1 |
|
|
*DECK PCHSP |
2 |
|
|
SUBROUTINE PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR) |
3 |
|
|
C***BEGIN PROLOGUE PCHSP |
4 |
|
|
C***PURPOSE Set derivatives needed to determine the Hermite represen- |
5 |
|
|
C tation of the cubic spline interpolant to given data, with |
6 |
|
|
C specified boundary conditions. |
7 |
|
|
C***LIBRARY SLATEC (PCHIP) |
8 |
|
|
C***CATEGORY E1A |
9 |
|
|
C***TYPE SINGLE PRECISION (PCHSP-S, DPCHSP-D) |
10 |
|
|
C***KEYWORDS CUBIC HERMITE INTERPOLATION, PCHIP, |
11 |
|
|
C PIECEWISE CUBIC INTERPOLATION, SPLINE INTERPOLATION |
12 |
|
|
C***AUTHOR Fritsch, F. N., (LLNL) |
13 |
|
|
C Lawrence Livermore National Laboratory |
14 |
|
|
C P.O. Box 808 (L-316) |
15 |
|
|
C Livermore, CA 94550 |
16 |
|
|
C FTS 532-4275, (510) 422-4275 |
17 |
|
|
C***DESCRIPTION |
18 |
|
|
C |
19 |
|
|
C PCHSP: Piecewise Cubic Hermite Spline |
20 |
|
|
C |
21 |
|
|
C Computes the Hermite representation of the cubic spline inter- |
22 |
|
|
C polant to the data given in X and F satisfying the boundary |
23 |
|
|
C conditions specified by IC and VC. |
24 |
|
|
C |
25 |
|
|
C To facilitate two-dimensional applications, includes an increment |
26 |
|
|
C between successive values of the F- and D-arrays. |
27 |
|
|
C |
28 |
|
|
C The resulting piecewise cubic Hermite function may be evaluated |
29 |
|
|
C by PCHFE or PCHFD. |
30 |
|
|
C |
31 |
|
|
C NOTE: This is a modified version of C. de Boor's cubic spline |
32 |
|
|
C routine CUBSPL. |
33 |
|
|
C |
34 |
|
|
C ---------------------------------------------------------------------- |
35 |
|
|
C |
36 |
|
|
C Calling sequence: |
37 |
|
|
C |
38 |
|
|
C PARAMETER (INCFD = ...) |
39 |
|
|
C INTEGER IC(2), N, NWK, IERR |
40 |
|
|
C REAL VC(2), X(N), F(INCFD,N), D(INCFD,N), WK(NWK) |
41 |
|
|
C |
42 |
|
|
C CALL PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR) |
43 |
|
|
C |
44 |
|
|
C Parameters: |
45 |
|
|
C |
46 |
|
|
C IC -- (input) integer array of length 2 specifying desired |
47 |
|
|
C boundary conditions: |
48 |
|
|
C IC(1) = IBEG, desired condition at beginning of data. |
49 |
|
|
C IC(2) = IEND, desired condition at end of data. |
50 |
|
|
C |
51 |
|
|
C IBEG = 0 to set D(1) so that the third derivative is con- |
52 |
|
|
C tinuous at X(2). This is the "not a knot" condition |
53 |
|
|
C provided by de Boor's cubic spline routine CUBSPL. |
54 |
|
|
C < This is the default boundary condition. > |
55 |
|
|
C IBEG = 1 if first derivative at X(1) is given in VC(1). |
56 |
|
|
C IBEG = 2 if second derivative at X(1) is given in VC(1). |
57 |
|
|
C IBEG = 3 to use the 3-point difference formula for D(1). |
58 |
|
|
C (Reverts to the default b.c. if N.LT.3 .) |
