓✗ | 5 |
IF( rlamda(imx) * COS(rlatv(jjm-j+1) ).LT.1. ) THEN |
222 |
5 |
jfiltsv= jjm-j+1 |
|
223 |
ENDIF |
||
224 |
ENDIF |
||
225 |
ENDDO |
||
226 |
! |
||
227 |
|||
228 |
✗✓ | 1 |
IF( jfiltnu.GT. jjm/2 +1 ) THEN |
229 |
PRINT *,' jfiltnu en dehors des valeurs acceptables ' ,jfiltnu |
||
230 |
STOP |
||
231 |
ENDIF |
||
232 |
|||
233 |
✗✓ | 1 |
IF( jfiltsu.GT. jjm +1 ) THEN |
234 |
PRINT *,' jfiltsu en dehors des valeurs acceptables ' ,jfiltsu |
||
235 |
STOP |
||
236 |
ENDIF |
||
237 |
|||
238 |
✗✓ | 1 |
IF( jfiltnv.GT. jjm/2 ) THEN |
239 |
PRINT *,' jfiltnv en dehors des valeurs acceptables ' ,jfiltnv |
||
240 |
STOP |
||
241 |
ENDIF |
||
242 |
|||
243 |
✗✓ | 1 |
IF( jfiltsv.GT. jjm ) THEN |
244 |
PRINT *,' jfiltsv en dehors des valeurs acceptables ' ,jfiltsv |
||
245 |
STOP |
||
246 |
ENDIF |
||
247 |
|||
248 |
1 |
PRINT *,'inifilr: jfiltnv jfiltsv jfiltnu jfiltsu ' , & |
|
249 |
2 |
jfiltnv,jfiltsv,jfiltnu,jfiltsu |
|
250 |
|||
251 |
✓✗ | 1 |
IF(first_call_inifilr) THEN |
252 |
✓✗✗✓ ✗✓ |
1 |
ALLOCATE(matriceun(iim,iim,jfiltnu)) |
253 |
✓✗✗✓ ✗✓ |
1 |
ALLOCATE(matriceus(iim,iim,jjm-jfiltsu+1)) |
254 |
✓✗✗✓ ✗✓ |
1 |
ALLOCATE(matricevn(iim,iim,jfiltnv)) |
255 |
✓✗✗✓ ✗✓ |
1 |
ALLOCATE(matricevs(iim,iim,jjm-jfiltsv+1)) |
256 |
✗✓✗✓ |
1 |
ALLOCATE( matrinvn(iim,iim,jfiltnu)) |
257 |
✗✓✗✓ |
1 |
ALLOCATE( matrinvs(iim,iim,jjm-jfiltsu+1)) |
258 |
1 |
first_call_inifilr = .FALSE. |
|
259 |
ENDIF |
||
260 |
|||
261 |
! |
||
262 |
! ... Determination de coefilu,coefilv,n=modfrstu,modfrstv .... |
||
263 |
!................................................................ |
||
264 |
! |
||
265 |
! |
||
266 |
✓✓ | 33 |
DO j = 1,jjm |
267 |
!default initialization: all modes are retained (i.e. no filtering) |
||
268 |
32 |
modfrstu( j ) = iim |
|
269 |
33 |
modfrstv( j ) = iim |
|
270 |
ENDDO |
||
271 |
! |
||
272 |
✓✓ | 6 |
DO j = 2,jfiltnu |
273 |
✓✗ | 69 |
DO k = 2,modemax |
274 |
69 |
cof = rlamda(k) * COS( rlatu(j) ) |
|
275 |
✓✓ | 69 |
IF ( cof .LT. 1. ) GOTO 82 |
276 |
ENDDO |
||
277 |
5 |
GOTO 84 |
|
278 |
5 |
82 modfrstu( j ) = k |
|
279 |
! |
||
280 |
kf = modfrstu( j ) |
||
281 |
✓✓ | 96 |
DO k = kf , modemax |
282 |
91 |
cof = rlamda(k) * COS( rlatu(j) ) |
|
283 |
91 |
coefilu(k,j) = cof - 1. |
|
284 |
96 |
coefilu2(k,j) = cof*cof - 1. |
|
285 |
ENDDO |
||
286 |
1 |
84 CONTINUE |
|
287 |
ENDDO |
||
288 |
! |
||
289 |
! |
||
290 |
✓✓ | 6 |
DO j = 1,jfiltnv |
291 |
! |
||
292 |
✓✗ | 57 |
