1 |
|
|
|
2 |
|
|
! $Header$ |
3 |
|
|
|
4 |
|
|
SUBROUTINE conflx(dtime, pres_h, pres_f, t, q, con_t, con_q, pqhfl, w, d_t, & |
5 |
|
|
d_q, rain, snow, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & |
6 |
|
|
kdtop, pmflxr, pmflxs) |
7 |
|
|
|
8 |
|
|
USE dimphy |
9 |
|
|
IMPLICIT NONE |
10 |
|
|
! ====================================================================== |
11 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) date: 19941014 |
12 |
|
|
! Objet: Schema flux de masse pour la convection |
13 |
|
|
! (schema de Tiedtke avec qqs modifications mineures) |
14 |
|
|
! Dec.97: Prise en compte des modifications introduites par |
15 |
|
|
! Olivier Boucher et Alexandre Armengaud pour melange |
16 |
|
|
! et lessivage des traceurs passifs. |
17 |
|
|
! ====================================================================== |
18 |
|
|
include "YOMCST.h" |
19 |
|
|
include "YOETHF.h" |
20 |
|
|
! Entree: |
21 |
|
|
REAL dtime ! pas d'integration (s) |
22 |
|
|
REAL pres_h(klon, klev+1) ! pression half-level (Pa) |
23 |
|
|
REAL pres_f(klon, klev) ! pression full-level (Pa) |
24 |
|
|
REAL t(klon, klev) ! temperature (K) |
25 |
|
|
REAL q(klon, klev) ! humidite specifique (g/g) |
26 |
|
|
REAL w(klon, klev) ! vitesse verticale (Pa/s) |
27 |
|
|
REAL con_t(klon, klev) ! convergence de temperature (K/s) |
28 |
|
|
REAL con_q(klon, klev) ! convergence de l'eau vapeur (g/g/s) |
29 |
|
|
REAL pqhfl(klon) ! evaporation (negative vers haut) mm/s |
30 |
|
|
! Sortie: |
31 |
|
|
REAL d_t(klon, klev) ! incrementation de temperature |
32 |
|
|
REAL d_q(klon, klev) ! incrementation d'humidite |
33 |
|
|
REAL pmfu(klon, klev) ! flux masse (kg/m2/s) panache ascendant |
34 |
|
|
REAL pmfd(klon, klev) ! flux masse (kg/m2/s) panache descendant |
35 |
|
|
REAL pen_u(klon, klev) |
36 |
|
|
REAL pen_d(klon, klev) |
37 |
|
|
REAL pde_u(klon, klev) |
38 |
|
|
REAL pde_d(klon, klev) |
39 |
|
|
REAL rain(klon) ! pluie (mm/s) |
40 |
|
|
REAL snow(klon) ! neige (mm/s) |
41 |
|
|
REAL pmflxr(klon, klev+1) |
42 |
|
|
REAL pmflxs(klon, klev+1) |
43 |
|
|
INTEGER kcbot(klon) ! niveau du bas de la convection |
44 |
|
|
INTEGER kctop(klon) ! niveau du haut de la convection |
45 |
|
|
INTEGER kdtop(klon) ! niveau du haut des downdrafts |
46 |
|
|
! Local: |
47 |
|
|
REAL pt(klon, klev) |
48 |
|
|
REAL pq(klon, klev) |
49 |
|
|
REAL pqs(klon, klev) |
50 |
|
|
REAL pvervel(klon, klev) |
51 |
|
|
LOGICAL land(klon) |
52 |
|
|
|
53 |
|
|
REAL d_t_bis(klon, klev) |
54 |
|
|
REAL d_q_bis(klon, klev) |
55 |
|
|
REAL paprs(klon, klev+1) |
56 |
|
|
REAL paprsf(klon, klev) |
57 |
|
|
REAL zgeom(klon, klev) |
58 |
|
|
REAL zcvgq(klon, klev) |
59 |
|
|
REAL zcvgt(klon, klev) |
60 |
|
|
! AA |
61 |
|
|
REAL zmfu(klon, klev) |
62 |
|
|
REAL zmfd(klon, klev) |
63 |
|
|
REAL zen_u(klon, klev) |
64 |
|
|
REAL zen_d(klon, klev) |
65 |
|
|
REAL zde_u(klon, klev) |
66 |
|
|
REAL zde_d(klon, klev) |
67 |
|
|
REAL zmflxr(klon, klev+1) |
68 |
|
|
REAL zmflxs(klon, klev+1) |
69 |
|
|
! AA |
70 |
|
|
|
71 |
|
|
|
72 |
|
|
INTEGER i, k |
73 |
|
|
REAL zdelta, zqsat |
74 |
|
|
|
75 |
|
|
include "FCTTRE.h" |
76 |
|
|
|
77 |
|
|
! initialiser les variables de sortie (pour securite) |
78 |
|
|
DO i = 1, klon |
79 |
|
|
rain(i) = 0.0 |
80 |
|
|
snow(i) = 0.0 |
81 |
|
|
kcbot(i) = 0 |
82 |
|
|
kctop(i) = 0 |
83 |
|
|
kdtop(i) = 0 |
84 |
|
|
END DO |
85 |
|
|
DO k = 1, klev |
86 |
|
|
DO i = 1, klon |
87 |
|
|
d_t(i, k) = 0.0 |
88 |
|
|
d_q(i, k) = 0.0 |
89 |
|
|
pmfu(i, k) = 0.0 |
90 |
|
|
pmfd(i, k) = 0.0 |
91 |
|
|
pen_u(i, k) = 0.0 |
92 |
|
|
pde_u(i, k) = 0.0 |
93 |
|
|
pen_d(i, k) = 0.0 |
94 |
|
|
pde_d(i, k) = 0.0 |
95 |
|
|
zmfu(i, k) = 0.0 |
96 |
|
|
zmfd(i, k) = 0.0 |
97 |
|
|
zen_u(i, k) = 0.0 |
98 |
|
|
zde_u(i, k) = 0.0 |
99 |
|
|
zen_d(i, k) = 0.0 |
100 |
|
|
zde_d(i, k) = 0.0 |
101 |
|
|
END DO |
102 |
|
|
END DO |
103 |
|
|
DO k = 1, klev + 1 |
104 |
|
|
DO i = 1, klon |
105 |
|
|
zmflxr(i, k) = 0.0 |
106 |
|
|
zmflxs(i, k) = 0.0 |
107 |
|
|
END DO |
108 |
|
|
END DO |
109 |
|
|
|
110 |
|
|
! calculer la nature du sol (pour l'instant, ocean partout) |
111 |
|
|
DO i = 1, klon |
112 |
|
|
land(i) = .FALSE. |
113 |
|
|
END DO |