59 |
|
|
C IBEG = 4 to use the 4-point difference formula for D(1). |
60 |
|
|
C (Reverts to the default b.c. if N.LT.4 .) |
61 |
|
|
C NOTES: |
62 |
|
|
C 1. An error return is taken if IBEG is out of range. |
63 |
|
|
C 2. For the "natural" boundary condition, use IBEG=2 and |
64 |
|
|
C VC(1)=0. |
65 |
|
|
C |
66 |
|
|
C IEND may take on the same values as IBEG, but applied to |
67 |
|
|
C derivative at X(N). In case IEND = 1 or 2, the value is |
68 |
|
|
C given in VC(2). |
69 |
|
|
C |
70 |
|
|
C NOTES: |
71 |
|
|
C 1. An error return is taken if IEND is out of range. |
72 |
|
|
C 2. For the "natural" boundary condition, use IEND=2 and |
73 |
|
|
C VC(2)=0. |
74 |
|
|
C |
75 |
|
|
C VC -- (input) real array of length 2 specifying desired boundary |
76 |
|
|
C values, as indicated above. |
77 |
|
|
C VC(1) need be set only if IC(1) = 1 or 2 . |
78 |
|
|
C VC(2) need be set only if IC(2) = 1 or 2 . |
79 |
|
|
C |
80 |
|
|
C N -- (input) number of data points. (Error return if N.LT.2 .) |
81 |
|
|
C |
82 |
|
|
C X -- (input) real array of independent variable values. The |
83 |
|
|
C elements of X must be strictly increasing: |
84 |
|
|
C X(I-1) .LT. X(I), I = 2(1)N. |
85 |
|
|
C (Error return if not.) |
86 |
|
|
C |
87 |
|
|
C F -- (input) real array of dependent variable values to be inter- |
88 |
|
|
C polated. F(1+(I-1)*INCFD) is value corresponding to X(I). |
89 |
|
|
C |
90 |
|
|
C D -- (output) real array of derivative values at the data points. |
91 |
|
|
C These values will determine the cubic spline interpolant |
92 |
|
|
C with the requested boundary conditions. |
93 |
|
|
C The value corresponding to X(I) is stored in |
94 |
|
|
C D(1+(I-1)*INCFD), I=1(1)N. |
95 |
|
|
C No other entries in D are changed. |
96 |
|
|
C |
97 |
|
|
C INCFD -- (input) increment between successive values in F and D. |
98 |
|
|
C This argument is provided primarily for 2-D applications. |
99 |
|
|
C (Error return if INCFD.LT.1 .) |
100 |
|
|
C |
101 |
|
|
C WK -- (scratch) real array of working storage. |
102 |
|
|
C |
103 |
|
|
C NWK -- (input) length of work array. |
104 |
|
|
C (Error return if NWK.LT.2*N .) |
105 |
|
|
C |
106 |
|
|
C IERR -- (output) error flag. |
107 |
|
|
C Normal return: |
108 |
|
|
C IERR = 0 (no errors). |
109 |
|
|
C "Recoverable" errors: |
110 |
|
|
C IERR = -1 if N.LT.2 . |
111 |
|
|
C IERR = -2 if INCFD.LT.1 . |
112 |
|
|
C IERR = -3 if the X-array is not strictly increasing. |
113 |
|
|
C IERR = -4 if IBEG.LT.0 or IBEG.GT.4 . |
114 |
|
|
C IERR = -5 if IEND.LT.0 of IEND.GT.4 . |
115 |
|
|
C IERR = -6 if both of the above are true. |
116 |
|
|
C IERR = -7 if NWK is too small. |