DO k = 2,modemax |
293 |
57 |
cof = rlamda(k) * COS( rlatv(j) ) |
|
294 |
✓✓ | 57 |
IF ( cof .LT. 1. ) GOTO 87 |
295 |
ENDDO |
||
296 |
5 |
GOTO 89 |
|
297 |
5 |
87 modfrstv( j ) = k |
|
298 |
! |
||
299 |
kf = modfrstv( j ) |
||
300 |
✓✓ | 108 |
DO k = kf , modemax |
301 |
103 |
cof = rlamda(k) * COS( rlatv(j) ) |
|
302 |
103 |
coefilv(k,j) = cof - 1. |
|
303 |
108 |
coefilv2(k,j) = cof*cof - 1. |
|
304 |
ENDDO |
||
305 |
1 |
89 CONTINUE |
|
306 |
ENDDO |
||
307 |
! |
||
308 |
✓✓ | 6 |
DO j = jfiltsu,jjm |
309 |
✓✗ | 69 |
DO k = 2,modemax |
310 |
69 |
cof = rlamda(k) * COS( rlatu(j) ) |
|
311 |
✓✓ | 69 |
IF ( cof .LT. 1. ) GOTO 92 |
312 |
ENDDO |
||
313 |
5 |
GOTO 94 |
|
314 |
5 |
92 modfrstu( j ) = k |
|
315 |
! |
||
316 |
kf = modfrstu( j ) |
||
317 |
✓✓ | 96 |
DO k = kf , modemax |
318 |
91 |
cof = rlamda(k) * COS( rlatu(j) ) |
|
319 |
91 |
coefilu(k,j) = cof - 1. |
|
320 |
96 |
coefilu2(k,j) = cof*cof - 1. |
|
321 |
ENDDO |
||
322 |
1 |
94 CONTINUE |
|
323 |
ENDDO |
||
324 |
! |
||
325 |
✓✓ | 6 |
DO j = jfiltsv,jjm |
326 |
✓✗ | 57 |
DO k = 2,modemax |
327 |
57 |
cof = rlamda(k) * COS( rlatv(j) ) |
|
328 |
✓✓ | 57 |
IF ( cof .LT. 1. ) GOTO 97 |
329 |
ENDDO |
||
330 |
5 |
GOTO 99 |
|
331 |
5 |
97 modfrstv( j ) = k |
|
332 |
! |
||
333 |
kf = modfrstv( j ) |
||
334 |
✓✓ | 108 |
DO k = kf , modemax |
335 |
103 |
cof = rlamda(k) * COS( rlatv(j) ) |
|
336 |
103 |
coefilv(k,j) = cof - 1. |
|
337 |
108 |
coefilv2(k,j) = cof*cof - 1. |
|
338 |
ENDDO |
||
339 |
1 |
99 CONTINUE |
|
340 |
ENDDO |
||
341 |
! |
||
342 |
|||
343 |
✓✗✗✓ |
1 |
IF(jfiltnv.GE.jjm/2 .OR. jfiltnu.GE.jjm/2)THEN |
344 |
! Ehouarn: and what are these for??? Trying to handle a limit case |
||
345 |
! where filters extend to and meet at the equator? |
||
346 |
IF(jfiltnv.EQ.jfiltsv)jfiltsv=1+jfiltnv |
||
347 |
IF(jfiltnu.EQ.jfiltsu)jfiltsu=1+jfiltnu |
||
348 |
|||
349 |
PRINT *,'jfiltnv jfiltsv jfiltnu jfiltsu' , & |
||
350 |
jfiltnv,jfiltsv,jfiltnu,jfiltsu |
||
351 |
ENDIF |
||
352 |
|||
353 |
1 |
PRINT *,' Modes premiers v ' |
|
354 |
1 |
PRINT 334,modfrstv |
|
355 |
1 |
PRINT *,' Modes premiers u ' |
|
356 |
1 |
PRINT 334,modfrstu |
|
357 |
|||
358 |
! |
||
359 |
! ................................................................... |
||
360 |
! |
||
361 |
! ... Calcul de la matrice filtre 'matriceu' pour les champs situes |
||
362 |
! sur la grille scalaire ........ |
||
363 |
! ................................................................... |