114 |
|
|
|
115 |
|
|
! preparer les variables d'entree (attention: l'ordre des niveaux |
116 |
|
|
! verticaux augmente du haut vers le bas) |
117 |
|
|
DO k = 1, klev |
118 |
|
|
DO i = 1, klon |
119 |
|
|
pt(i, k) = t(i, klev-k+1) |
120 |
|
|
pq(i, k) = q(i, klev-k+1) |
121 |
|
|
paprsf(i, k) = pres_f(i, klev-k+1) |
122 |
|
|
paprs(i, k) = pres_h(i, klev+1-k+1) |
123 |
|
|
pvervel(i, k) = w(i, klev+1-k) |
124 |
|
|
zcvgt(i, k) = con_t(i, klev-k+1) |
125 |
|
|
zcvgq(i, k) = con_q(i, klev-k+1) |
126 |
|
|
|
127 |
|
|
zdelta = max(0., sign(1.,rtt-pt(i,k))) |
128 |
|
|
zqsat = r2es*foeew(pt(i,k), zdelta)/paprsf(i, k) |
129 |
|
|
zqsat = min(0.5, zqsat) |
130 |
|
|
zqsat = zqsat/(1.-retv*zqsat) |
131 |
|
|
pqs(i, k) = zqsat |
132 |
|
|
END DO |
133 |
|
|
END DO |
134 |
|
|
DO i = 1, klon |
135 |
|
|
paprs(i, klev+1) = pres_h(i, 1) |
136 |
|
|
zgeom(i, klev) = rd*pt(i, klev)/(0.5*(paprs(i,klev+1)+paprsf(i, & |
137 |
|
|
klev)))*(paprs(i,klev+1)-paprsf(i,klev)) |
138 |
|
|
END DO |
139 |
|
|
DO k = klev - 1, 1, -1 |
140 |
|
|
DO i = 1, klon |
141 |
|
|
zgeom(i, k) = zgeom(i, k+1) + rd*0.5*(pt(i,k+1)+pt(i,k))/paprs(i, k+1)* & |
142 |
|
|
(paprsf(i,k+1)-paprsf(i,k)) |
143 |
|
|
END DO |
144 |
|
|
END DO |
145 |
|
|
|
146 |
|
|
! appeler la routine principale |
147 |
|
|
|
148 |
|
|
CALL flxmain(dtime, pt, pq, pqs, pqhfl, paprsf, paprs, zgeom, land, zcvgt, & |
149 |
|
|
zcvgq, pvervel, rain, snow, kcbot, kctop, kdtop, zmfu, zmfd, zen_u, & |
150 |
|
|
zde_u, zen_d, zde_d, d_t_bis, d_q_bis, zmflxr, zmflxs) |
151 |
|
|
|
152 |
|
|
! AA-------------------------------------------------------- |
153 |
|
|
! AA rem : De la meme facon que l'on effectue le reindicage |
154 |
|
|
! AA pour la temperature t et le champ q |
155 |
|
|
! AA on reindice les flux necessaires a la convection |
156 |
|
|
! AA des traceurs |
157 |
|
|
! AA-------------------------------------------------------- |
158 |
|
|
DO k = 1, klev |
159 |
|
|
DO i = 1, klon |
160 |
|
|
d_q(i, klev+1-k) = dtime*d_q_bis(i, k) |
161 |
|
|
d_t(i, klev+1-k) = dtime*d_t_bis(i, k) |
162 |
|
|
END DO |
163 |
|
|
END DO |
164 |
|
|
|
165 |
|
|
DO i = 1, klon |
166 |
|
|
pmfu(i, 1) = 0. |
167 |
|
|
pmfd(i, 1) = 0. |
168 |
|
|
pen_d(i, 1) = 0. |
169 |
|
|
pde_d(i, 1) = 0. |
170 |
|
|
END DO |
171 |
|
|
|
172 |
|
|
DO k = 2, klev |
173 |
|
|
DO i = 1, klon |
174 |
|
|
pmfu(i, klev+2-k) = zmfu(i, k) |
175 |
|
|
pmfd(i, klev+2-k) = zmfd(i, k) |
176 |
|
|
END DO |
177 |
|
|
END DO |
178 |
|
|
|
179 |
|
|
DO k = 1, klev |
180 |
|
|
DO i = 1, klon |
181 |
|
|
pen_u(i, klev+1-k) = zen_u(i, k) |
182 |
|
|
pde_u(i, klev+1-k) = zde_u(i, k) |
183 |
|
|
END DO |
184 |
|
|
END DO |
185 |
|
|
|
186 |
|
|
DO k = 1, klev - 1 |
187 |
|
|
DO i = 1, klon |
188 |
|
|
pen_d(i, klev+1-k) = -zen_d(i, k+1) |
189 |
|
|
pde_d(i, klev+1-k) = -zde_d(i, k+1) |
190 |
|
|
END DO |
191 |
|
|
END DO |
192 |
|
|
|
193 |
|
|
DO k = 1, klev + 1 |
194 |
|
|
DO i = 1, klon |
195 |
|
|
pmflxr(i, klev+2-k) = zmflxr(i, k) |
196 |
|
|
pmflxs(i, klev+2-k) = zmflxs(i, k) |
197 |
|
|
END DO |
198 |
|
|
END DO |
199 |
|
|
|
200 |
|
|
RETURN |
201 |
|
|
END SUBROUTINE conflx |
202 |
|
|
! -------------------------------------------------------------------- |
203 |
|
|
SUBROUTINE flxmain(pdtime, pten, pqen, pqsen, pqhfl, pap, paph, pgeo, ldland, & |
204 |
|
|
ptte, pqte, pvervel, prsfc, pssfc, kcbot, kctop, kdtop, & ! * |
205 |
|
|
! ldcum, ktype, |
206 |
|
|
pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, dt_con, dq_con, pmflxr, pmflxs) |
207 |
|
|
USE dimphy |
208 |
|
|
IMPLICIT NONE |
209 |
|
|
! ------------------------------------------------------------------ |
210 |
|
|
include "YOMCST.h" |
211 |
|
|
include "YOETHF.h" |
212 |
|
|
include "YOECUMF.h" |
213 |
|
|
! ---------------------------------------------------------------- |
214 |
|
|
REAL pten(klon, klev), pqen(klon, klev), pqsen(klon, klev) |
215 |
|
|
REAL ptte(klon, klev) |
216 |
|
|
REAL pqte(klon, klev) |
217 |
|
|
REAL pvervel(klon, klev) |
218 |
|
|
REAL pgeo(klon, klev), pap(klon, klev), paph(klon, klev+1) |
219 |
|
|
REAL pqhfl(klon) |
220 |
|
|
|
221 |
|
|
REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