117 |
|
|
C NOTE: The above errors are checked in the order listed, |
118 |
|
|
C and following arguments have **NOT** been validated. |
119 |
|
|
C (The D-array has not been changed in any of these cases.) |
120 |
|
|
C IERR = -8 in case of trouble solving the linear system |
121 |
|
|
C for the interior derivative values. |
122 |
|
|
C (The D-array may have been changed in this case.) |
123 |
|
|
C ( Do **NOT** use it! ) |
124 |
|
|
C |
125 |
|
|
C***REFERENCES Carl de Boor, A Practical Guide to Splines, Springer- |
126 |
|
|
C Verlag, New York, 1978, pp. 53-59. |
127 |
|
|
C***ROUTINES CALLED PCHDF, XERMSG |
128 |
|
|
C***REVISION HISTORY (YYMMDD) |
129 |
|
|
C 820503 DATE WRITTEN |
130 |
|
|
C 820804 Converted to SLATEC library version. |
131 |
|
|
C 870707 Minor cosmetic changes to prologue. |
132 |
|
|
C 890411 Added SAVE statements (Vers. 3.2). |
133 |
|
|
C 890703 Corrected category record. (WRB) |
134 |
|
|
C 890831 Modified array declarations. (WRB) |
135 |
|
|
C 890831 REVISION DATE from Version 3.2 |
136 |
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB) |
137 |
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) |
138 |
|
|
C 920429 Revised format and order of references. (WRB,FNF) |
139 |
|
|
C***END PROLOGUE PCHSP |
140 |
|
|
C Programming notes: |
141 |
|
|
C |
142 |
|
|
C To produce a double precision version, simply: |
143 |
|
|
C a. Change PCHSP to DPCHSP wherever it occurs, |
144 |
|
|
C b. Change the real declarations to double precision, and |
145 |
|
|
C c. Change the constants ZERO, HALF, ... to double precision. |
146 |
|
|
C |
147 |
|
|
C DECLARE ARGUMENTS. |
148 |
|
|
C |
149 |
|
|
INTEGER IC(2), N, INCFD, NWK, IERR |
150 |
|
|
REAL VC(2), X(*), F(INCFD,*), D(INCFD,*), WK(2,*) |
151 |
|
|
C |
152 |
|
|
C DECLARE LOCAL VARIABLES. |
153 |
|
|
C |
154 |
|
|
INTEGER IBEG, IEND, INDEX, J, NM1 |
155 |
|
|
REAL G, HALF, ONE, STEMP(3), THREE, TWO, XTEMP(4), ZERO |
156 |
|
|
SAVE ZERO, HALF, ONE, TWO, THREE |
157 |
|
|
REAL PCHDF |
158 |
|
|
C |
159 |
|
|
DATA ZERO /0./, HALF /0.5/, ONE /1./, TWO /2./, THREE /3./ |
160 |
|
|
C |
161 |
|
|
C VALIDITY-CHECK ARGUMENTS. |
162 |
|
|
C |
163 |
|
|
C***FIRST EXECUTABLE STATEMENT PCHSP |
164 |
|
|
IF ( N.LT.2 ) GO TO 5001 |
165 |
|
|
IF ( INCFD.LT.1 ) GO TO 5002 |
166 |
|
|
DO 1 J = 2, N |
167 |
|
|
IF ( X(J).LE.X(J-1) ) GO TO 5003 |
168 |
|
|
1 CONTINUE |
169 |
|
|
C |
170 |
|
|
IBEG = IC(1) |
171 |
|
|
IEND = IC(2) |
172 |
|
|
IERR = 0 |
173 |
|
|
IF ( (IBEG.LT.0).OR.(IBEG.GT.4) ) IERR = IERR - 1 |
174 |
|
|
IF ( (IEND.LT.0).OR.(IEND.GT.4) ) IERR = IERR - 2 |
175 |
|
|
IF ( IERR.LT.0 ) GO TO 5004 |
176 |
|
|
C |
177 |
|
|
C FUNCTION DEFINITION IS OK -- GO ON. |