||
364 |
! |
||
365 |
✓✓ | 6 |
DO j = 2, jfiltnu |
366 |
|||
367 |
✓✓ | 165 |
DO i=1,iim |
368 |
160 |
coff = coefilu(i,j) |
|
369 |
✓✓ | 160 |
IF( i.LT.modfrstu(j) ) coff = 0. |
370 |
✓✓ | 5285 |
DO k=1,iim |
371 |
5280 |
eignft(i,k) = eignfnv(k,i) * coff |
|
372 |
ENDDO |
||
373 |
ENDDO ! of DO i=1,iim |
||
374 |
#ifdef CRAY |
||
375 |
CALL MXM( eignfnv,iim,eignft,iim,matriceun(1,1,j),iim ) |
||
376 |
#else |
||
377 |
#ifdef BLAS |
||
378 |
CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
||
379 |
eignfnv, iim, eignft, iim, 0.0, matriceun(1,1,j), iim) |
||
380 |
#else |
||
381 |
✓✓ | 166 |
DO k = 1, iim |
382 |
✓✓ | 5285 |
DO i = 1, iim |
383 |
5120 |
matriceun(i,k,j) = 0.0 |
|
384 |
✓✓ | 169120 |
DO ii = 1, iim |
385 |
matriceun(i,k,j) = matriceun(i,k,j) & |
||
386 |
168960 |
+ eignfnv(i,ii)*eignft(ii,k) |
|
387 |
ENDDO |
||
388 |
ENDDO |
||
389 |
ENDDO ! of DO k = 1, iim |
||
390 |
#endif |
||
391 |
#endif |
||
392 |
|||
393 |
ENDDO ! of DO j = 2, jfiltnu |
||
394 |
|||
395 |
✓✓ | 6 |
DO j = jfiltsu, jjm |
396 |
|||
397 |
✓✓ | 165 |
DO i=1,iim |
398 |
160 |
coff = coefilu(i,j) |
|
399 |
✓✓ | 160 |
IF( i.LT.modfrstu(j) ) coff = 0. |
400 |
✓✓ | 5285 |
DO k=1,iim |
401 |
5280 |
eignft(i,k) = eignfnv(k,i) * coff |
|
402 |
ENDDO |
||
403 |
ENDDO ! of DO i=1,iim |
||
404 |
#ifdef CRAY |
||
405 |
CALL MXM(eignfnv,iim,eignft,iim,matriceus(1,1,j-jfiltsu+1),iim) |
||
406 |
#else |
||
407 |
#ifdef BLAS |
||
408 |
CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
||
409 |
eignfnv, iim, eignft, iim, 0.0, & |
||
410 |
matriceus(1,1,j-jfiltsu+1), iim) |
||
411 |
#else |
||
412 |
✓✓ | 166 |
DO k = 1, iim |
413 |
✓✓ | 5285 |
DO i = 1, iim |
414 |
5120 |
matriceus(i,k,j-jfiltsu+1) = 0.0 |
|
415 |
✓✓ | 169120 |
DO ii = 1, iim |
416 |
matriceus(i,k,j-jfiltsu+1) = matriceus(i,k,j-jfiltsu+1) & |
||
417 |
168960 |
+ eignfnv(i,ii)*eignft(ii,k) |
|
418 |
ENDDO |
||
419 |
ENDDO |
||
420 |
ENDDO ! of DO k = 1, iim |
||
421 |
#endif |
||
422 |
#endif |
||
423 |
|||
424 |
ENDDO ! of DO j = jfiltsu, jjm |
||
425 |
|||
426 |
! ................................................................... |
||
427 |
! |
||
428 |
! ... Calcul de la matrice filtre 'matricev' pour les champs situes |
||
429 |
! sur la grille de V ou de Z ........ |
||
430 |
! ................................................................... |
||
431 |
! |
||
432 |
✓✓ | 6 |
DO j = 1, jfiltnv |
433 |
|||
434 |
✓✓ | 165 |
