GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: phylmd/acama_gwd_rando_m.F90 Lines: 137 144 95.1 %
Date: 2023-06-30 12:56:34 Branches: 204 222 91.9 %

Line Branch Exec Source
1
!
2
! $Id: acama_gwd_rando_m.F90 3977 2021-08-25 17:24:20Z fhourdin $
3
!
4
module ACAMA_GWD_rando_m
5
6
  implicit none
7
8
contains
9
10


288
  SUBROUTINE ACAMA_GWD_rando(DTIME, pp, plat, tt, uu, vv, rot, &
11



288
       zustr, zvstr, d_u, d_v,east_gwstress,west_gwstress)
12
13
    ! Parametrization of the momentum flux deposition due to a discrete
14
    ! number of gravity waves.
15
    ! Author: F. Lott, A. de la Camara
16
    ! July, 24th, 2014
17
    ! Gaussian distribution of the source, source is vorticity squared
18
    ! Reference: de la Camara and Lott (GRL, 2015, vol 42, 2071-2078 )
19
    ! Lott et al (JAS, 2010, vol 67, page 157-170)
20
    ! Lott et al (JAS, 2012, vol 69, page 2134-2151)
21
22
!  ONLINE:
23
    use dimphy, only: klon, klev
24
    use assert_m, only: assert
25
    USE ioipsl_getin_p_mod, ONLY : getin_p
26
    USE vertical_layers_mod, ONLY : presnivs
27
28
    include "YOMCST.h"
29
    include "clesphys.h"
30
!  OFFLINE:
31
!   include "dimensions.h"
32
!   include "dimphy.h"
33
!END DIFFERENCE
34
    include "YOEGWD.h"
35
36
    ! 0. DECLARATIONS:
37
38
    ! 0.1 INPUTS
39
    REAL, intent(in)::DTIME ! Time step of the Physics
40
    REAL, intent(in):: PP(:, :) ! (KLON, KLEV) Pressure at full levels
41
    REAL, intent(in):: ROT(:,:) ! Relative vorticity
42
    REAL, intent(in):: TT(:, :) ! (KLON, KLEV) Temp at full levels
43
    REAL, intent(in):: UU(:, :) ! (KLON, KLEV) Zonal wind at full levels
44
    REAL, intent(in):: VV(:, :) ! (KLON, KLEV) Merid wind at full levels
45
    REAL, intent(in):: PLAT(:) ! (KLON) LATITUDE
46
47
    ! 0.2 OUTPUTS
48
    REAL, intent(out):: zustr(:), zvstr(:) ! (KLON) Surface Stresses
49
50
    REAL, intent(inout):: d_u(:, :), d_v(:, :)
51
    REAL, intent(inout):: east_gwstress(:, :) !  Profile of eastward stress
52
    REAL, intent(inout):: west_gwstress(:, :) !  Profile of westward stress
53
    ! (KLON, KLEV) tendencies on winds
54
55
    ! O.3 INTERNAL ARRAYS
56
576
    REAL BVLOW(klon)  !  LOW LEVEL BV FREQUENCY
57
576
    REAL ROTBA(KLON),CORIO(KLON)  !  BAROTROPIC REL. VORTICITY AND PLANETARY
58
576
    REAL UZ(KLON, KLEV + 1)
59
60
    INTEGER II, JJ, LL
61
62
    ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED
63
64
    REAL DELTAT
65
66
    ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS
67
68
    INTEGER, PARAMETER:: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO
69
    INTEGER JK, JP, JO, JW
70
    INTEGER, PARAMETER:: NA = 5  !number of realizations to get the phase speed
71
    REAL KMIN, KMAX ! Min and Max horizontal wavenumbers
72
    REAL CMIN, CMAX ! Min and Max absolute ph. vel.
73
    REAL CPHA ! absolute PHASE VELOCITY frequency
74
576
    REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude
75
576
    REAL ZP(NW, KLON) ! Horizontal wavenumber angle
76
576
    REAL ZO(NW, KLON) ! Absolute frequency !