222 |
|
|
REAL plude(klon, klev) |
223 |
|
|
REAL pmfu(klon, klev) |
224 |
|
|
REAL prsfc(klon), pssfc(klon) |
225 |
|
|
INTEGER kcbot(klon), kctop(klon), ktype(klon) |
226 |
|
|
LOGICAL ldland(klon), ldcum(klon) |
227 |
|
|
|
228 |
|
|
REAL ztenh(klon, klev), zqenh(klon, klev), zqsenh(klon, klev) |
229 |
|
|
REAL zgeoh(klon, klev) |
230 |
|
|
REAL zmfub(klon), zmfub1(klon) |
231 |
|
|
REAL zmfus(klon, klev), zmfuq(klon, klev), zmful(klon, klev) |
232 |
|
|
REAL zdmfup(klon, klev), zdpmel(klon, klev) |
233 |
|
|
REAL zentr(klon), zhcbase(klon) |
234 |
|
|
REAL zdqpbl(klon), zdqcv(klon), zdhpbl(klon) |
235 |
|
|
REAL zrfl(klon) |
236 |
|
|
REAL pmflxr(klon, klev+1) |
237 |
|
|
REAL pmflxs(klon, klev+1) |
238 |
|
|
INTEGER ilab(klon, klev), ictop0(klon) |
239 |
|
|
LOGICAL llo1 |
240 |
|
|
REAL dt_con(klon, klev), dq_con(klon, klev) |
241 |
|
|
REAL zmfmax, zdh |
242 |
|
|
REAL pdtime, zqumqe, zdqmin, zalvdcp, zhsat, zzz |
243 |
|
|
REAL zhhat, zpbmpt, zgam, zeps, zfac |
244 |
|
|
INTEGER i, k, ikb, itopm2, kcum |
245 |
|
|
|
246 |
|
|
REAL pen_u(klon, klev), pde_u(klon, klev) |
247 |
|
|
REAL pen_d(klon, klev), pde_d(klon, klev) |
248 |
|
|
|
249 |
|
|
REAL ptd(klon, klev), pqd(klon, klev), pmfd(klon, klev) |
250 |
|
|
REAL zmfds(klon, klev), zmfdq(klon, klev), zdmfdp(klon, klev) |
251 |
|
|
INTEGER kdtop(klon) |
252 |
|
|
LOGICAL lddraf(klon) |
253 |
|
|
! --------------------------------------------------------------------- |
254 |
|
|
LOGICAL firstcal |
255 |
|
|
SAVE firstcal |
256 |
|
|
DATA firstcal/.TRUE./ |
257 |
|
|
!$OMP THREADPRIVATE(firstcal) |
258 |
|
|
! --------------------------------------------------------------------- |
259 |
|
|
IF (firstcal) THEN |
260 |
|
|
CALL flxsetup |
261 |
|
|
firstcal = .FALSE. |
262 |
|
|
END IF |
263 |
|
|
! --------------------------------------------------------------------- |
264 |
|
|
DO i = 1, klon |
265 |
|
|
ldcum(i) = .FALSE. |
266 |
|
|
END DO |
267 |
|
|
DO k = 1, klev |
268 |
|
|
DO i = 1, klon |
269 |
|
|
dt_con(i, k) = 0.0 |
270 |
|
|
dq_con(i, k) = 0.0 |
271 |
|
|
END DO |
272 |
|
|
END DO |
273 |
|
|
! ---------------------------------------------------------------------- |
274 |
|
|
! initialiser les variables et faire l'interpolation verticale |
275 |
|
|
! ---------------------------------------------------------------------- |
276 |
|
|
CALL flxini(pten, pqen, pqsen, pgeo, paph, zgeoh, ztenh, zqenh, zqsenh, & |
277 |
|
|
ptu, pqu, ptd, pqd, pmfd, zmfds, zmfdq, zdmfdp, pmfu, zmfus, zmfuq, & |
278 |
|
|
zdmfup, zdpmel, plu, plude, ilab, pen_u, pde_u, pen_d, pde_d) |
279 |
|
|
! --------------------------------------------------------------------- |
280 |
|
|
! determiner les valeurs au niveau de base de la tour convective |
281 |
|
|
! --------------------------------------------------------------------- |
282 |
|
|
CALL flxbase(ztenh, zqenh, zgeoh, paph, ptu, pqu, plu, ldcum, kcbot, ilab) |
283 |
|
|
! --------------------------------------------------------------------- |
284 |
|
|
! calculer la convergence totale de l'humidite et celle en provenance |
285 |
|
|
! de la couche limite, plus precisement, la convergence integree entre |
286 |
|
|
! le sol et la base de la convection. Cette derniere convergence est |
287 |
|
|
! comparee avec l'evaporation obtenue dans la couche limite pour |
288 |
|
|
! determiner le type de la convection |
289 |
|
|
! --------------------------------------------------------------------- |
290 |
|
|
k = 1 |
291 |
|
|
DO i = 1, klon |
292 |
|
|
zdqcv(i) = pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
293 |
|
|
zdhpbl(i) = 0.0 |
294 |
|
|
zdqpbl(i) = 0.0 |
295 |
|
|
END DO |
296 |
|
|
|
297 |
|
|
DO k = 2, klev |
298 |
|
|
DO i = 1, klon |
299 |
|
|
zdqcv(i) = zdqcv(i) + pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
300 |
|
|
IF (k>=kcbot(i)) THEN |
301 |
|
|
zdqpbl(i) = zdqpbl(i) + pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
302 |
|
|
zdhpbl(i) = zdhpbl(i) + (rcpd*ptte(i,k)+rlvtt*pqte(i,k))*(paph(i,k+1) & |
303 |
|
|
-paph(i,k)) |
304 |
|
|
END IF |
305 |
|
|
END DO |
306 |
|
|
END DO |
307 |
|
|
|
308 |
|
|
DO i = 1, klon |
309 |
|
|
ktype(i) = 2 |
310 |
|
|