178 |
|
|
C |
179 |
|
|
IF ( NWK .LT. 2*N ) GO TO 5007 |
180 |
|
|
C |
181 |
|
|
C COMPUTE FIRST DIFFERENCES OF X SEQUENCE AND STORE IN WK(1,.). ALSO, |
182 |
|
|
C COMPUTE FIRST DIVIDED DIFFERENCE OF DATA AND STORE IN WK(2,.). |
183 |
|
|
DO 5 J=2,N |
184 |
|
|
WK(1,J) = X(J) - X(J-1) |
185 |
|
|
WK(2,J) = (F(1,J) - F(1,J-1))/WK(1,J) |
186 |
|
|
5 CONTINUE |
187 |
|
|
C |
188 |
|
|
C SET TO DEFAULT BOUNDARY CONDITIONS IF N IS TOO SMALL. |
189 |
|
|
C |
190 |
|
|
IF ( IBEG.GT.N ) IBEG = 0 |
191 |
|
|
IF ( IEND.GT.N ) IEND = 0 |
192 |
|
|
C |
193 |
|
|
C SET UP FOR BOUNDARY CONDITIONS. |
194 |
|
|
C |
195 |
|
|
IF ( (IBEG.EQ.1).OR.(IBEG.EQ.2) ) THEN |
196 |
|
|
D(1,1) = VC(1) |
197 |
|
|
ELSE IF (IBEG .GT. 2) THEN |
198 |
|
|
C PICK UP FIRST IBEG POINTS, IN REVERSE ORDER. |
199 |
|
|
DO 10 J = 1, IBEG |
200 |
|
|
INDEX = IBEG-J+1 |
201 |
|
|
C INDEX RUNS FROM IBEG DOWN TO 1. |
202 |
|
|
XTEMP(J) = X(INDEX) |
203 |
|
|
IF (J .LT. IBEG) STEMP(J) = WK(2,INDEX) |
204 |
|
|
10 CONTINUE |
205 |
|
|
C -------------------------------- |
206 |
|
|
D(1,1) = PCHDF (IBEG, XTEMP, STEMP, IERR) |
207 |
|
|
C -------------------------------- |
208 |
|
|
IF (IERR .NE. 0) GO TO 5009 |
209 |
|
|
IBEG = 1 |
210 |
|
|
ENDIF |
211 |
|
|
C |
212 |
|
|
IF ( (IEND.EQ.1).OR.(IEND.EQ.2) ) THEN |
213 |
|
|
D(1,N) = VC(2) |
214 |
|
|
ELSE IF (IEND .GT. 2) THEN |
215 |
|
|
C PICK UP LAST IEND POINTS. |
216 |
|
|
DO 15 J = 1, IEND |
217 |
|
|
INDEX = N-IEND+J |
218 |
|
|
C INDEX RUNS FROM N+1-IEND UP TO N. |
219 |
|
|
XTEMP(J) = X(INDEX) |
220 |
|
|
IF (J .LT. IEND) STEMP(J) = WK(2,INDEX+1) |
221 |
|
|
15 CONTINUE |
222 |
|
|
C -------------------------------- |
223 |
|
|
D(1,N) = PCHDF (IEND, XTEMP, STEMP, IERR) |
224 |
|
|
C -------------------------------- |
225 |
|
|
IF (IERR .NE. 0) GO TO 5009 |
226 |
|
|
IEND = 1 |
227 |
|
|
ENDIF |
228 |
|
|
C |
229 |
|
|
C --------------------( BEGIN CODING FROM CUBSPL )-------------------- |
230 |
|
|
C |
231 |
|
|
C **** A TRIDIAGONAL LINEAR SYSTEM FOR THE UNKNOWN SLOPES S(J) OF |
232 |
|
|
C F AT X(J), J=1,...,N, IS GENERATED AND THEN SOLVED BY GAUSS ELIM- |
233 |
|
|
C INATION, WITH S(J) ENDING UP IN D(1,J), ALL J. |
234 |
|
|
C WK(1,.) AND WK(2,.) ARE USED FOR TEMPORARY STORAGE. |
235 |
|
|
C |
236 |
|
|
C CONSTRUCT FIRST EQUATION FROM FIRST BOUNDARY CONDITION, OF THE FORM |
237 |
|
|
C WK(2,1)*S(1) + WK(1,1)*S(2) = D(1,1) |
238 |
|
|
C |
239 |
|
|
IF (IBEG .EQ. 0) THEN |
240 |
|
|
IF (N .EQ. 2) THEN |
241 |
|
|
C NO CONDITION AT LEFT END AND N = 2. |
242 |
|
|
WK(2,1) = ONE |
243 |
|
|
WK(1,1) = ONE |
244 |
|
|
D(1,1) = TWO*WK(2,2) |
245 |
|
|
ELSE |
246 |
|
|