77
78
    ! Waves Intr. freq. at the 1/2 lev surrounding the full level
79
576
    REAL ZOM(NW, KLON), ZOP(NW, KLON)
80
81
    ! Wave EP-fluxes at the 2 semi levels surrounding the full level
82
576
    REAL WWM(NW, KLON), WWP(NW, KLON)
83
84
576
    REAL RUW0(NW, KLON) ! Fluxes at launching level
85
86
576
    REAL RUWP(NW, KLON), RVWP(NW, KLON)
87
    ! Fluxes X and Y for each waves at 1/2 Levels
88
89
    INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude
90
91
    REAL XLAUNCH ! Controle the launching altitude
92
    REAL XTROP ! SORT of Tropopause altitude
93
576
    REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels
94
576
    REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels
95
96
    REAL PRMAX ! Maximum value of PREC, and for which our linear formula
97
    ! for GWs parameterisation apply
98
99
    ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS
100
101
    REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ
102
    REAL CORSEC ! SECURITY FOR INTRINSIC CORIOLIS
103
    REAL RUWFRT,SATFRT
104
105
    ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE
106
107
    REAL H0 ! Characteristic Height of the atmosphere
108
    REAL DZ ! Characteristic depth of the source!
109
    REAL PR, TR ! Reference Pressure and Temperature
110
111
576
    REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude
112
113
576
    REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels
114
576
    REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels
115
    REAL PSEC ! Security to avoid division by 0 pressure
116
576
    REAL PHM1(KLON, KLEV + 1) ! 1/Press at 1/2 levels
117
576
    REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels
118
    REAL BVSEC ! Security to avoid negative BVF
119
120
576
    REAL, DIMENSION(klev+1) ::HREF
121
    LOGICAL, SAVE :: gwd_reproductibilite_mpiomp=.true.
122
    LOGICAL, SAVE :: firstcall = .TRUE.
123
  !$OMP THREADPRIVATE(firstcall,gwd_reproductibilite_mpiomp)
124
125
    CHARACTER (LEN=20) :: modname='acama_gwd_rando_m'
126
    CHARACTER (LEN=80) :: abort_message
127
128
129
130
288
  IF (firstcall) THEN
131
    ! Cle introduite pour resoudre un probleme de non reproductibilite
132
    ! Le but est de pouvoir tester de revenir a la version precedenete
133
    ! A eliminer rapidement
134
1
    CALL getin_p('gwd_reproductibilite_mpiomp',gwd_reproductibilite_mpiomp)
135
1
    IF (NW+4*(NA-1)+NA>=KLEV) THEN
136
       abort_message = 'NW+3*NA>=KLEV Probleme pour generation des ondes'
137
       CALL abort_physic (modname,abort_message,1)
138
    ENDIF
139
1
    firstcall=.false.
140
!    CALL iophys_ini(dtime)
141
  ENDIF
142
143
    !-----------------------------------------------------------------
144
145
    ! 1. INITIALISATIONS
146
147
    ! 1.1 Basic parameter
148
149
    ! Are provided from elsewhere (latent heat of vaporization, dry
150
    ! gaz constant for air, gravity constant, heat capacity of dry air
151
    ! at constant pressure, earth rotation rate, pi).
152
153
    ! 1.2 Tuning parameters of V14
154
155
! Values for linear in rot (recommended):
156
!   RUWFRT=0.005 ! As RUWMAX but for frontal waves
157
!   SATFRT=1.00  ! As SAT    but for frontal waves
158
! Values when rot^2 is used
159
!    RUWFRT=0.02  ! As RUWMAX but for frontal waves
160
!    SATFRT=1.00  ! As SAT    but for frontal waves
161
!    CMAX = 30.   ! Characteristic phase speed
162
! Values when rot^2*EXP(-pi*sqrt(J)) is used
163
!   RUWFRT=2.5   ! As RUWMAX but for frontal waves ~ N0*F0/4*DZ
164
!   SATFRT=0.60   ! As SAT    but for frontal waves
165
288
    RUWFRT=gwd_front_ruwmax
166
288
    SATFRT=gwd_front_sat
167
    CMAX = 50.    ! Characteristic phase speed
168
! Phase speed test
169
!   RUWFRT=0.01
170
!   CMAX = 50.   ! Characteristic phase speed (TEST)
171
! Values when rot^2 and exp(-m^2*dz^2) are used
172
!   RUWFRT=0.03  ! As RUWMAX but for frontal waves
173
!   SATFRT=1.00  ! As SAT    but for frontal waves
174
! CRUCIAL PARAMETERS FOR THE WIND FILTERING
175
    XLAUNCH=0.95 ! Parameter that control launching altitude
176
    RDISS = 0.5  ! Diffusion parameter
177
178
    ! maximum of rain for which our theory applies (in kg/m^2/s)
179