IF (zdqcv(i)>max(0.,-1.5*pqhfl(i)*rg)) ktype(i) = 1 |
311 |
|
|
! cc if (zdqcv(i).GT.MAX(0.,-1.1*pqhfl(i)*RG)) ktype(i) = 1 |
312 |
|
|
END DO |
313 |
|
|
|
314 |
|
|
! --------------------------------------------------------------------- |
315 |
|
|
! determiner le flux de masse entrant a travers la base. |
316 |
|
|
! on ignore, pour l'instant, l'effet du panache descendant |
317 |
|
|
! --------------------------------------------------------------------- |
318 |
|
|
DO i = 1, klon |
319 |
|
|
ikb = kcbot(i) |
320 |
|
|
zqumqe = pqu(i, ikb) + plu(i, ikb) - zqenh(i, ikb) |
321 |
|
|
zdqmin = max(0.01*zqenh(i,ikb), 1.E-10) |
322 |
|
|
IF (zdqpbl(i)>0. .AND. zqumqe>zdqmin .AND. ldcum(i)) THEN |
323 |
|
|
zmfub(i) = zdqpbl(i)/(rg*max(zqumqe,zdqmin)) |
324 |
|
|
ELSE |
325 |
|
|
zmfub(i) = 0.01 |
326 |
|
|
ldcum(i) = .FALSE. |
327 |
|
|
END IF |
328 |
|
|
IF (ktype(i)==2) THEN |
329 |
|
|
zdh = rcpd*(ptu(i,ikb)-ztenh(i,ikb)) + rlvtt*zqumqe |
330 |
|
|
zdh = rg*max(zdh, 1.0E5*zdqmin) |
331 |
|
|
IF (zdhpbl(i)>0. .AND. ldcum(i)) zmfub(i) = zdhpbl(i)/zdh |
332 |
|
|
END IF |
333 |
|
|
zmfmax = (paph(i,ikb)-paph(i,ikb-1))/(rg*pdtime) |
334 |
|
|
zmfub(i) = min(zmfub(i), zmfmax) |
335 |
|
|
zentr(i) = entrscv |
336 |
|
|
IF (ktype(i)==1) zentr(i) = entrpen |
337 |
|
|
END DO |
338 |
|
|
! ----------------------------------------------------------------------- |
339 |
|
|
! DETERMINE CLOUD ASCENT FOR ENTRAINING PLUME |
340 |
|
|
! ----------------------------------------------------------------------- |
341 |
|
|
! (A) calculer d'abord la hauteur "theorique" de la tour convective sans |
342 |
|
|
! considerer l'entrainement ni le detrainement du panache, sachant |
343 |
|
|
! ces derniers peuvent abaisser la hauteur theorique. |
344 |
|
|
|
345 |
|
|
DO i = 1, klon |
346 |
|
|
ikb = kcbot(i) |
347 |
|
|
zhcbase(i) = rcpd*ptu(i, ikb) + zgeoh(i, ikb) + rlvtt*pqu(i, ikb) |
348 |
|
|
ictop0(i) = kcbot(i) - 1 |
349 |
|
|
END DO |
350 |
|
|
|
351 |
|
|
zalvdcp = rlvtt/rcpd |
352 |
|
|
DO k = klev - 1, 3, -1 |
353 |
|
|
DO i = 1, klon |
354 |
|
|
zhsat = rcpd*ztenh(i, k) + zgeoh(i, k) + rlvtt*zqsenh(i, k) |
355 |
|
|
zgam = r5les*zalvdcp*zqsenh(i, k)/((1.-retv*zqsenh(i,k))*(ztenh(i, & |
356 |
|
|
k)-r4les)**2) |
357 |
|
|
zzz = rcpd*ztenh(i, k)*0.608 |
358 |
|
|
zhhat = zhsat - (zzz+zgam*zzz)/(1.+zgam*zzz/rlvtt)*max(zqsenh(i,k)- & |
359 |
|
|
zqenh(i,k), 0.) |
360 |
|
|
IF (k<ictop0(i) .AND. zhcbase(i)>zhhat) ictop0(i) = k |
361 |
|
|
END DO |
362 |
|
|
END DO |
363 |
|
|
|
364 |
|
|
! (B) calculer le panache ascendant |
365 |
|
|
|
366 |
|
|
CALL flxasc(pdtime, ztenh, zqenh, pten, pqen, pqsen, pgeo, zgeoh, pap, & |
367 |
|
|
paph, pqte, pvervel, ldland, ldcum, ktype, ilab, ptu, pqu, plu, pmfu, & |
368 |
|
|
zmfub, zentr, zmfus, zmfuq, zmful, plude, zdmfup, kcbot, kctop, ictop0, & |
369 |
|
|
kcum, pen_u, pde_u) |
370 |
|
|
IF (kcum==0) GO TO 1000 |
371 |
|
|
|
372 |
|
|
! verifier l'epaisseur de la convection et changer eventuellement |
373 |
|
|
! le taux d'entrainement/detrainement |
374 |
|
|
|
375 |
|
|
DO i = 1, klon |
376 |
|
|
zpbmpt = paph(i, kcbot(i)) - paph(i, kctop(i)) |
377 |
|
|
IF (ldcum(i) .AND. ktype(i)==1 .AND. zpbmpt<2.E4) ktype(i) = 2 |
378 |
|
|
IF (ldcum(i)) ictop0(i) = kctop(i) |
379 |
|
|
IF (ktype(i)==2) zentr(i) = entrscv |
380 |
|
|
END DO |
381 |
|
|
|
382 |
|
|
IF (lmfdd) THEN ! si l'on considere le panache descendant |
383 |
|
|
|
384 |
|
|
! calculer la precipitation issue du panache ascendant pour |
385 |
|
|
! determiner l'existence du panache descendant dans la convection |
386 |
|
|
DO i = 1, klon |
387 |
|
|
zrfl(i) = zdmfup(i, 1) |
388 |
|
|
END DO |
389 |
|
|
DO k = 2, klev |
390 |
|
|
DO i = 1, klon |
391 |
|
|
zrfl(i) = zrfl(i) + zdmfup(i, k) |
392 |
|
|
END DO |
393 |
|
|
END DO |
394 |
|
|
|
395 |
|
|
! determiner le LFS (level of free sinking: niveau de plonge libre) |
396 |
|
|
CALL flxdlfs(ztenh, zqenh, zgeoh, paph, ptu, pqu, ldcum, kcbot, kctop, & |
397 |
|
|
zmfub, zrfl, ptd, pqd, pmfd, zmfds, zmfdq, zdmfdp, kdtop, lddraf) |
398 |
|
|
|
399 |
|
|
! calculer le panache descendant |
400 |
|
|
CALL flxddraf(ztenh, zqenh, zgeoh, paph, zrfl, ptd, pqd, pmfd, zmfds, & |
