GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
! |
||
2 |
! $Id: acama_gwd_rando_m.F90 3977 2021-08-25 17:24:20Z fhourdin $ |
||
3 |
! |
||
4 |
module ACAMA_GWD_rando_m |
||
5 |
|||
6 |
implicit none |
||
7 |
|||
8 |
contains |
||
9 |
|||
10 |
✗✓✗✓ ✗✓✗✓ ✗✓ |
288 |
SUBROUTINE ACAMA_GWD_rando(DTIME, pp, plat, tt, uu, vv, rot, & |
11 |
✗✓✗✓ ✗✓✗✓ ✗✓✗✓ ✗✓ |
288 |
zustr, zvstr, d_u, d_v,east_gwstress,west_gwstress) |
12 |
|||
13 |
! Parametrization of the momentum flux deposition due to a discrete |
||
14 |
! number of gravity waves. |
||
15 |
! Author: F. Lott, A. de la Camara |
||
16 |
! July, 24th, 2014 |
||
17 |
! Gaussian distribution of the source, source is vorticity squared |
||
18 |
! Reference: de la Camara and Lott (GRL, 2015, vol 42, 2071-2078 ) |
||
19 |
! Lott et al (JAS, 2010, vol 67, page 157-170) |
||
20 |
! Lott et al (JAS, 2012, vol 69, page 2134-2151) |
||
21 |
|||
22 |
! ONLINE: |
||
23 |
use dimphy, only: klon, klev |
||
24 |
use assert_m, only: assert |
||
25 |
USE ioipsl_getin_p_mod, ONLY : getin_p |
||
26 |
USE vertical_layers_mod, ONLY : presnivs |
||
27 |
|||
28 |
include "YOMCST.h" |
||
29 |
include "clesphys.h" |
||
30 |
! OFFLINE: |
||
31 |
! include "dimensions.h" |
||
32 |
! include "dimphy.h" |
||
33 |
!END DIFFERENCE |
||
34 |
include "YOEGWD.h" |
||
35 |
|||
36 |
! 0. DECLARATIONS: |
||
37 |
|||
38 |
! 0.1 INPUTS |
||
39 |
REAL, intent(in)::DTIME ! Time step of the Physics |
||
40 |
REAL, intent(in):: PP(:, :) ! (KLON, KLEV) Pressure at full levels |
||
41 |
REAL, intent(in):: ROT(:,:) ! Relative vorticity |
||
42 |
REAL, intent(in):: TT(:, :) ! (KLON, KLEV) Temp at full levels |
||
43 |
REAL, intent(in):: UU(:, :) ! (KLON, KLEV) Zonal wind at full levels |
||
44 |
REAL, intent(in):: VV(:, :) ! (KLON, KLEV) Merid wind at full levels |
||
45 |
REAL, intent(in):: PLAT(:) ! (KLON) LATITUDE |
||
46 |
|||
47 |
! 0.2 OUTPUTS |
||
48 |
REAL, intent(out):: zustr(:), zvstr(:) ! (KLON) Surface Stresses |
||
49 |
|||
50 |
REAL, intent(inout):: d_u(:, :), d_v(:, :) |
||
51 |
REAL, intent(inout):: east_gwstress(:, :) ! Profile of eastward stress |
||
52 |
REAL, intent(inout):: west_gwstress(:, :) ! Profile of westward stress |
||
53 |
! (KLON, KLEV) tendencies on winds |
||
54 |
|||
55 |
! O.3 INTERNAL ARRAYS |
||
56 |
576 |
REAL BVLOW(klon) ! LOW LEVEL BV FREQUENCY |
|
57 |
576 |
REAL ROTBA(KLON),CORIO(KLON) ! BAROTROPIC REL. VORTICITY AND PLANETARY |
|
58 |
576 |
REAL UZ(KLON, KLEV + 1) |
|
59 |
|||
60 |
INTEGER II, JJ, LL |
||
61 |
|||
62 |
! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
||
63 |
|||
64 |
REAL DELTAT |
||
65 |
|||
66 |
! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
||
67 |
|||
68 |
INTEGER, PARAMETER:: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO |
||
69 |
INTEGER JK, JP, JO, JW |
||
70 |
INTEGER, PARAMETER:: NA = 5 !number of realizations to get the phase speed |
||
71 |
REAL KMIN, KMAX ! Min and Max horizontal wavenumbers |