DO i = 1, iim |
435 |
160 |
coff = coefilv(i,j) |
|
436 |
✓✓ | 160 |
IF( i.LT.modfrstv(j) ) coff = 0. |
437 |
✓✓ | 5285 |
DO k = 1, iim |
438 |
5280 |
eignft(i,k) = eignfnu(k,i) * coff |
|
439 |
ENDDO |
||
440 |
ENDDO |
||
441 |
#ifdef CRAY |
||
442 |
CALL MXM( eignfnu,iim,eignft,iim,matricevn(1,1,j),iim ) |
||
443 |
#else |
||
444 |
#ifdef BLAS |
||
445 |
CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
||
446 |
eignfnu, iim, eignft, iim, 0.0, matricevn(1,1,j), iim) |
||
447 |
#else |
||
448 |
✓✓ | 166 |
DO k = 1, iim |
449 |
✓✓ | 5285 |
DO i = 1, iim |
450 |
5120 |
matricevn(i,k,j) = 0.0 |
|
451 |
✓✓ | 169120 |
DO ii = 1, iim |
452 |
matricevn(i,k,j) = matricevn(i,k,j) & |
||
453 |
168960 |
+ eignfnu(i,ii)*eignft(ii,k) |
|
454 |
ENDDO |
||
455 |
ENDDO |
||
456 |
ENDDO |
||
457 |
#endif |
||
458 |
#endif |
||
459 |
|||
460 |
ENDDO ! of DO j = 1, jfiltnv |
||
461 |
|||
462 |
✓✓ | 6 |
DO j = jfiltsv, jjm |
463 |
|||
464 |
✓✓ | 165 |
DO i = 1, iim |
465 |
160 |
coff = coefilv(i,j) |
|
466 |
✓✓ | 160 |
IF( i.LT.modfrstv(j) ) coff = 0. |
467 |
✓✓ | 5285 |
DO k = 1, iim |
468 |
5280 |
eignft(i,k) = eignfnu(k,i) * coff |
|
469 |
ENDDO |
||
470 |
ENDDO |
||
471 |
#ifdef CRAY |
||
472 |
CALL MXM(eignfnu,iim,eignft,iim,matricevs(1,1,j-jfiltsv+1),iim) |
||
473 |
#else |
||
474 |
#ifdef BLAS |
||
475 |
CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
||
476 |
eignfnu, iim, eignft, iim, 0.0, & |
||
477 |
matricevs(1,1,j-jfiltsv+1), iim) |
||
478 |
#else |
||
479 |
✓✓ | 166 |
DO k = 1, iim |
480 |
✓✓ | 5285 |
DO i = 1, iim |
481 |
5120 |
matricevs(i,k,j-jfiltsv+1) = 0.0 |
|
482 |
✓✓ | 169120 |
DO ii = 1, iim |
483 |
matricevs(i,k,j-jfiltsv+1) = matricevs(i,k,j-jfiltsv+1) & |
||
484 |
168960 |
+ eignfnu(i,ii)*eignft(ii,k) |
|
485 |
ENDDO |
||
486 |
ENDDO |
||
487 |
ENDDO |
||
488 |
#endif |
||
489 |
#endif |
||
490 |
|||
491 |
ENDDO ! of DO j = jfiltsv, jjm |
||
492 |
|||
493 |
! ................................................................... |
||
494 |
! |
||
495 |
! ... Calcul de la matrice filtre 'matrinv' pour les champs situes |
||
496 |
! sur la grille scalaire , pour le filtre inverse ........ |
||
497 |
! ................................................................... |
||
498 |
! |
||
499 |
✓✓ | 6 |
DO j = 2, jfiltnu |
500 |
|||
501 |
✓✓ | 165 |
DO i = 1,iim |
502 |
160 |
coff = coefilu(i,j)/ ( 1. + coefilu(i,j) ) |
|
503 |
✓✓ | 160 |
IF( i.LT.modfrstu(j) ) coff = 0. |