401 |
|
|
zmfdq, zdmfdp, lddraf, pen_d, pde_d) |
402 |
|
|
|
403 |
|
|
! calculer de nouveau le flux de masse entrant a travers la base |
404 |
|
|
! de la convection, sachant qu'il a ete modifie par le panache |
405 |
|
|
! descendant |
406 |
|
|
DO i = 1, klon |
407 |
|
|
IF (lddraf(i)) THEN |
408 |
|
|
ikb = kcbot(i) |
409 |
|
|
llo1 = pmfd(i, ikb) < 0. |
410 |
|
|
zeps = 0. |
411 |
|
|
IF (llo1) zeps = cmfdeps |
412 |
|
|
zqumqe = pqu(i, ikb) + plu(i, ikb) - zeps*pqd(i, ikb) - & |
413 |
|
|
(1.-zeps)*zqenh(i, ikb) |
414 |
|
|
zdqmin = max(0.01*zqenh(i,ikb), 1.E-10) |
415 |
|
|
zmfmax = (paph(i,ikb)-paph(i,ikb-1))/(rg*pdtime) |
416 |
|
|
IF (zdqpbl(i)>0. .AND. zqumqe>zdqmin .AND. ldcum(i) .AND. & |
417 |
|
|
zmfub(i)<zmfmax) THEN |
418 |
|
|
zmfub1(i) = zdqpbl(i)/(rg*max(zqumqe,zdqmin)) |
419 |
|
|
ELSE |
420 |
|
|
zmfub1(i) = zmfub(i) |
421 |
|
|
END IF |
422 |
|
|
IF (ktype(i)==2) THEN |
423 |
|
|
zdh = rcpd*(ptu(i,ikb)-zeps*ptd(i,ikb)-(1.-zeps)*ztenh(i,ikb)) + & |
424 |
|
|
rlvtt*zqumqe |
425 |
|
|
zdh = rg*max(zdh, 1.0E5*zdqmin) |
426 |
|
|
IF (zdhpbl(i)>0. .AND. ldcum(i)) zmfub1(i) = zdhpbl(i)/zdh |
427 |
|
|
END IF |
428 |
|
|
IF (.NOT. ((ktype(i)==1 .OR. ktype(i)==2) .AND. abs(zmfub1(i)-zmfub(i & |
429 |
|
|
))<0.2*zmfub(i))) zmfub1(i) = zmfub(i) |
430 |
|
|
END IF |
431 |
|
|
END DO |
432 |
|
|
DO k = 1, klev |
433 |
|
|
DO i = 1, klon |
434 |
|
|
IF (lddraf(i)) THEN |
435 |
|
|
zfac = zmfub1(i)/max(zmfub(i), 1.E-10) |
436 |
|
|
pmfd(i, k) = pmfd(i, k)*zfac |
437 |
|
|
zmfds(i, k) = zmfds(i, k)*zfac |
438 |
|
|
zmfdq(i, k) = zmfdq(i, k)*zfac |
439 |
|
|
zdmfdp(i, k) = zdmfdp(i, k)*zfac |
440 |
|
|
pen_d(i, k) = pen_d(i, k)*zfac |
441 |
|
|
pde_d(i, k) = pde_d(i, k)*zfac |
442 |
|
|
END IF |
443 |
|
|
END DO |
444 |
|
|
END DO |
445 |
|
|
DO i = 1, klon |
446 |
|
|
IF (lddraf(i)) zmfub(i) = zmfub1(i) |
447 |
|
|
END DO |
448 |
|
|
|
449 |
|
|
END IF ! fin de test sur lmfdd |
450 |
|
|
|
451 |
|
|
! ----------------------------------------------------------------------- |
452 |
|
|
! calculer de nouveau le panache ascendant |
453 |
|
|
! ----------------------------------------------------------------------- |
454 |
|
|
CALL flxasc(pdtime, ztenh, zqenh, pten, pqen, pqsen, pgeo, zgeoh, pap, & |
455 |
|
|
paph, pqte, pvervel, ldland, ldcum, ktype, ilab, ptu, pqu, plu, pmfu, & |
456 |
|
|
zmfub, zentr, zmfus, zmfuq, zmful, plude, zdmfup, kcbot, kctop, ictop0, & |
457 |
|
|
kcum, pen_u, pde_u) |
458 |
|
|
|
459 |
|
|
! ----------------------------------------------------------------------- |
460 |
|
|
! determiner les flux convectifs en forme finale, ainsi que |
461 |
|
|
! la quantite des precipitations |
462 |
|
|
! ----------------------------------------------------------------------- |
463 |
|
|
CALL flxflux(pdtime, pqen, pqsen, ztenh, zqenh, pap, paph, ldland, zgeoh, & |
464 |
|
|
kcbot, kctop, lddraf, kdtop, ktype, ldcum, pmfu, pmfd, zmfus, zmfds, & |
465 |
|
|
zmfuq, zmfdq, zmful, plude, zdmfup, zdmfdp, pten, prsfc, pssfc, zdpmel, & |
466 |
|
|
itopm2, pmflxr, pmflxs) |
467 |
|
|
|
468 |
|
|
! ---------------------------------------------------------------------- |
469 |
|
|
! calculer les tendances pour T et Q |
470 |
|
|
! ---------------------------------------------------------------------- |
471 |
|
|
CALL flxdtdq(pdtime, itopm2, paph, ldcum, pten, zmfus, zmfds, zmfuq, zmfdq, & |
472 |
|
|
zmful, zdmfup, zdmfdp, zdpmel, dt_con, dq_con) |
473 |
|
|
|
474 |
|
|
1000 CONTINUE |
475 |
|
|
RETURN |
476 |
|
|
END SUBROUTINE flxmain |
477 |
|
|
SUBROUTINE flxini(pten, pqen, pqsen, pgeo, paph, pgeoh, ptenh, pqenh, pqsenh, & |
478 |
|
|
ptu, pqu, ptd, pqd, pmfd, pmfds, pmfdq, pdmfdp, pmfu, pmfus, pmfuq, & |
479 |
|
|
pdmfup, pdpmel, plu, plude, klab, pen_u, pde_u, pen_d, pde_d) |
480 |
|
|
USE dimphy |
481 |
|
|
IMPLICIT NONE |
482 |
|
|
! ---------------------------------------------------------------------- |
483 |
|
|
! THIS ROUTINE INTERPOLATES LARGE-SCALE FIELDS OF T,Q ETC. |
484 |
|
|
! TO HALF LEVELS (I.E. GRID FOR MASSFLUX SCHEME), |
485 |
|
|
! AND INITIALIZES VALUES FOR UPDRAFTS |
486 |
|
|
! ---------------------------------------------------------------------- |