||
72 |
REAL CMIN, CMAX ! Min and Max absolute ph. vel. |
||
73 |
REAL CPHA ! absolute PHASE VELOCITY frequency |
||
74 |
576 |
REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude |
|
75 |
576 |
REAL ZP(NW, KLON) ! Horizontal wavenumber angle |
|
76 |
576 |
REAL ZO(NW, KLON) ! Absolute frequency ! |
|
77 |
|||
78 |
! Waves Intr. freq. at the 1/2 lev surrounding the full level |
||
79 |
576 |
REAL ZOM(NW, KLON), ZOP(NW, KLON) |
|
80 |
|||
81 |
! Wave EP-fluxes at the 2 semi levels surrounding the full level |
||
82 |
576 |
REAL WWM(NW, KLON), WWP(NW, KLON) |
|
83 |
|||
84 |
576 |
REAL RUW0(NW, KLON) ! Fluxes at launching level |
|
85 |
|||
86 |
576 |
REAL RUWP(NW, KLON), RVWP(NW, KLON) |
|
87 |
! Fluxes X and Y for each waves at 1/2 Levels |
||
88 |
|||
89 |
INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude |
||
90 |
|||
91 |
REAL XLAUNCH ! Controle the launching altitude |
||
92 |
REAL XTROP ! SORT of Tropopause altitude |
||
93 |
576 |
REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels |
|
94 |
576 |
REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels |
|
95 |
|||
96 |
REAL PRMAX ! Maximum value of PREC, and for which our linear formula |
||
97 |
! for GWs parameterisation apply |
||
98 |
|||
99 |
! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
||
100 |
|||
101 |
REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ |
||
102 |
REAL CORSEC ! SECURITY FOR INTRINSIC CORIOLIS |
||
103 |
REAL RUWFRT,SATFRT |
||
104 |
|||
105 |
! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE |
||
106 |
|||
107 |
REAL H0 ! Characteristic Height of the atmosphere |
||
108 |
REAL DZ ! Characteristic depth of the source! |
||
109 |
REAL PR, TR ! Reference Pressure and Temperature |
||
110 |
|||
111 |
576 |
REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude |
|
112 |
|||
113 |
576 |
REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels |
|
114 |
576 |
REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels |
|
115 |
REAL PSEC ! Security to avoid division by 0 pressure |
||
116 |
576 |
REAL PHM1(KLON, KLEV + 1) ! 1/Press at 1/2 levels |
|
117 |
576 |
REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels |
|
118 |
REAL BVSEC ! Security to avoid negative BVF |
||
119 |
|||
120 |
576 |
REAL, DIMENSION(klev+1) ::HREF |
|
121 |
LOGICAL, SAVE :: gwd_reproductibilite_mpiomp=.true. |
||
122 |
LOGICAL, SAVE :: firstcall = .TRUE. |
||
123 |
!$OMP THREADPRIVATE(firstcall,gwd_reproductibilite_mpiomp) |
||
124 |
|||
125 |
CHARACTER (LEN=20) :: modname='acama_gwd_rando_m' |
||
126 |
CHARACTER (LEN=80) :: abort_message |
||
127 |
|||
128 |
|||
129 |
|||
130 |
✓✓ | 288 |
IF (firstcall) THEN |
131 |
! Cle introduite pour resoudre un probleme de non reproductibilite |
||
132 |
! Le but est de pouvoir tester de revenir a la version precedenete |
||
133 |
! A eliminer rapidement |
||
134 |
1 |