C NOT-A-KNOT CONDITION AT LEFT END AND N .GT. 2. |
247 |
|
|
WK(2,1) = WK(1,3) |
248 |
|
|
WK(1,1) = WK(1,2) + WK(1,3) |
249 |
|
|
D(1,1) =((WK(1,2) + TWO*WK(1,1))*WK(2,2)*WK(1,3) |
250 |
|
|
* + WK(1,2)**2*WK(2,3)) / WK(1,1) |
251 |
|
|
ENDIF |
252 |
|
|
ELSE IF (IBEG .EQ. 1) THEN |
253 |
|
|
C SLOPE PRESCRIBED AT LEFT END. |
254 |
|
|
WK(2,1) = ONE |
255 |
|
|
WK(1,1) = ZERO |
256 |
|
|
ELSE |
257 |
|
|
C SECOND DERIVATIVE PRESCRIBED AT LEFT END. |
258 |
|
|
WK(2,1) = TWO |
259 |
|
|
WK(1,1) = ONE |
260 |
|
|
D(1,1) = THREE*WK(2,2) - HALF*WK(1,2)*D(1,1) |
261 |
|
|
ENDIF |
262 |
|
|
C |
263 |
|
|
C IF THERE ARE INTERIOR KNOTS, GENERATE THE CORRESPONDING EQUATIONS AND |
264 |
|
|
C CARRY OUT THE FORWARD PASS OF GAUSS ELIMINATION, AFTER WHICH THE J-TH |
265 |
|
|
C EQUATION READS WK(2,J)*S(J) + WK(1,J)*S(J+1) = D(1,J). |
266 |
|
|
C |
267 |
|
|
NM1 = N-1 |
268 |
|
|
IF (NM1 .GT. 1) THEN |
269 |
|
|
DO 20 J=2,NM1 |
270 |
|
|
IF (WK(2,J-1) .EQ. ZERO) GO TO 5008 |
271 |
|
|
G = -WK(1,J+1)/WK(2,J-1) |
272 |
|
|
D(1,J) = G*D(1,J-1) |
273 |
|
|
* + THREE*(WK(1,J)*WK(2,J+1) + WK(1,J+1)*WK(2,J)) |
274 |
|
|
WK(2,J) = G*WK(1,J-1) + TWO*(WK(1,J) + WK(1,J+1)) |
275 |
|
|
20 CONTINUE |
276 |
|
|
ENDIF |
277 |
|
|
C |
278 |
|
|
C CONSTRUCT LAST EQUATION FROM SECOND BOUNDARY CONDITION, OF THE FORM |
279 |
|
|
C (-G*WK(2,N-1))*S(N-1) + WK(2,N)*S(N) = D(1,N) |
280 |
|
|
C |
281 |
|
|
C IF SLOPE IS PRESCRIBED AT RIGHT END, ONE CAN GO DIRECTLY TO BACK- |
282 |
|
|
C SUBSTITUTION, SINCE ARRAYS HAPPEN TO BE SET UP JUST RIGHT FOR IT |
283 |
|
|
C AT THIS POINT. |
284 |
|
|
IF (IEND .EQ. 1) GO TO 30 |
285 |
|
|
C |
286 |
|
|
IF (IEND .EQ. 0) THEN |
287 |
|
|
IF (N.EQ.2 .AND. IBEG.EQ.0) THEN |
288 |
|
|
C NOT-A-KNOT AT RIGHT ENDPOINT AND AT LEFT ENDPOINT AND N = 2. |
289 |
|
|
D(1,2) = WK(2,2) |
290 |
|
|
GO TO 30 |
291 |
|
|
ELSE IF ((N.EQ.2) .OR. (N.EQ.3 .AND. IBEG.EQ.0)) THEN |
292 |
|
|
C EITHER (N=3 AND NOT-A-KNOT ALSO AT LEFT) OR (N=2 AND *NOT* |
293 |
|
|
C NOT-A-KNOT AT LEFT END POINT). |
294 |
|
|
D(1,N) = TWO*WK(2,N) |
295 |
|
|
WK(2,N) = ONE |
296 |
|
|
IF (WK(2,N-1) .EQ. ZERO) GO TO 5008 |
297 |
|
|
G = -ONE/WK(2,N-1) |
298 |
|
|
ELSE |
299 |
|
|
C NOT-A-KNOT AND N .GE. 3, AND EITHER N.GT.3 OR ALSO NOT-A- |
300 |
|
|
C KNOT AT LEFT END POINT. |
301 |
|
|
G = WK(1,N-1) + WK(1,N) |
302 |
|
|
C DO NOT NEED TO CHECK FOLLOWING DENOMINATORS (X-DIFFERENCES). |
303 |
|
|
D(1,N) = ((WK(1,N)+TWO*G)*WK(2,N)*WK(1,N-1) |
304 |
|
|
* + WK(1,N)**2*(F(1,N-1)-F(1,N-2))/WK(1,N-1))/G |
305 |
|
|
IF (WK(2,N-1) .EQ. ZERO) GO TO 5008 |
306 |
|
|
G = -G/WK(2,N-1) |
307 |
|
|
WK(2,N) = WK(1,N-1) |
308 |
|
|
ENDIF |
309 |
|
|
ELSE |
310 |
|
|
C SECOND DERIVATIVE PRESCRIBED AT RIGHT ENDPOINT. |
