GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: misc/pchsp_95_m.F90 Lines: 0 14 0.0 %
Date: 2023-06-30 12:56:34 Branches: 0 24 0.0 %

Line Branch Exec Source
1
module pchsp_95_m
2
3
  implicit none
4
5
contains
6
7
  function pchsp_95(x, f, ibeg, iend, vc_beg, vc_end)
8
9
    ! PURPOSE: Set derivatives needed to determine the Hermite
10
    ! representation of the cubic spline interpolant to given data,
11
    ! with specified boundary conditions.
12
13
    ! Part of the "pchip" package.
14
15
    ! CATEGORY: E1A
16
17
    ! KEYWORDS: cubic hermite interpolation, piecewise cubic
18
    ! interpolation, spline interpolation
19
20
    ! DESCRIPTION: "pchsp" stands for "Piecewise Cubic Hermite Spline"
21
    ! Computes the Hermite representation of the cubic spline
22
    ! interpolant to the data given in X and F satisfying the boundary
23
    ! conditions specified by Ibeg, iend, vc_beg and VC_end.
24
25
    ! The resulting piecewise cubic Hermite function may be evaluated
26
    ! by "pchfe" or "pchfd".
27
28
    ! NOTE: This is a modified version of C. de Boor's cubic spline
29
    ! routine "cubspl".
30
31
    ! REFERENCE: Carl de Boor, A Practical Guide to Splines, Springer,
32
    ! 2001, pages 43-47
33
34
    use assert_eq_m, only: assert_eq
35
36
    real, intent(in):: x(:)
37
    ! independent variable values
38
    ! The elements of X must be strictly increasing:
39
    !                X(I-1) < X(I),  I = 2...N.
40
    !           (Error return if not.)
41
    ! (error if size(x) < 2)
42
43
    real, intent(in):: f(:)
44
    !     dependent variable values to be interpolated
45
    !  F(I) is value corresponding to X(I).
46
47
    INTEGER, intent(in):: ibeg
48
    !     desired boundary condition at beginning of data
49
50
    !        IBEG = 0  to set pchsp_95(1) so that the third derivative is con-
51
    !              tinuous at X(2).  This is the "not a knot" condition
52
    !              provided by de Boor's cubic spline routine CUBSPL.
53
    !              This is the default boundary condition.
54
    !        IBEG = 1  if first derivative at X(1) is given in VC_BEG.
55
    !        IBEG = 2  if second derivative at X(1) is given in VC_BEG.
56
    !        IBEG = 3  to use the 3-point difference formula for pchsp_95(1).
57
    !              (Reverts to the default boundary condition if size(x) < 3 .)
58
    !        IBEG = 4  to use the 4-point difference formula for pchsp_95(1).
59
    !              (Reverts to the default boundary condition if size(x) < 4 .)
60
61
    !          NOTES:
62
    !           1. An error return is taken if IBEG is out of range.
63
    !           2. For the "natural" boundary condition, use IBEG=2 and
64
    !              VC_BEG=0.
65
66
    INTEGER, intent(in):: iend
67
    !           IC(2) = IEND, desired condition at end of data.
68
    !  IEND may take on the same values as IBEG, but applied to
69
    !  derivative at X(N). In case IEND = 1 or 2, The value is given in VC_END.
70
71
    !          NOTES:
72
    !           1. An error return is taken if IEND is out of range.
73
    !           2. For the "natural" boundary condition, use IEND=2 and
74
    !              VC_END=0.
75
76
    REAL, intent(in), optional:: vc_beg
77
    ! desired boundary value, as indicated above.
78
    !           VC_BEG need be set only if IBEG = 1 or 2 .
79
80
    REAL, intent(in), optional:: vc_end
81
    ! desired boundary value, as indicated above.
82
    !           VC_END need be set only if Iend = 1 or 2 .
83
84
    real pchsp_95(size(x))
85
    ! derivative values at the data points
86
    !           These values will determine the cubic spline interpolant
87
    !           with the requested boundary conditions.
88
    !           The value corresponding to X(I) is stored in
89
    !                PCHSP_95(I),  I=1...N.
90
91
    ! LOCAL VARIABLES:
92
    real wk(2, size(x)) ! real array of working storage
93
    INTEGER n ! number of data points
94
    integer ierr, ic(2)
95
    real vc(2)
96
97
    !-------------------------------------------------------------------
98
99
    n = assert_eq(size(x), size(f), "pchsp_95 n")
100
    if ((ibeg == 1 .or. ibeg == 2) .and. .not. present(vc_beg)) then
101
       print *, "vc_beg required for IBEG = 1 or 2"
102
       stop 1
103
    end if
104
    if ((iend == 1 .or. iend == 2) .and. .not. present(vc_end)) then
105
       print *, "vc_end required for IEND = 1 or 2"
106
       stop 1
107
    end if
108
    ic = (/ibeg, iend/)
109
    if (present(vc_beg)) vc(1) = vc_beg
110
    if (present(vc_end)) vc(2) = vc_end
111
    call PCHSP(IC, VC, N, X, F, pchsp_95, 1, WK, size(WK), IERR)
112
    if (ierr /= 0) stop 1
113
114
  END function pchsp_95
115
116
end module pchsp_95_m