CALL getin_p('gwd_reproductibilite_mpiomp',gwd_reproductibilite_mpiomp) |
|
135 |
✗✓ | 1 |
IF (NW+4*(NA-1)+NA>=KLEV) THEN |
136 |
abort_message = 'NW+3*NA>=KLEV Probleme pour generation des ondes' |
||
137 |
CALL abort_physic (modname,abort_message,1) |
||
138 |
ENDIF |
||
139 |
1 |
firstcall=.false. |
|
140 |
! CALL iophys_ini(dtime) |
||
141 |
ENDIF |
||
142 |
|||
143 |
!----------------------------------------------------------------- |
||
144 |
|||
145 |
! 1. INITIALISATIONS |
||
146 |
|||
147 |
! 1.1 Basic parameter |
||
148 |
|||
149 |
! Are provided from elsewhere (latent heat of vaporization, dry |
||
150 |
! gaz constant for air, gravity constant, heat capacity of dry air |
||
151 |
! at constant pressure, earth rotation rate, pi). |
||
152 |
|||
153 |
! 1.2 Tuning parameters of V14 |
||
154 |
|||
155 |
! Values for linear in rot (recommended): |
||
156 |
! RUWFRT=0.005 ! As RUWMAX but for frontal waves |
||
157 |
! SATFRT=1.00 ! As SAT but for frontal waves |
||
158 |
! Values when rot^2 is used |
||
159 |
! RUWFRT=0.02 ! As RUWMAX but for frontal waves |
||
160 |
! SATFRT=1.00 ! As SAT but for frontal waves |
||
161 |
! CMAX = 30. ! Characteristic phase speed |
||
162 |
! Values when rot^2*EXP(-pi*sqrt(J)) is used |
||
163 |
! RUWFRT=2.5 ! As RUWMAX but for frontal waves ~ N0*F0/4*DZ |
||
164 |
! SATFRT=0.60 ! As SAT but for frontal waves |
||
165 |
288 |
RUWFRT=gwd_front_ruwmax |
|
166 |
288 |
SATFRT=gwd_front_sat |
|
167 |
CMAX = 50. ! Characteristic phase speed |
||
168 |
! Phase speed test |
||
169 |
! RUWFRT=0.01 |
||
170 |
! CMAX = 50. ! Characteristic phase speed (TEST) |
||
171 |
! Values when rot^2 and exp(-m^2*dz^2) are used |
||
172 |
! RUWFRT=0.03 ! As RUWMAX but for frontal waves |
||
173 |
! SATFRT=1.00 ! As SAT but for frontal waves |
||
174 |
! CRUCIAL PARAMETERS FOR THE WIND FILTERING |
||
175 |
XLAUNCH=0.95 ! Parameter that control launching altitude |
||
176 |
RDISS = 0.5 ! Diffusion parameter |
||
177 |
|||
178 |
! maximum of rain for which our theory applies (in kg/m^2/s) |
||
179 |
|||
180 |
DZ = 1000. ! Characteristic depth of the source |
||
181 |
XTROP=0.2 ! Parameter that control tropopause altitude |
||
182 |
DELTAT=24.*3600. ! Time scale of the waves (first introduced in 9b) |
||
183 |
! DELTAT=DTIME ! No AR-1 Accumulation, OR OFFLINE |
||
184 |
|||
185 |
KMIN = 2.E-5 |
||
186 |
! minimum horizontal wavenumber (inverse of the subgrid scale resolution) |
||
187 |
|||
188 |
KMAX = 1.E-3 ! Max horizontal wavenumber |
||
189 |
CMIN = 1. ! Min phase velocity |
||
190 |
|||
191 |
TR = 240. ! Reference Temperature |
||
192 |
PR = 101300. ! Reference pressure |
||
193 |
288 |
H0 = RD * TR / RG ! Characteristic vertical scale height |
|
194 |
|||
195 |
BVSEC = 5.E-3 ! Security to avoid negative BVF |
||
196 |
PSEC = 1.E-6 ! Security to avoid division by 0 pressure |
||
197 |
ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ |
||
198 |
288 |