487 |
|
|
include "YOMCST.h" |
488 |
|
|
include "YOETHF.h" |
489 |
|
|
|
490 |
|
|
REAL pten(klon, klev) ! temperature (environnement) |
491 |
|
|
REAL pqen(klon, klev) ! humidite (environnement) |
492 |
|
|
REAL pqsen(klon, klev) ! humidite saturante (environnement) |
493 |
|
|
REAL pgeo(klon, klev) ! geopotentiel (g * metre) |
494 |
|
|
REAL pgeoh(klon, klev) ! geopotentiel aux demi-niveaux |
495 |
|
|
REAL paph(klon, klev+1) ! pression aux demi-niveaux |
496 |
|
|
REAL ptenh(klon, klev) ! temperature aux demi-niveaux |
497 |
|
|
REAL pqenh(klon, klev) ! humidite aux demi-niveaux |
498 |
|
|
REAL pqsenh(klon, klev) ! humidite saturante aux demi-niveaux |
499 |
|
|
|
500 |
|
|
REAL ptu(klon, klev) ! temperature du panache ascendant (p-a) |
501 |
|
|
REAL pqu(klon, klev) ! humidite du p-a |
502 |
|
|
REAL plu(klon, klev) ! eau liquide du p-a |
503 |
|
|
REAL pmfu(klon, klev) ! flux de masse du p-a |
504 |
|
|
REAL pmfus(klon, klev) ! flux de l'energie seche dans le p-a |
505 |
|
|
REAL pmfuq(klon, klev) ! flux de l'humidite dans le p-a |
506 |
|
|
REAL pdmfup(klon, klev) ! quantite de l'eau precipitee dans p-a |
507 |
|
|
REAL plude(klon, klev) ! quantite de l'eau liquide jetee du |
508 |
|
|
! p-a a l'environnement |
509 |
|
|
REAL pdpmel(klon, klev) ! quantite de neige fondue |
510 |
|
|
|
511 |
|
|
REAL ptd(klon, klev) ! temperature du panache descendant (p-d) |
512 |
|
|
REAL pqd(klon, klev) ! humidite du p-d |
513 |
|
|
REAL pmfd(klon, klev) ! flux de masse du p-d |
514 |
|
|
REAL pmfds(klon, klev) ! flux de l'energie seche dans le p-d |
515 |
|
|
REAL pmfdq(klon, klev) ! flux de l'humidite dans le p-d |
516 |
|
|
REAL pdmfdp(klon, klev) ! quantite de precipitation dans p-d |
517 |
|
|
|
518 |
|
|
REAL pen_u(klon, klev) ! quantite de masse entrainee pour p-a |
519 |
|
|
REAL pde_u(klon, klev) ! quantite de masse detrainee pour p-a |
520 |
|
|
REAL pen_d(klon, klev) ! quantite de masse entrainee pour p-d |
521 |
|
|
REAL pde_d(klon, klev) ! quantite de masse detrainee pour p-d |
522 |
|
|
|
523 |
|
|
INTEGER klab(klon, klev) |
524 |
|
|
LOGICAL llflag(klon) |
525 |
|
|
INTEGER k, i, icall |
526 |
|
|
REAL zzs |
527 |
|
|
! ---------------------------------------------------------------------- |
528 |
|
|
! SPECIFY LARGE SCALE PARAMETERS AT HALF LEVELS |
529 |
|
|
! ADJUST TEMPERATURE FIELDS IF STATICLY UNSTABLE |
530 |
|
|
! ---------------------------------------------------------------------- |
531 |
|
|
DO k = 2, klev |
532 |
|
|
|
533 |
|
|
DO i = 1, klon |
534 |
|
|
pgeoh(i, k) = pgeo(i, k) + (pgeo(i,k-1)-pgeo(i,k))*0.5 |
535 |
|
|
ptenh(i, k) = (max(rcpd*pten(i,k-1)+pgeo(i,k-1),rcpd*pten(i,k)+pgeo(i, & |
536 |
|
|
k))-pgeoh(i,k))/rcpd |
537 |
|
|
pqsenh(i, k) = pqsen(i, k-1) |
538 |
|
|
llflag(i) = .TRUE. |
539 |
|
|
END DO |
540 |
|
|
|
541 |
|
|
icall = 0 |
542 |
|
|
CALL flxadjtq(paph(1,k), ptenh(1,k), pqsenh(1,k), llflag, icall) |
543 |
|
|
|
544 |
|
|
DO i = 1, klon |
545 |
|
|
pqenh(i, k) = min(pqen(i,k-1), pqsen(i,k-1)) + & |
546 |
|
|
(pqsenh(i,k)-pqsen(i,k-1)) |
547 |
|
|
pqenh(i, k) = max(pqenh(i,k), 0.) |
548 |
|
|
END DO |
549 |
|
|
|
550 |
|
|
END DO |
551 |
|
|
|
552 |
|
|
DO i = 1, klon |
553 |
|
|
ptenh(i, klev) = (rcpd*pten(i,klev)+pgeo(i,klev)-pgeoh(i,klev))/rcpd |
554 |
|
|
pqenh(i, klev) = pqen(i, klev) |
555 |
|
|
ptenh(i, 1) = pten(i, 1) |
556 |
|
|
pqenh(i, 1) = pqen(i, 1) |
557 |
|
|
pgeoh(i, 1) = pgeo(i, 1) |
558 |
|
|
END DO |
559 |
|
|
|
560 |
|
|
DO k = klev - 1, 2, -1 |
561 |
|
|
DO i = 1, klon |
562 |
|
|
zzs = max(rcpd*ptenh(i,k)+pgeoh(i,k), rcpd*ptenh(i,k+1)+pgeoh(i,k+1)) |
563 |
|
|
ptenh(i, k) = (zzs-pgeoh(i,k))/rcpd |
564 |
|
|
END DO |
565 |
|
|
END DO |
566 |
|
|
|
567 |
|
|
! ----------------------------------------------------------------------- |
568 |
|
|
! INITIALIZE VALUES FOR UPDRAFTS AND DOWNDRAFTS |
569 |
|
|
! ----------------------------------------------------------------------- |
570 |
|
|
DO k = 1, klev |
571 |
|
|
DO i = 1, klon |
572 |
|
|
ptu(i, k) = ptenh(i, k) |
573 |
|
|
pqu(i, k) = pqenh(i, k) |
574 |
|
|
plu(i, k) = 0. |
575 |
|
|
pmfu(i, k) = 0. |
576 |
|
|
pmfus(i, k) = 0. |
577 |
|
|
pmfuq(i, k) = 0. |