504 |
✓✓ | 5285 |
DO k=1,iim |
505 |
5280 |
eignft(i,k) = eignfnv(k,i) * coff |
|
506 |
ENDDO |
||
507 |
ENDDO |
||
508 |
#ifdef CRAY |
||
509 |
CALL MXM( eignfnv,iim,eignft,iim,matrinvn(1,1,j),iim ) |
||
510 |
#else |
||
511 |
#ifdef BLAS |
||
512 |
CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
||
513 |
eignfnv, iim, eignft, iim, 0.0, matrinvn(1,1,j), iim) |
||
514 |
#else |
||
515 |
✓✓ | 166 |
DO k = 1, iim |
516 |
✓✓ | 5285 |
DO i = 1, iim |
517 |
5120 |
matrinvn(i,k,j) = 0.0 |
|
518 |
✓✓ | 169120 |
DO ii = 1, iim |
519 |
matrinvn(i,k,j) = matrinvn(i,k,j) & |
||
520 |
168960 |
+ eignfnv(i,ii)*eignft(ii,k) |
|
521 |
ENDDO |
||
522 |
ENDDO |
||
523 |
ENDDO |
||
524 |
#endif |
||
525 |
#endif |
||
526 |
|||
527 |
ENDDO ! of DO j = 2, jfiltnu |
||
528 |
|||
529 |
✓✓ | 6 |
DO j = jfiltsu, jjm |
530 |
|||
531 |
✓✓ | 165 |
DO i = 1,iim |
532 |
160 |
coff = coefilu(i,j) / ( 1. + coefilu(i,j) ) |
|
533 |
✓✓ | 160 |
IF( i.LT.modfrstu(j) ) coff = 0. |
534 |
✓✓ | 5285 |
DO k=1,iim |
535 |
5280 |
eignft(i,k) = eignfnv(k,i) * coff |
|
536 |
ENDDO |
||
537 |
ENDDO |
||
538 |
#ifdef CRAY |
||
539 |
CALL MXM(eignfnv,iim,eignft,iim,matrinvs(1,1,j-jfiltsu+1),iim) |
||
540 |
#else |
||
541 |
#ifdef BLAS |
||
542 |
CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
||
543 |
eignfnv, iim, eignft, iim, 0.0, matrinvs(1,1,j-jfiltsu+1), iim) |
||
544 |
#else |
||
545 |
✓✓ | 166 |
DO k = 1, iim |
546 |
✓✓ | 5285 |
DO i = 1, iim |
547 |
5120 |
matrinvs(i,k,j-jfiltsu+1) = 0.0 |
|
548 |
✓✓ | 169120 |
DO ii = 1, iim |
549 |
matrinvs(i,k,j-jfiltsu+1) = matrinvs(i,k,j-jfiltsu+1) & |
||
550 |
168960 |
+ eignfnv(i,ii)*eignft(ii,k) |
|
551 |
ENDDO |
||
552 |
ENDDO |
||
553 |
ENDDO |
||
554 |
#endif |
||
555 |
#endif |
||
556 |
|||
557 |
ENDDO ! of DO j = jfiltsu, jjm |
||
558 |
|||
559 |
#ifdef CPP_PARA |
||
560 |
IF (use_filtre_fft) THEN |
||
561 |
CALL Init_filtre_fft(coefilu,modfrstu,jfiltnu,jfiltsu, & |
||
562 |
coefilv,modfrstv,jfiltnv,jfiltsv) |
||
563 |
CALL Init_filtre_fft_loc(coefilu,modfrstu,jfiltnu,jfiltsu, & |
||
564 |
coefilv,modfrstv,jfiltnv,jfiltsv) |
||
565 |
ENDIF |
||
566 |
#endif |
||
567 |
! ................................................................... |
||
568 |
|||
569 |
! |
||
570 |
334 FORMAT(1x,24i3) |
||
571 |
755 FORMAT(1x,6f10.3,i3) |
||
572 |
|||
573 |
1 |
RETURN |
|
574 |
END SUBROUTINE inifilr |
||
575 |
|||
576 |
END MODULE filtreg_mod |
Generated by: GCOVR (Version 4.2) |