CORSEC = ROMEGA*2.*SIN(2.*RPI/180.)! Security for CORIO |
|
199 |
|||
200 |
! ONLINE |
||
201 |
call assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), & |
||
202 |
size(vv, 1), size(rot,1), size(zustr), size(zvstr), size(d_u, 1), & |
||
203 |
size(d_v, 1), & |
||
204 |
size(east_gwstress,1), size(west_gwstress,1) /), & |
||
205 |
✓✓ | 3456 |
"ACAMA_GWD_RANDO klon") |
206 |
call assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), & |
||
207 |
size(vv, 2), size(d_u, 2), size(d_v, 2), & |
||
208 |
size(east_gwstress,2), size(west_gwstress,2) /), & |
||
209 |
✓✓ | 2592 |
"ACAMA_GWD_RANDO klev") |
210 |
! END ONLINE |
||
211 |
|||
212 |
✗✓ | 288 |
IF(DELTAT < DTIME)THEN |
213 |
! PRINT *, 'flott_gwd_rando: deltat < dtime!' |
||
214 |
! STOP 1 |
||
215 |
abort_message=' deltat < dtime! ' |
||
216 |
CALL abort_physic(modname,abort_message,1) |
||
217 |
ENDIF |
||
218 |
|||
219 |
✗✓ | 288 |
IF (KLEV < NW) THEN |
220 |
! PRINT *, 'flott_gwd_rando: you will have problem with random numbers' |
||
221 |
! STOP 1 |
||
222 |
abort_message=' you will have problem with random numbers' |
||
223 |
CALL abort_physic(modname,abort_message,1) |
||
224 |
ENDIF |
||
225 |
|||
226 |
! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
||
227 |
|||
228 |
! Pressure and Inv of pressure |
||
229 |
✓✓ | 11232 |
DO LL = 2, KLEV |
230 |
✓✓ | 10889280 |
PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
231 |
✓✓ | 10889568 |
PHM1(:, LL) = 1. / PH(:, LL) |
232 |
end DO |
||
233 |
|||
234 |
✓✓ | 286560 |
PH(:, KLEV + 1) = 0. |
235 |
✓✓ | 286560 |
PHM1(:, KLEV + 1) = 1. / PSEC |
236 |
✓✓ | 286560 |
PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
237 |
|||
238 |
! Launching altitude |
||
239 |
|||
240 |
✓✗ | 288 |
IF (gwd_reproductibilite_mpiomp) THEN |
241 |
! Reprend la formule qui calcule PH en fonction de PP=play |
||
242 |
✓✓ | 11232 |
DO LL = 2, KLEV |
243 |
11232 |
HREF(LL) = EXP((LOG(presnivs(LL)) + LOG(presnivs(LL - 1))) / 2.) |
|
244 |
end DO |
||
245 |
288 |
HREF(KLEV + 1) = 0. |
|
246 |
288 |
HREF(1) = 2. * presnivs(1) - HREF(2) |
|
247 |
ELSE |
||
248 |
HREF(1:KLEV)=PH(KLON/2,1:KLEV) |
||
249 |
ENDIF |
||
250 |
|||
251 |
LAUNCH=0 |
||
252 |
LTROP =0 |
||
253 |
✓✓ | 11520 |
DO LL = 1, KLEV |
254 |
✓✓ | 11520 |
IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL |
255 |
ENDDO |
||
256 |
✓✓ | 11520 |
DO LL = 1, KLEV |
257 |
✓✓ | 11520 |
IF (HREF(LL) / HREF(1) > XTROP) LTROP = LL |
258 |
ENDDO |
||
259 |
!LAUNCH=22 ; LTROP=33 |
||
260 |
! print*,'LAUNCH=',LAUNCH,'LTROP=',LTROP |
||
261 |
|||
262 |
|||
263 |
! PRINT *,'LAUNCH IN ACAMARA:',LAUNCH |
||
264 |
|||
265 |
! Log pressure vert. coordinate |
||
266 |
✓✓ | 11808 |
DO LL = 1, KLEV + 1 |
267 |
✓✓ | 11462688 |
ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
268 |
end DO |
||
269 |
|||
270 |
! BV frequency |
||
271 |
✓✓ | 11232 |
DO LL = 2, KLEV |
272 |
! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS) |
||
273 |
UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) & |
||
274 |
* RD**2 / RCPD / H0**2 + (TT(:, LL) & |
||
275 |
✓✓ | 10889568 |
- TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0 |
276 |
end DO |
||
277 |
BVLOW = 0.5 * (TT(:, LTROP )+ TT(:, LAUNCH)) & |
||
278 |
* RD**2 / RCPD / H0**2 + (TT(:, LTROP ) & |
||
279 |
✓✓ | 286560 |
- TT(:, LAUNCH))/(ZH(:, LTROP )- ZH(:, LAUNCH)) * RD / H0 |
280 |
|||
281 |
✓✓ | 286560 |
UH(:, 1) = UH(:, 2) |
282 |
✓✓ | 286560 |
UH(:, KLEV + 1) = UH(:, KLEV) |
283 |
✓✓ | 286560 |
BV(:, 1) = UH(:, 2) |
284 |
✓✓ | 286560 |
BV(:, KLEV + 1) = UH(:, KLEV) |
285 |
! SMOOTHING THE BV HELPS |
||
286 |
✓✓ | 11232 |
DO LL = 2, KLEV |
287 |
✓✓ | 10889568 |
BV(:, LL)=(UH(:, LL+1)+2.*UH(:, LL)+UH(:, LL-1))/4. |
288 |
end DO |
||
289 |
|||
290 |
✓✓✓✓ |
11462688 |
BV=MAX(SQRT(MAX(BV, 0.)), BVSEC) |
291 |
✓✓ | 286560 |
BVLOW=MAX(SQRT(MAX(BVLOW, 0.)), BVSEC) |
292 |
|||
293 |
! WINDS |
||
294 |
✓✓ | 11232 |
DO LL = 2, KLEV |
295 |
✓✓ | 10889280 |
UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
296 |
✓✓ | 10889280 |
VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
297 |
UZ(:, LL) = ABS((SQRT(UU(:, LL)**2+VV(:, LL)**2) & |
||
298 |
- SQRT(UU(:,LL-1)**2+VV(:, LL-1)**2)) & |
||
299 |
✓✓ | 10889568 |
/(ZH(:, LL)-ZH(:, LL-1)) ) |
300 |
end DO |
||
301 |
✓✓ | 286560 |
UH(:, 1) = 0. |
302 |
✓✓ | 286560 |
VH(:, 1) = 0. |
303 |
✓✓ | 286560 |
UH(:, KLEV + 1) = UU(:, KLEV) |
304 |
✓✓ | 286560 |
VH(:, KLEV + 1) = VV(:, KLEV) |
305 |
|||
306 |
✓✓ | 286560 |
UZ(:, 1) = UZ(:, 2) |
307 |
✓✓ | 286560 |
UZ(:, KLEV + 1) = UZ(:, KLEV) |
308 |
✓✓✓✓ |
11462688 |
UZ(:, :) = MAX(UZ(:,:), PSEC) |
309 |
|||
310 |
! BAROTROPIC VORTICITY AND INTEGRATED CORIOLIS PARAMETER |
||
311 |
|||
312 |
✓✓ | 286560 |
CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),CORSEC) |
313 |
✓✓ | 286560 |
ROTBA(:)=0. |
314 |
✓✓ | 11232 |
DO LL = 1,KLEV-1 |
315 |
!ROTBA(:) = ROTBA(:) + (ROT(:,LL)+ROT(:,LL+1))/2./RG*(PP(:,LL)-PP(:,LL+1)) |
||
316 |
! Introducing the complete formula (exp of Richardson number): |
||
317 |
ROTBA(:) = ROTBA(:) + & |
||
318 |
!((ROT(:,LL)+ROT(:,LL+1))/2.)**2 & |
||
319 |
(CORIO(:)*TANH(ABS(ROT(:,LL)+ROT(:,LL+1))/2./CORIO(:)))**2 & |
||
320 |
/RG*(PP(:,LL)-PP(:,LL+1)) & |
||
321 |
* EXP(-RPI*BV(:,LL+1)/UZ(:,LL+1)) & |
||
322 |
! * DZ*BV(:,LL+1)/4./ABS(CORIO(:)) |
||
323 |
✓✓ | 10889568 |
* DZ*BV(:,LL+1)/4./1.E-4 ! Changes after 1991 |
324 |
!ARRET |
||
325 |
ENDDO |
||
326 |
! PRINT *,'MAX ROTBA:',MAXVAL(ROTBA) |
||
327 |
! ROTBA(:)=(1.*ROTBA(:) & ! Testing zone |
||
328 |
! +0.15*CORIO(:)**2 & |
||
329 |
! /(COS(PLAT(:)*RPI/180.)+0.02) & |
||
330 |
! )*DZ*0.01/0.0001/4. ! & ! Testing zone |
||
331 |
! MODIF GWD4 AFTER 1985 |
||
332 |
! *(1.25+SIN(PLAT(:)*RPI/180.))/(1.05+SIN(PLAT(:)*RPI/180.))/1.25 |
||
333 |
! *1./(COS(PLAT(:)*RPI/180.)+0.02) |
||
334 |
! CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),ZOISEC)/RG*PP(:,1) |
||
335 |
|||
336 |
! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE |
||
337 |
|||
338 |
! The mod functions of weird arguments are used to produce the |
||
339 |
! waves characteristics in an almost stochastic way |
||
340 |
|||
341 |
JW = 0 |
||
342 |
✓✓ | 2592 |
DO JW = 1, NW |
343 |
! Angle |
||
344 |
✓✓ | 2292768 |
DO II = 1, KLON |
345 |
! Angle (0 or PI so far) |
||
346 |
! ZP(JW, II) = (SIGN(1., 0.5 - MOD(TT(II, JW) * 10., 1.)) + 1.) & |
||
347 |
! * RPI / 2. |
||
348 |
! Angle between 0 and pi |
||
349 |
2290176 |
ZP(JW, II) = MOD(TT(II, JW) * 10., 1.) * RPI |
|
350 |
! TEST WITH POSITIVE WAVES ONLY (Part I/II) |
||
351 |
! ZP(JW, II) = 0. |
||
352 |
! Horizontal wavenumber amplitude |
||
353 |
2290176 |
ZK(JW, II) = KMIN + (KMAX - KMIN) * MOD(TT(II, JW) * 100., 1.) |
|
354 |
! Horizontal phase speed |
||
355 |
CPHA = 0. |
||
356 |
✓✓ | 13741056 |
DO JJ = 1, NA |
357 |
CPHA = CPHA + & |
||
358 |
13741056 |
CMAX*2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.) |
|
359 |
END DO |
||
360 |
✓✓ | 2290176 |
IF (CPHA.LT.0.) THEN |
361 |
1144768 |
CPHA = -1.*CPHA |
|
362 |
1144768 |
ZP(JW,II) = ZP(JW,II) + RPI |
|
363 |
! TEST WITH POSITIVE WAVES ONLY (Part II/II) |
||
364 |
! ZP(JW, II) = 0. |
||
365 |
ENDIF |
||
366 |
2290176 |
CPHA = CPHA + CMIN !we dont allow |c|<1m/s |
|
367 |
! Absolute frequency is imposed |
||
368 |
2290176 |
ZO(JW, II) = CPHA * ZK(JW, II) |
|
369 |
! Intrinsic frequency is imposed |
||
370 |
ZO(JW, II) = ZO(JW, II) & |
||
371 |
+ ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & |
||
372 |
2290176 |
+ ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) |
|
373 |
! Momentum flux at launch lev |
||
374 |
! LAUNCHED RANDOM WAVES WITH LOG-NORMAL AMPLITUDE |
||
375 |
! RIGHT IN THE SH (GWD4 after 1990) |
||
376 |
2290176 |
RUW0(JW, II) = 0. |
|
377 |
✓✓ | 13741056 |
DO JJ = 1, NA |
378 |
RUW0(JW, II) = RUW0(JW,II) + & |
||
379 |
13741056 |
2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.) |
|
380 |
END DO |
||
381 |
RUW0(JW, II) = RUWFRT & |
||
382 |
* EXP(RUW0(JW,II))/1250. & ! 2 mpa at south pole |
||
383 |
2292480 |
*((1.05+SIN(PLAT(II)*RPI/180.))/(1.01+SIN(PLAT(II)*RPI/180.))-2.05/2.01) |
|
384 |
! RUW0(JW, II) = RUWFRT |
||
385 |
ENDDO |
||
386 |
end DO |
||
387 |
|||
388 |
! 4. COMPUTE THE FLUXES |
||
389 |
|||
390 |
! 4.0 |
||
391 |
|||
392 |
! 4.1 Vertical velocity at launching altitude to ensure |
||
393 |
! the correct value to the imposed fluxes. |
||
394 |
|||
395 |
✓✓ | 2592 |
DO JW = 1, NW |
396 |
|||
397 |
! Evaluate intrinsic frequency at launching altitude: |
||
398 |
ZOP(JW, :) = ZO(JW, :) & |
||
399 |
- ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
||
400 |
✓✓ | 2292480 |
- ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
401 |
|||
402 |
! VERSION WITH FRONTAL SOURCES |
||
403 |
|||
404 |
! Momentum flux at launch level imposed by vorticity sources |
||
405 |
|||
406 |
! tanh limitation for values above CORIO (inertial instability). |