311 |
|
|
D(1,N) = THREE*WK(2,N) + HALF*WK(1,N)*D(1,N) |
312 |
|
|
WK(2,N) = TWO |
313 |
|
|
IF (WK(2,N-1) .EQ. ZERO) GO TO 5008 |
314 |
|
|
G = -ONE/WK(2,N-1) |
315 |
|
|
ENDIF |
316 |
|
|
C |
317 |
|
|
C COMPLETE FORWARD PASS OF GAUSS ELIMINATION. |
318 |
|
|
C |
319 |
|
|
WK(2,N) = G*WK(1,N-1) + WK(2,N) |
320 |
|
|
IF (WK(2,N) .EQ. ZERO) GO TO 5008 |
321 |
|
|
D(1,N) = (G*D(1,N-1) + D(1,N))/WK(2,N) |
322 |
|
|
C |
323 |
|
|
C CARRY OUT BACK SUBSTITUTION |
324 |
|
|
C |
325 |
|
|
30 CONTINUE |
326 |
|
|
DO 40 J=NM1,1,-1 |
327 |
|
|
IF (WK(2,J) .EQ. ZERO) GO TO 5008 |
328 |
|
|
D(1,J) = (D(1,J) - WK(1,J)*D(1,J+1))/WK(2,J) |
329 |
|
|
40 CONTINUE |
330 |
|
|
C --------------------( END CODING FROM CUBSPL )-------------------- |
331 |
|
|
C |
332 |
|
|
C NORMAL RETURN. |
333 |
|
|
C |
334 |
|
|
RETURN |
335 |
|
|
C |
336 |
|
|
C ERROR RETURNS. |
337 |
|
|
C |
338 |
|
|
5001 CONTINUE |
339 |
|
|
C N.LT.2 RETURN. |
340 |
|
|
IERR = -1 |
341 |
|
|
CALL XERMSG ('SLATEC', 'PCHSP', |
342 |
|
|
+ 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1) |
343 |
|
|
RETURN |
344 |
|
|
C |
345 |
|
|
5002 CONTINUE |
346 |
|
|
C INCFD.LT.1 RETURN. |
347 |
|
|
IERR = -2 |
348 |
|
|
CALL XERMSG ('SLATEC', 'PCHSP', 'INCREMENT LESS THAN ONE', IERR, |
349 |
|
|
+ 1) |
350 |
|
|
RETURN |
351 |
|
|
C |
352 |
|
|
5003 CONTINUE |
353 |
|
|
C X-ARRAY NOT STRICTLY INCREASING. |
354 |
|
|
IERR = -3 |
355 |
|
|
CALL XERMSG ('SLATEC', 'PCHSP', 'X-ARRAY NOT STRICTLY INCREASING' |
356 |
|
|
+ , IERR, 1) |
357 |
|
|
RETURN |
358 |
|
|
C |
359 |
|
|
5004 CONTINUE |
360 |
|
|
C IC OUT OF RANGE RETURN. |
361 |
|
|
IERR = IERR - 3 |
362 |
|
|
CALL XERMSG ('SLATEC', 'PCHSP', 'IC OUT OF RANGE', IERR, 1) |
363 |
|
|
RETURN |
364 |
|
|
C |
365 |
|
|
5007 CONTINUE |
366 |
|
|
C NWK TOO SMALL RETURN. |
367 |
|
|
IERR = -7 |
368 |
|
|
CALL XERMSG ('SLATEC', 'PCHSP', 'WORK ARRAY TOO SMALL', IERR, 1) |
369 |
|
|
RETURN |
370 |
|
|
C |
371 |
|
|
5008 CONTINUE |
372 |
|
|
C SINGULAR SYSTEM. |
373 |
|
|
C *** THEORETICALLY, THIS CAN ONLY OCCUR IF SUCCESSIVE X-VALUES *** |
374 |
|
|
C *** ARE EQUAL, WHICH SHOULD ALREADY HAVE BEEN CAUGHT (IERR=-3). *** |
375 |
|
|
IERR = -8 |
376 |
|
|
CALL XERMSG ('SLATEC', 'PCHSP', 'SINGULAR LINEAR SYSTEM', IERR, |
377 |
|
|
+ 1) |
378 |
|
|
RETURN |
379 |
|
|
C |
380 |
|
|
5009 CONTINUE |
381 |
|
|
C ERROR RETURN FROM PCHDF. |
382 |
|
|
C *** THIS CASE SHOULD NEVER OCCUR *** |
383 |
|
|
IERR = -9 |
384 |
|
|
CALL XERMSG ('SLATEC', 'PCHSP', 'ERROR RETURN FROM PCHDF', IERR, |
385 |
|
|
+ 1) |
386 |
|
|
RETURN |
387 |
|
|
C------------- LAST LINE OF PCHSP FOLLOWS ------------------------------ |
388 |
|
|
END |