180
    DZ = 1000. ! Characteristic depth of the source
181
    XTROP=0.2 ! Parameter that control tropopause altitude
182
    DELTAT=24.*3600. ! Time scale of the waves (first introduced in 9b)
183
!   DELTAT=DTIME     ! No AR-1 Accumulation, OR OFFLINE
184
185
    KMIN = 2.E-5
186
    ! minimum horizontal wavenumber (inverse of the subgrid scale resolution)
187
188
    KMAX = 1.E-3  ! Max horizontal wavenumber
189
    CMIN = 1.     ! Min phase velocity
190
191
    TR = 240. ! Reference Temperature
192
    PR = 101300. ! Reference pressure
193
288
    H0 = RD * TR / RG ! Characteristic vertical scale height
194
195
    BVSEC = 5.E-3 ! Security to avoid negative BVF
196
    PSEC = 1.E-6 ! Security to avoid division by 0 pressure
197
    ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ
198
288
    CORSEC = ROMEGA*2.*SIN(2.*RPI/180.)! Security for CORIO
199
200
!  ONLINE
201
    call assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), &
202
         size(vv, 1), size(rot,1), size(zustr), size(zvstr), size(d_u, 1), &
203
         size(d_v, 1), &
204
        size(east_gwstress,1), size(west_gwstress,1) /), &
205
3456
        "ACAMA_GWD_RANDO klon")
206
    call assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), &
207
         size(vv, 2), size(d_u, 2), size(d_v, 2), &
208
         size(east_gwstress,2), size(west_gwstress,2) /), &
209
2592
         "ACAMA_GWD_RANDO klev")
210
!  END ONLINE
211
212
288
    IF(DELTAT < DTIME)THEN
213
!       PRINT *, 'flott_gwd_rando: deltat < dtime!'
214
!       STOP 1
215
       abort_message=' deltat < dtime! '
216
       CALL abort_physic(modname,abort_message,1)
217
    ENDIF
218
219
288
    IF (KLEV < NW) THEN
220
!       PRINT *, 'flott_gwd_rando: you will have problem with random numbers'
221
!       STOP 1
222
       abort_message=' you will have problem with random numbers'
223
       CALL abort_physic(modname,abort_message,1)
224
    ENDIF
225
226
    ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS
227
228
    ! Pressure and Inv of pressure
229
11232
    DO LL = 2, KLEV
230
10889280
       PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.)
231
10889568
       PHM1(:, LL) = 1. / PH(:, LL)
232
    end DO
233
234
286560
    PH(:, KLEV + 1) = 0.
235
286560
    PHM1(:, KLEV + 1) = 1. / PSEC
236
286560
    PH(:, 1) = 2. * PP(:, 1) - PH(:, 2)
237
238
    ! Launching altitude
239
240
288
    IF (gwd_reproductibilite_mpiomp) THEN
241
       ! Reprend la formule qui calcule PH en fonction de PP=play
242
11232
       DO LL = 2, KLEV
243
11232
          HREF(LL) = EXP((LOG(presnivs(LL)) + LOG(presnivs(LL - 1))) / 2.)
244
       end DO
245
288
       HREF(KLEV + 1) = 0.
246
288
       HREF(1) = 2. * presnivs(1) - HREF(2)
247
    ELSE
248
       HREF(1:KLEV)=PH(KLON/2,1:KLEV)
249
    ENDIF
250
251
    LAUNCH=0
252
    LTROP =0
253
11520
    DO LL = 1, KLEV
254
11520
       IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL
255
    ENDDO
256
11520
    DO LL = 1, KLEV
257
11520
       IF (HREF(LL) / HREF(1) > XTROP) LTROP = LL
258
    ENDDO
259
    !LAUNCH=22 ; LTROP=33
260
!   print*,'LAUNCH=',LAUNCH,'LTROP=',LTROP
261
262
263
!   PRINT *,'LAUNCH IN ACAMARA:',LAUNCH
264
265
    ! Log pressure vert. coordinate
266
11808
    DO LL = 1, KLEV + 1
267
11462688
       ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC))
268
    end DO
269
270
    ! BV frequency
271
11232
    DO LL = 2, KLEV
272
       ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS)
273
       UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) &
274
            * RD**2 / RCPD / H0**2 + (TT(:, LL) &
275
10889568
            - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0
276
    end DO
277
    BVLOW = 0.5 * (TT(:, LTROP )+ TT(:, LAUNCH)) &
278
         * RD**2 / RCPD / H0**2 + (TT(:, LTROP ) &
279
286560
         - TT(:, LAUNCH))/(ZH(:, LTROP )- ZH(:, LAUNCH)) * RD / H0
280
281
286560
    UH(:, 1) = UH(:, 2)
282
286560
    UH(:, KLEV + 1) = UH(:, KLEV)
283
286560
    BV(:, 1) = UH(:, 2)
284
286560
    BV(:, KLEV + 1) = UH(:, KLEV)
285
    ! SMOOTHING THE BV HELPS
286
11232
    DO LL = 2, KLEV
287
10889568
       BV(:, LL)=(UH(:, LL+1)+2.*UH(:, LL)+UH(:, LL-1))/4.