||
407 |
! WWP(JW, :) = RUW0(JW, :) & |
||
408 |
WWP(JW, :) = RUWFRT & |
||
409 |
! * (CORIO(:)*TANH(ROTBA(:)/CORIO(:)))**2 & |
||
410 |
! * ABS((CORIO(:)*TANH(ROTBA(:)/CORIO(:)))*CORIO(:)) & |
||
411 |
! CONSTANT FLUX |
||
412 |
! * (CORIO(:)*CORIO(:)) & |
||
413 |
! MODERATION BY THE DEPTH OF THE SOURCE (DZ HERE) |
||
414 |
! *EXP(-BVLOW(:)**2/MAX(ABS(ZOP(JW, :)),ZOISEC)**2 & |
||
415 |
! *ZK(JW, :)**2*DZ**2) & |
||
416 |
! COMPLETE FORMULA: |
||
417 |
!* CORIO(:)**2*TANH(ROTBA(:)/CORIO(:)**2) & |
||
418 |
* ROTBA(:) & |
||
419 |
! RESTORE DIMENSION OF A FLUX |
||
420 |
! *RD*TR/PR |
||
421 |
! *1. + RUW0(JW, :) |
||
422 |
✓✓ | 2292480 |
*1. |
423 |
|||
424 |
! Factor related to the characteristics of the waves: NONE |
||
425 |
|||
426 |
! Moderation by the depth of the source (dz here): NONE |
||
427 |
|||
428 |
! Put the stress in the right direction: |
||
429 |
|||
430 |
✓✓ | 2292480 |
RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :) |
431 |
✓✓ | 2292768 |
RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :) |
432 |
|||
433 |
end DO |
||
434 |
|||
435 |
! 4.2 Uniform values below the launching altitude |
||
436 |
|||
437 |
✓✓ | 1440 |
DO LL = 1, LAUNCH |
438 |
✓✓ | 1146240 |
RUW(:, LL) = 0 |
439 |
✓✓ | 1146240 |
RVW(:, LL) = 0 |
440 |
✓✓ | 10656 |
DO JW = 1, NW |
441 |
✓✓ | 9169920 |
RUW(:, LL) = RUW(:, LL) + RUWP(JW, :) |
442 |
✓✓ | 9171072 |
RVW(:, LL) = RVW(:, LL) + RVWP(JW, :) |
443 |
end DO |
||
444 |
end DO |
||
445 |
|||
446 |
! 4.3 Loop over altitudes, with passage from one level to the next |
||
447 |
! done by i) conserving the EP flux, ii) dissipating a little, |
||
448 |
! iii) testing critical levels, and vi) testing the breaking. |
||
449 |
|||
450 |
✓✓ | 10368 |
DO LL = LAUNCH, KLEV - 1 |
451 |
! Warning: all the physics is here (passage from one level |
||
452 |
! to the next) |
||
453 |
✓✓ | 90720 |
DO JW = 1, NW |
454 |
✓✓ | 80236800 |
ZOM(JW, :) = ZOP(JW, :) |
455 |
✓✓ | 80236800 |
WWM(JW, :) = WWP(JW, :) |
456 |
! Intrinsic Frequency |
||
457 |
ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LL + 1) & |
||
458 |
✓✓ | 80236800 |
- ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LL + 1) |
459 |
|||
460 |
! No breaking (Eq.6) |
||
461 |
! Dissipation (Eq. 8) |
||
462 |
WWP(JW, :) = WWM(JW, :) * EXP(- 4. * RDISS * PR / (PH(:, LL + 1) & |
||
463 |
+ PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
||
464 |
/ MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 & |
||
465 |
✓✓ | 80236800 |
* ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))) |
466 |
|||
467 |
! Critical levels (forced to zero if intrinsic frequency changes sign) |
||
468 |
! Saturation (Eq. 12) |
||
469 |
WWP(JW, :) = min(WWP(JW, :), MAX(0., & |
||
470 |
SIGN(1., ZOP(JW, :) * ZOM(JW, :))) * ABS(ZOP(JW, :))**3 & |
||
471 |
! / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * SATFRT**2 * KMIN**2 & |
||
472 |
/ BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * KMIN**2 & |
||
473 |
! *(SATFRT*(2.5+1.5*TANH((ZH(:,LL+1)/H0-8.)/2.)))**2 & |
||
474 |
*SATFRT**2 & |
||
475 |
✓✓ | 80246880 |
/ ZK(JW, :)**4) |
476 |
end DO |
||
477 |
|||
478 |
! Evaluate EP-flux from Eq. 7 and give the right orientation to |
||
479 |
! the stress |
||
480 |
|||
481 |
✓✓ | 90720 |
DO JW = 1, NW |
482 |
✓✓ | 80236800 |
RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :) |
483 |
✓✓ | 80246880 |
RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :) |
484 |
end DO |
||
485 |
|||
486 |
✓✓ | 10029600 |
RUW(:, LL + 1) = 0. |
487 |
✓✓ | 10029600 |
RVW(:, LL + 1) = 0. |
488 |
|||
489 |
✓✓ | 91008 |
DO JW = 1, NW |
490 |
✓✓ | 80236800 |
RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :) |
491 |
✓✓ | 80236800 |
RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :) |
492 |
✓✓ | 80236800 |
EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LL)+MAX(0.,RUWP(JW,:))/FLOAT(NW) |
493 |
✓✓ | 80246880 |
WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LL)+MIN(0.,RUWP(JW,:))/FLOAT(NW) |
494 |
end DO |
||
495 |
end DO |
||
496 |
|||
497 |
! 5 CALCUL DES TENDANCES: |
||
498 |
|||
499 |
! 5.1 Rectification des flux au sommet et dans les basses couches |
||
500 |
|||
501 |
✓✓ | 286560 |
RUW(:, KLEV + 1) = 0. |
502 |
✓✓ | 286560 |
RVW(:, KLEV + 1) = 0. |
503 |
✓✓ | 286560 |
RUW(:, 1) = RUW(:, LAUNCH) |
504 |
✓✓ | 286560 |
RVW(:, 1) = RVW(:, LAUNCH) |
505 |
✓✓ | 1440 |
DO LL = 1, LAUNCH |
506 |
✓✓ | 1146240 |
RUW(:, LL) = RUW(:, LAUNCH+1) |
507 |
✓✓ | 1146240 |
RVW(:, LL) = RVW(:, LAUNCH+1) |
508 |
✓✓ | 1146240 |
EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LAUNCH) |
509 |
✓✓ | 1146528 |
WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LAUNCH) |
510 |
end DO |
||
511 |
|||
512 |
! AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
||
513 |
✓✓ | 11520 |
DO LL = 1, KLEV |
514 |
D_U(:, LL) = (1.-DTIME/DELTAT) * D_U(:, LL) + DTIME/DELTAT/REAL(NW) * & |
||
515 |
RG * (RUW(:, LL + 1) - RUW(:, LL)) & |
||
516 |
✓✓ | 11175840 |
/ (PH(:, LL + 1) - PH(:, LL)) * DTIME |
517 |
! NO AR1 FOR MERIDIONAL TENDENCIES |
||
518 |
! D_V(:, LL) = (1.-DTIME/DELTAT) * D_V(:, LL) + DTIME/DELTAT/REAL(NW) * & |
||
519 |
D_V(:, LL) = 1./REAL(NW) * & |
||
520 |
RG * (RVW(:, LL + 1) - RVW(:, LL)) & |
||
521 |
✓✓ | 11176128 |
/ (PH(:, LL + 1) - PH(:, LL)) * DTIME |
522 |
ENDDO |
||
523 |
|||
524 |
! Cosmetic: evaluation of the cumulated stress |
||
525 |
✓✓ | 286560 |
ZUSTR = 0. |
526 |
✓✓ | 286560 |
ZVSTR = 0. |
527 |
✓✓ | 11520 |
DO LL = 1, KLEV |
528 |
✓✓ | 11176128 |
ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
529 |
! ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
||
530 |
ENDDO |
||
531 |
! COSMETICS TO VISUALIZE ROTBA |
||
532 |
✓✓ | 286560 |
ZVSTR = ROTBA |
533 |
|||
534 |
288 |
END SUBROUTINE ACAMA_GWD_RANDO |
|
535 |
|||
536 |
end module ACAMA_GWD_rando_m |
Generated by: GCOVR (Version 4.2) |