1 |
|
|
module Near_Surface_m |
2 |
|
|
|
3 |
|
|
Implicit none |
4 |
|
|
|
5 |
|
|
real, parameter:: depth = 3. |
6 |
|
|
! diurnal warm layer and fresh water lens depth, in m (Zeng and Beljaars 2005) |
7 |
|
|
|
8 |
|
|
contains |
9 |
|
|
|
10 |
|
|
subroutine near_surface(al, t_subskin, s_subskin, ds_ns, dt_ns, tau, taur, & |
11 |
|
|
hlb, rhoa, xlv, dtime, t_ocean_1, s1, rain, q_pwp) |
12 |
|
|
|
13 |
|
|
! Hugo Bellenger, 2016 |
14 |
|
|
|
15 |
|
|
use config_ocean_skin_m, only: depth_1 |
16 |
|
|
use const, only: beta, cpw, grav, rhow, von |
17 |
|
|
use Phiw_m, only: Phiw |
18 |
|
|
use therm_expans_m, only: therm_expans |
19 |
|
|
|
20 |
|
|
real, intent(out):: al(:) ! water thermal expansion coefficient (in K-1) |
21 |
|
|
real, intent(out):: t_subskin(:) ! subskin temperature, in K |
22 |
|
|
real, intent(out):: s_subskin(:) ! subskin salinity, in ppt |
23 |
|
|
|
24 |
|
|
real, intent(inout):: ds_ns(:) |
25 |
|
|
! "delta salinity near surface". Salinity variation in the |
26 |
|
|
! near-surface turbulent layer. That is subskin salinity minus |
27 |
|
|
! foundation salinity. In ppt. |
28 |
|
|
|
29 |
|
|
real, intent(inout):: dt_ns(:) |
30 |
|
|
! "delta temperature near surface". Temperature variation in the |
31 |
|
|
! near-surface turbulent layer. That is subskin temperature minus |
32 |
|
|
! foundation temperature. (Can be negative.) In K. |
33 |
|
|
|
34 |
|
|
real, intent(in):: tau(:) |
35 |
|
|
! wind stress at the surface, turbulent part only, in Pa |
36 |
|
|
|
37 |
|
|
real, intent(in):: taur(:) ! momentum flux due to rainfall, in Pa |
38 |
|
|
real, intent(in):: hlb(:) ! latent heat flux, turbulent part only, in W / m2 |
39 |
|
|
real, intent(in):: rhoa(:) ! density of moist air (kg / m3) |
40 |
|
|
real, intent(in):: xlv(:) ! latent heat of evaporation (J/kg) |
41 |
|
|
real, intent(in):: dtime ! time step (s) |
42 |
|
|
real, intent(in):: t_ocean_1(:) ! input sea temperature, at depth_1, in K |
43 |
|
|
real, intent(in):: S1(:) ! salinity at depth_1, in ppt |
44 |
|
|
real, intent(in):: rain(:) ! rain mass flux, in kg m-2 s-1 |
45 |
|
|
|
46 |
|
|
real, intent(in):: q_pwp(:) |
47 |
|
|
! net flux absorbed by the warm layer (part of the solar flux |
48 |
|
|
! absorbed at "depth"), minus surface fluxes, in W m-2 |
49 |
|
|
|
50 |
|
|
! Local: |
51 |
|
|
|
52 |
|
|
real, parameter:: khor = 1. / 1.5e4 |
53 |
|
|
! Parameter for the lens spread, in m-1. Inverse of the size of |
54 |
|
|
! the lens. |
55 |
|
|
|
56 |
|
|
real, parameter:: umax = 15. |
57 |
|
|
real, parameter:: fact = 1. |
58 |
|
|
real buoyf(size(t_ocean_1)) ! buoyancy flux |
59 |
|
|
real usrc(size(t_ocean_1)) |
60 |
|
|
real drho(size(t_ocean_1)) ! rho(- delta) - rho(- d) |
61 |
|
|
real Lmo(size(t_ocean_1)) ! Monin-Obukhov length |
62 |
|
|
|
63 |
|
|
real u(size(t_ocean_1)) |
64 |
|
|
! Wind speed at 15 m relative to the sea surface, i. e. taking |
65 |
|
|
! current vector into account. In m s-1. |
66 |
|
|
|
67 |
|
|
real, dimension(size(t_ocean_1)):: At, Bt, As, Bs, correction |
68 |
|
|
|
69 |
|
|
real eta(size(t_ocean_1)) |
70 |
|
|
! exponent in the function giving T(z) and S(z), equation (11) in |
71 |
|
|
! Bellenger et al. 2017 JGR |
72 |
|
|
|
73 |
|