288
    end DO
289
290

11462688
    BV=MAX(SQRT(MAX(BV, 0.)), BVSEC)
291
286560
    BVLOW=MAX(SQRT(MAX(BVLOW, 0.)), BVSEC)
292
293
    ! WINDS
294
11232
    DO LL = 2, KLEV
295
10889280
       UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind
296
10889280
       VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind
297
       UZ(:, LL) = ABS((SQRT(UU(:, LL)**2+VV(:, LL)**2) &
298
          - SQRT(UU(:,LL-1)**2+VV(:, LL-1)**2)) &
299
10889568
          /(ZH(:, LL)-ZH(:, LL-1)) )
300
    end DO
301
286560
    UH(:, 1) = 0.
302
286560
    VH(:, 1) = 0.
303
286560
    UH(:, KLEV + 1) = UU(:, KLEV)
304
286560
    VH(:, KLEV + 1) = VV(:, KLEV)
305
306
286560
    UZ(:, 1) = UZ(:, 2)
307
286560
    UZ(:, KLEV + 1) = UZ(:, KLEV)
308

11462688
    UZ(:, :) = MAX(UZ(:,:), PSEC)
309
310
   ! BAROTROPIC VORTICITY AND INTEGRATED CORIOLIS PARAMETER
311
312
286560
    CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),CORSEC)
313
286560
    ROTBA(:)=0.
314
11232
    DO LL = 1,KLEV-1
315
        !ROTBA(:) = ROTBA(:) + (ROT(:,LL)+ROT(:,LL+1))/2./RG*(PP(:,LL)-PP(:,LL+1))
316
        ! Introducing the complete formula (exp of Richardson number):
317
        ROTBA(:) = ROTBA(:) + &
318
                !((ROT(:,LL)+ROT(:,LL+1))/2.)**2 &
319
                (CORIO(:)*TANH(ABS(ROT(:,LL)+ROT(:,LL+1))/2./CORIO(:)))**2 &
320
                /RG*(PP(:,LL)-PP(:,LL+1)) &
321
                * EXP(-RPI*BV(:,LL+1)/UZ(:,LL+1)) &
322
!               * DZ*BV(:,LL+1)/4./ABS(CORIO(:))
323
10889568
                * DZ*BV(:,LL+1)/4./1.E-4           !  Changes after 1991
324
!ARRET
325
    ENDDO
326
    !   PRINT *,'MAX ROTBA:',MAXVAL(ROTBA)
327
    !   ROTBA(:)=(1.*ROTBA(:)  & ! Testing zone
328
    !           +0.15*CORIO(:)**2                &
329
    !           /(COS(PLAT(:)*RPI/180.)+0.02)  &
330
    !           )*DZ*0.01/0.0001/4. ! & ! Testing zone
331
    !   MODIF GWD4 AFTER 1985
332
    !            *(1.25+SIN(PLAT(:)*RPI/180.))/(1.05+SIN(PLAT(:)*RPI/180.))/1.25
333
    !          *1./(COS(PLAT(:)*RPI/180.)+0.02)
334
    !    CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),ZOISEC)/RG*PP(:,1)
335
336
    ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE
337
338
    ! The mod functions of weird arguments are used to produce the
339
    ! waves characteristics in an almost stochastic way
340
341
    JW = 0
342
2592
    DO JW = 1, NW
343
             ! Angle
344
2292768
             DO II = 1, KLON
345
                ! Angle (0 or PI so far)
346
                ! ZP(JW, II) = (SIGN(1., 0.5 - MOD(TT(II, JW) * 10., 1.)) + 1.) &
347
                !      * RPI / 2.
348
                ! Angle between 0 and pi
349
2290176
                  ZP(JW, II) = MOD(TT(II, JW) * 10., 1.) * RPI
350
! TEST WITH POSITIVE WAVES ONLY (Part I/II)
351
!               ZP(JW, II) = 0.