578 |
|
|
pdmfup(i, k) = 0. |
579 |
|
|
pdpmel(i, k) = 0. |
580 |
|
|
plude(i, k) = 0. |
581 |
|
|
|
582 |
|
|
klab(i, k) = 0 |
583 |
|
|
|
584 |
|
|
ptd(i, k) = ptenh(i, k) |
585 |
|
|
pqd(i, k) = pqenh(i, k) |
586 |
|
|
pmfd(i, k) = 0.0 |
587 |
|
|
pmfds(i, k) = 0.0 |
588 |
|
|
pmfdq(i, k) = 0.0 |
589 |
|
|
pdmfdp(i, k) = 0.0 |
590 |
|
|
|
591 |
|
|
pen_u(i, k) = 0.0 |
592 |
|
|
pde_u(i, k) = 0.0 |
593 |
|
|
pen_d(i, k) = 0.0 |
594 |
|
|
pde_d(i, k) = 0.0 |
595 |
|
|
END DO |
596 |
|
|
END DO |
597 |
|
|
|
598 |
|
|
RETURN |
599 |
|
|
END SUBROUTINE flxini |
600 |
|
|
SUBROUTINE flxbase(ptenh, pqenh, pgeoh, paph, ptu, pqu, plu, ldcum, kcbot, & |
601 |
|
|
klab) |
602 |
|
|
USE dimphy |
603 |
|
|
IMPLICIT NONE |
604 |
|
|
! ---------------------------------------------------------------------- |
605 |
|
|
! THIS ROUTINE CALCULATES CLOUD BASE VALUES (T AND Q) |
606 |
|
|
|
607 |
|
|
! INPUT ARE ENVIRONM. VALUES OF T,Q,P,PHI AT HALF LEVELS. |
608 |
|
|
! IT RETURNS CLOUD BASE VALUES AND FLAGS AS FOLLOWS; |
609 |
|
|
! klab=1 FOR SUBCLOUD LEVELS |
610 |
|
|
! klab=2 FOR CONDENSATION LEVEL |
611 |
|
|
|
612 |
|
|
! LIFT SURFACE AIR DRY-ADIABATICALLY TO CLOUD BASE |
613 |
|
|
! (NON ENTRAINING PLUME,I.E.CONSTANT MASSFLUX) |
614 |
|
|
! ---------------------------------------------------------------------- |
615 |
|
|
include "YOMCST.h" |
616 |
|
|
include "YOETHF.h" |
617 |
|
|
! ---------------------------------------------------------------- |
618 |
|
|
REAL ptenh(klon, klev), pqenh(klon, klev) |
619 |
|
|
REAL pgeoh(klon, klev), paph(klon, klev+1) |
620 |
|
|
|
621 |
|
|
REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
622 |
|
|
INTEGER klab(klon, klev), kcbot(klon) |
623 |
|
|
|
624 |
|
|
LOGICAL llflag(klon), ldcum(klon) |
625 |
|
|
INTEGER i, k, icall, is |
626 |
|
|
REAL zbuo, zqold(klon) |
627 |
|
|
! ---------------------------------------------------------------------- |
628 |
|
|
! INITIALIZE VALUES AT LIFTING LEVEL |
629 |
|
|
! ---------------------------------------------------------------------- |
630 |
|
|
DO i = 1, klon |
631 |
|
|
klab(i, klev) = 1 |
632 |
|
|
kcbot(i) = klev - 1 |
633 |
|
|
ldcum(i) = .FALSE. |
634 |
|
|
END DO |
635 |
|
|
! ---------------------------------------------------------------------- |
636 |
|
|
! DO ASCENT IN SUBCLOUD LAYER, |
637 |
|
|
! CHECK FOR EXISTENCE OF CONDENSATION LEVEL, |
638 |
|
|
! ADJUST T,Q AND L ACCORDINGLY |
639 |
|
|
! CHECK FOR BUOYANCY AND SET FLAGS |
640 |
|
|
! ---------------------------------------------------------------------- |
641 |
|
|
DO k = klev - 1, 2, -1 |
642 |
|
|
|
643 |
|
|
is = 0 |
644 |
|
|
DO i = 1, klon |
645 |
|
|
IF (klab(i,k+1)==1) is = is + 1 |
646 |
|
|
llflag(i) = .FALSE. |
647 |
|
|
IF (klab(i,k+1)==1) llflag(i) = .TRUE. |
648 |
|
|
END DO |
649 |
|
|
IF (is==0) GO TO 290 |
650 |
|
|
|
651 |
|
|
DO i = 1, klon |
652 |
|
|
IF (llflag(i)) THEN |
653 |
|
|
pqu(i, k) = pqu(i, k+1) |
654 |
|
|
ptu(i, k) = ptu(i, k+1) + (pgeoh(i,k+1)-pgeoh(i,k))/rcpd |
655 |
|
|
zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
656 |
|
|
) + 0.5 |
657 |
|
|
IF (zbuo>0.) klab(i, k) = 1 |
658 |
|
|
zqold(i) = pqu(i, k) |
659 |
|
|
END IF |
660 |
|
|
END DO |
661 |
|
|
|
662 |
|
|
icall = 1 |
663 |
|
|
CALL flxadjtq(paph(1,k), ptu(1,k), pqu(1,k), llflag, icall) |
664 |
|
|
|
665 |
|
|
DO i = 1, klon |
666 |
|
|
IF (llflag(i) .AND. pqu(i,k)/=zqold(i)) THEN |
667 |
|
|
klab(i, k) = 2 |
668 |
|
|
plu(i, k) = plu(i, k) + zqold(i) - pqu(i, k) |
669 |
|
|
zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
670 |
|
|
) + 0.5 |
671 |
|
|
IF (zbuo>0.) kcbot(i) = k |
672 |
|
|
IF (zbuo>0.) ldcum(i) = .TRUE. |
673 |
|
|
END IF |
674 |
|
|
END DO |
675 |
|
|
|
676 |
|
|
290 END DO |
677 |
|
|
|
678 |
|
|
RETURN |
679 |
|
|
END SUBROUTINE flxbase |
680 |
|
|
SUBROUTINE flxasc(pdtime, ptenh, pqenh, pten, pqen, pqsen, pgeo, pgeoh, pap, & |
681 |
|
|
paph, pqte, pvervel, ldland, ldcum, ktype, klab, ptu, pqu, plu, pmfu, & |
682 |
|
|
pmfub, pentr, pmfus, pmfuq, pmful, plude, pdmfup, kcbot, kctop, kctop0, & |
683 |
|
|
kcum, pen_u, pde_u) |
684 |
|
|
USE dimphy |
685 |
|
|
IMPLICIT NONE |
686 |
|
|