|
real t_fnd(size(t_ocean_1)) ! foundation temperature, in K |
74 |
|
|
real s_fnd(size(t_ocean_1)) ! foundation salinity, in ppt |
75 |
|
|
|
76 |
|
|
!---------------------------------------------------------------------- |
77 |
|
|
|
78 |
|
|
! Temperature and salinity profiles change with wind: |
79 |
|
|
|
80 |
|
|
u = 28. * sqrt(tau / rhoa) |
81 |
|
|
|
82 |
|
|
where (dt_ns < 0.) |
83 |
|
|
where (u >= umax) |
84 |
|
|
eta = 1. / fact |
85 |
|
|
elsewhere (u <= 2.) |
86 |
|
|
eta = 2. / (fact * umax) |
87 |
|
|
elsewhere |
88 |
|
|
! {u > 2. .and. u < umax} |
89 |
|
|
eta = u / (fact * umax) |
90 |
|
|
end where |
91 |
|
|
elsewhere |
92 |
|
|
eta = 0.3 |
93 |
|
|
end where |
94 |
|
|
|
95 |
|
|
if (depth_1 < depth) then |
96 |
|
|
correction = 1. - (depth_1 / depth)**eta |
97 |
|
|
! (neglecting microlayer thickness compared to depth_1 and depth) |
98 |
|
|
|
99 |
|
|
t_fnd = t_ocean_1 - dt_ns * correction |
100 |
|
|
s_fnd = s1 - ds_ns * correction |
101 |
|
|
else |
102 |
|
|
t_fnd = t_ocean_1 |
103 |
|
|
s_fnd = s1 |
104 |
|
|
end if |
105 |
|
|
|
106 |
|
|
al = therm_expans(t_fnd) |
107 |
|
|
|
108 |
|
|
! Bellenger 2017 k0976, equation (13): |
109 |
|
|
buoyf = Al * grav / (rhow * cpw) * q_pwp & |
110 |
|
|
- beta * S_FND * grav * (hlb / xlv - rain) / rhow |
111 |
|
|
|
112 |
|
|
usrc = sqrt((tau + taur) / rhow) |
113 |
|
|
drho = rhow * (- al * dt_ns + beta * ds_ns) |
114 |
|
|
|
115 |
|
|
! Case of stable stratification and negative flux, Bellenger 2017 |
116 |
|
|
! k0976, equation (15): |
117 |
|
|
where (buoyf < 0. .and. drho < 0.) |
118 |
|
|
buoyf = sqrt(- eta * grav / (5. * depth * rhow) * drho) * usrc**2 |
119 |
|
|
elsewhere (buoyf == 0.) |
120 |
|
|
buoyf = tiny(0.) |
121 |
|
|
end where |
122 |
|
|
|
123 |
|
|
|
124 |
|
|
Lmo = usrc**3 / (von * buoyf) |
125 |
|
|
|
126 |
|
|
! Equation (14) for temperature. Implicit scheme for time integration: |
127 |
|
|
! \Delta T_{i + 1} - \Delta T_i = \delta t (Bt + At \Delta T_{i + 1}) |
128 |
|
|
At = - (eta + 1.) * von * usrc / (depth * Phiw(depth / Lmo)) |
129 |
|
|
|
130 |
|
|
! Lens horizontal spreading: |
131 |
|
|
where (drho < 0. .and. ds_ns < 0.) At = At & |
132 |
|
|
- (eta + 1.) * khor * sqrt(depth * grav * abs(drho) / rhow) |
133 |
|
|
|
134 |
|
|
Bt = q_pwp / (depth * rhow * cpw * eta / (eta + 1.)) |
135 |
|
|
dt_ns = (dtime * Bt + dt_ns) / (1 - dtime * At) |
136 |
|
|
|
137 |
|
|
! Equation (14) for salinity: |
138 |
|
|
! \frac{\partial \Delta S}{\partial t} |
139 |
|
|
! = (\Delta S + S_\mathrm{fnd}) B_S + A_S \Delta S |
140 |
|
|
As = - (eta + 1.) * von * usrc / (depth * Phiw(depth / Lmo)) |
141 |
|
|
|
142 |
|
|
! Lens horizontal spreading: |
143 |
|
|
where (drho < 0. .and. ds_ns < 0.) As = As & |
144 |
|
|
- (eta + 1.) * khor * sqrt(depth * grav * abs(drho) / rhow) |
145 |
|
|
|
146 |
|
|
Bs = (hlb / xlv - rain) * (eta + 1.) / (depth * rhow * eta) |
147 |
|
|
|
148 |
|
|
! Implicit scheme for time integration: |
149 |
|
|
ds_ns = (dtime * Bs * S_fnd + ds_ns) / (1 - dtime * (As + bs)) |
150 |
|
|
|
151 |
|
|
t_subskin = t_fnd + dt_ns |
152 |
|
|
s_subskin = s_fnd + ds_ns |
153 |
|
|
|
154 |
|
|
end subroutine Near_Surface |
155 |
|
|
|
156 |
|
|
end module Near_Surface_m |