352
                ! Horizontal wavenumber amplitude
353
2290176
                ZK(JW, II) = KMIN + (KMAX - KMIN) * MOD(TT(II, JW) * 100., 1.)
354
                ! Horizontal phase speed
355
                CPHA = 0.
356
13741056
                DO JJ = 1, NA
357
                    CPHA = CPHA + &
358
13741056
         CMAX*2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.)
359
                END DO
360
2290176
                IF (CPHA.LT.0.)  THEN
361
1144768
                   CPHA = -1.*CPHA
362
1144768
                   ZP(JW,II) = ZP(JW,II) + RPI
363
! TEST WITH POSITIVE WAVES ONLY (Part II/II)
364
!               ZP(JW, II) = 0.
365
                ENDIF
366
2290176
                CPHA = CPHA + CMIN !we dont allow |c|<1m/s
367
                ! Absolute frequency is imposed
368
2290176
                ZO(JW, II) = CPHA * ZK(JW, II)
369
                ! Intrinsic frequency is imposed
370
                ZO(JW, II) = ZO(JW, II) &
371
                     + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) &
372
2290176
                     + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH)
373
                ! Momentum flux at launch lev
374
                ! LAUNCHED RANDOM WAVES WITH LOG-NORMAL AMPLITUDE
375
                !  RIGHT IN THE SH (GWD4 after 1990)
376
2290176
                  RUW0(JW, II) = 0.
377
13741056
                 DO JJ = 1, NA
378
                    RUW0(JW, II) = RUW0(JW,II) + &
379
13741056
         2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.)
380
                END DO
381
                RUW0(JW, II) = RUWFRT &
382
                          * EXP(RUW0(JW,II))/1250. &  ! 2 mpa at south pole
383
2292480
       *((1.05+SIN(PLAT(II)*RPI/180.))/(1.01+SIN(PLAT(II)*RPI/180.))-2.05/2.01)
384
                ! RUW0(JW, II) = RUWFRT
385
             ENDDO
386
    end DO
387
388
    ! 4. COMPUTE THE FLUXES
389
390
    ! 4.0
391
392
    ! 4.1 Vertical velocity at launching altitude to ensure
393
    ! the correct value to the imposed fluxes.
394
395
2592
    DO JW = 1, NW
396
397
       ! Evaluate intrinsic frequency at launching altitude:
398
       ZOP(JW, :) = ZO(JW, :) &
399
            - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) &
400
2292480
            - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH)
401
402
       ! VERSION WITH FRONTAL SOURCES
403
404
       ! Momentum flux at launch level imposed by vorticity sources
405
406
       ! tanh limitation for values above CORIO (inertial instability).
407
       ! WWP(JW, :) = RUW0(JW, :) &
408
       WWP(JW, :) = RUWFRT      &
409
       !     * (CORIO(:)*TANH(ROTBA(:)/CORIO(:)))**2 &
410
       !    * ABS((CORIO(:)*TANH(ROTBA(:)/CORIO(:)))*CORIO(:)) &
411
       !  CONSTANT FLUX
412
       !    * (CORIO(:)*CORIO(:)) &
413
       ! MODERATION BY THE DEPTH OF THE SOURCE (DZ HERE)
414
       !      *EXP(-BVLOW(:)**2/MAX(ABS(ZOP(JW, :)),ZOISEC)**2 &
415
       !      *ZK(JW, :)**2*DZ**2) &
416
       ! COMPLETE FORMULA:
417
            !* CORIO(:)**2*TANH(ROTBA(:)/CORIO(:)**2) &
418
            * ROTBA(:) &
419
       !  RESTORE DIMENSION OF A FLUX
420
       !     *RD*TR/PR
421
       !     *1. + RUW0(JW, :)
422
2292480
             *1.
423
424
       ! Factor related to the characteristics of the waves: NONE
425
426
       ! Moderation by the depth of the source (dz here): NONE
427
428
       ! Put the stress in the right direction:
429
430
2292480
        RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :)
431
2292768
        RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :)
432
433
    end DO
434
435
    ! 4.2 Uniform values below the launching altitude
436
437
1440
    DO LL = 1, LAUNCH
438
1146240
       RUW(:, LL) = 0
439
1146240
       RVW(:, LL) = 0
440
10656
       DO JW = 1, NW
441
9169920
          RUW(:, LL) = RUW(:, LL) + RUWP(JW, :)
442
9171072
          RVW(:, LL) = RVW(:, LL) + RVWP(JW, :)
443
       end DO
444
    end DO
445
446
    ! 4.3 Loop over altitudes, with passage from one level to the next
447
    ! done by i) conserving the EP flux, ii) dissipating a little,
448
    ! iii) testing critical levels, and vi) testing the breaking.
449
450
10368
    DO LL = LAUNCH, KLEV - 1
451
       ! Warning: all the physics is here (passage from one level
452
       ! to the next)
453
90720
       DO JW = 1, NW
454
80236800
          ZOM(JW, :) = ZOP(JW, :)
455
80236800
          WWM(JW, :) = WWP(JW, :)
456
          ! Intrinsic Frequency
457
          ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LL + 1) &
458
80236800
               - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LL + 1)
459
460
          ! No breaking (Eq.6)
461
          ! Dissipation (Eq. 8)
462
          WWP(JW, :) = WWM(JW, :) * EXP(- 4. * RDISS * PR / (PH(:, LL + 1) &
463
               + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 &
464
               / MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 &
465
80236800
               * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL)))
466
467
          ! Critical levels (forced to zero if intrinsic frequency changes sign)
468
          ! Saturation (Eq. 12)
469
          WWP(JW, :) = min(WWP(JW, :), MAX(0., &
470
               SIGN(1., ZOP(JW, :) * ZOM(JW, :))) * ABS(ZOP(JW, :))**3 &
471
          !    / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * SATFRT**2 * KMIN**2 &
472
               / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * KMIN**2 &
473
!              *(SATFRT*(2.5+1.5*TANH((ZH(:,LL+1)/H0-8.)/2.)))**2 &
474
               *SATFRT**2       &
475
80246880
               / ZK(JW, :)**4)
476
       end DO
477
478
       ! Evaluate EP-flux from Eq. 7 and give the right orientation to
479
       ! the stress
480
481
90720
       DO JW = 1, NW
482
80236800
          RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :)
483
80246880
          RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :)
484
       end DO
485
486
10029600
       RUW(:, LL + 1) = 0.
487
10029600
       RVW(:, LL + 1) = 0.
488
489
91008
       DO JW = 1, NW
490
80236800
          RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :)
491
80236800
          RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :)
492
80236800
          EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LL)+MAX(0.,RUWP(JW,:))/FLOAT(NW)
493
80246880
          WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LL)+MIN(0.,RUWP(JW,:))/FLOAT(NW)
494
       end DO
495
    end DO
496
497
    ! 5 CALCUL DES TENDANCES:
498
499
    ! 5.1 Rectification des flux au sommet et dans les basses couches
500
501
286560
    RUW(:, KLEV + 1) = 0.
502
286560
    RVW(:, KLEV + 1) = 0.
503
286560
    RUW(:, 1) = RUW(:, LAUNCH)
504
286560
    RVW(:, 1) = RVW(:, LAUNCH)
505
1440
    DO LL = 1, LAUNCH
506
1146240
       RUW(:, LL) = RUW(:, LAUNCH+1)
507
1146240
       RVW(:, LL) = RVW(:, LAUNCH+1)
508
1146240
       EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LAUNCH)
509
1146528
       WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LAUNCH)
510
    end DO
511
512
    ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4
513
11520
    DO LL = 1, KLEV
514
       D_U(:, LL) = (1.-DTIME/DELTAT) * D_U(:, LL) + DTIME/DELTAT/REAL(NW) * &
515
            RG * (RUW(:, LL + 1) - RUW(:, LL)) &
516
11175840
            / (PH(:, LL + 1) - PH(:, LL)) * DTIME
517
!  NO AR1 FOR MERIDIONAL TENDENCIES
518
!      D_V(:, LL) = (1.-DTIME/DELTAT) * D_V(:, LL) + DTIME/DELTAT/REAL(NW) * &
519
       D_V(:, LL) =                                            1./REAL(NW) * &
520
            RG * (RVW(:, LL + 1) - RVW(:, LL)) &
521
11176128
            / (PH(:, LL + 1) - PH(:, LL)) * DTIME
522
    ENDDO
523
524
    ! Cosmetic: evaluation of the cumulated stress
525
286560
    ZUSTR = 0.
526
286560
    ZVSTR = 0.
527
11520
    DO LL = 1, KLEV
528
11176128
       ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME
529
!      ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME
530
    ENDDO
531
! COSMETICS TO VISUALIZE ROTBA
532
286560
    ZVSTR = ROTBA
533
534
288
  END SUBROUTINE ACAMA_GWD_RANDO
535
536
end module ACAMA_GWD_rando_m