! ---------------------------------------------------------------------- |
687 |
|
|
! THIS ROUTINE DOES THE CALCULATIONS FOR CLOUD ASCENTS |
688 |
|
|
! FOR CUMULUS PARAMETERIZATION |
689 |
|
|
! ---------------------------------------------------------------------- |
690 |
|
|
include "YOMCST.h" |
691 |
|
|
include "YOETHF.h" |
692 |
|
|
include "YOECUMF.h" |
693 |
|
|
|
694 |
|
|
REAL pdtime |
695 |
|
|
REAL pten(klon, klev), ptenh(klon, klev) |
696 |
|
|
REAL pqen(klon, klev), pqenh(klon, klev), pqsen(klon, klev) |
697 |
|
|
REAL pgeo(klon, klev), pgeoh(klon, klev) |
698 |
|
|
REAL pap(klon, klev), paph(klon, klev+1) |
699 |
|
|
REAL pqte(klon, klev) |
700 |
|
|
REAL pvervel(klon, klev) ! vitesse verticale en Pa/s |
701 |
|
|
|
702 |
|
|
REAL pmfub(klon), pentr(klon) |
703 |
|
|
REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
704 |
|
|
REAL plude(klon, klev) |
705 |
|
|
REAL pmfu(klon, klev), pmfus(klon, klev) |
706 |
|
|
REAL pmfuq(klon, klev), pmful(klon, klev) |
707 |
|
|
REAL pdmfup(klon, klev) |
708 |
|
|
INTEGER ktype(klon), klab(klon, klev), kcbot(klon), kctop(klon) |
709 |
|
|
INTEGER kctop0(klon) |
710 |
|
|
LOGICAL ldland(klon), ldcum(klon) |
711 |
|
|
|
712 |
|
|
REAL pen_u(klon, klev), pde_u(klon, klev) |
713 |
|
|
REAL zqold(klon) |
714 |
|
|
REAL zdland(klon) |
715 |
|
|
LOGICAL llflag(klon) |
716 |
|
|
INTEGER k, i, is, icall, kcum |
717 |
|
|
REAL ztglace, zdphi, zqeen, zseen, zscde, zqude |
718 |
|
|
REAL zmfusk, zmfuqk, zmfulk, zbuo, zdnoprc, zprcon, zlnew |
719 |
|
|
|
720 |
|
|
REAL zpbot(klon), zptop(klon), zrho(klon) |
721 |
|
|
REAL zdprho, zentr, zpmid, zmftest, zmfmax |
722 |
|
|
LOGICAL llo1, llo2 |
723 |
|
|
|
724 |
|
|
REAL zwmax(klon), zzzmb |
725 |
|
|
INTEGER klwmin(klon) ! level of maximum vertical velocity |
726 |
|
|
REAL fact |
727 |
|
|
! ---------------------------------------------------------------------- |
728 |
|
|
ztglace = rtt - 13. |
729 |
|
|
|
730 |
|
|
! Chercher le niveau ou la vitesse verticale est maximale: |
731 |
|
|
DO i = 1, klon |
732 |
|
|
klwmin(i) = klev |
733 |
|
|
zwmax(i) = 0.0 |
734 |
|
|
END DO |
735 |
|
|
DO k = klev, 3, -1 |
736 |
|
|
DO i = 1, klon |
737 |
|
|
IF (pvervel(i,k)<zwmax(i)) THEN |
738 |
|
|
zwmax(i) = pvervel(i, k) |
739 |
|
|
klwmin(i) = k |
740 |
|
|
END IF |
741 |
|
|
END DO |
742 |
|
|
END DO |
743 |
|
|
! ---------------------------------------------------------------------- |
744 |
|
|
! SET DEFAULT VALUES |
745 |
|
|
! ---------------------------------------------------------------------- |
746 |
|
|
DO i = 1, klon |
747 |
|
|
IF (.NOT. ldcum(i)) ktype(i) = 0 |
748 |
|
|
END DO |
749 |
|
|
|
750 |
|
|
DO k = 1, klev |
751 |
|
|
DO i = 1, klon |
752 |
|
|
plu(i, k) = 0. |
753 |
|
|
pmfu(i, k) = 0. |
754 |
|
|
pmfus(i, k) = 0. |
755 |
|
|
pmfuq(i, k) = 0. |
756 |
|
|
pmful(i, k) = 0. |
757 |
|
|
plude(i, k) = 0. |
758 |
|
|
pdmfup(i, k) = 0. |
759 |
|
|
IF (.NOT. ldcum(i) .OR. ktype(i)==3) klab(i, k) = 0 |
760 |
|
|
IF (.NOT. ldcum(i) .AND. paph(i,k)<4.E4) kctop0(i) = k |
761 |
|
|
END DO |
762 |
|
|
END DO |
763 |
|
|
|
764 |
|
|
DO i = 1, klon |
765 |
|
|
IF (ldland(i)) THEN |
766 |
|
|
zdland(i) = 3.0E4 |
767 |
|
|
zdphi = pgeoh(i, kctop0(i)) - pgeoh(i, kcbot(i)) |
768 |
|
|
IF (ptu(i,kctop0(i))>=ztglace) zdland(i) = zdphi |
769 |
|
|
zdland(i) = max(3.0E4, zdland(i)) |
770 |
|
|
zdland(i) = min(5.0E4, zdland(i)) |
771 |
|
|
END IF |
772 |
|
|
END DO |
773 |
|
|
|
774 |
|
|
! Initialiser les valeurs au niveau d'ascendance |
775 |
|
|
|
776 |
|
|
DO i = 1, klon |
777 |
|
|
kctop(i) = klev - 1 |
778 |
|
|
IF (.NOT. ldcum(i)) THEN |
779 |
|
|
kcbot(i) = klev - 1 |
780 |
|
|
pmfub(i) = 0. |
781 |
|
|
pqu(i, klev) = 0. |
782 |
|
|
END IF |
783 |
|
|
pmfu(i, klev) = pmfub(i) |
784 |
|
|
pmfus(i, klev) = pmfub(i)*(rcpd*ptu(i,klev)+pgeoh(i,klev)) |
785 |
|
|
pmfuq(i, klev) = pmfub(i)*pqu(i, klev) |
786 |
|
|
END DO |
787 |
|
|
|
788 |
|
|
DO i = 1, klon |
789 |
|
|
ldcum(i) = .FALSE. |
790 |
|
|
END DO |
791 |
|
|
! ---------------------------------------------------------------------- |
792 |
|
|
! DO ASCENT: SUBCLOUD LAYER (klab=1) ,CLOUDS (klab=2) |
793 |
|
|
! BY DOING FIRST DRY-ADIABATIC ASCENT AND THEN |
794 |
|
|
! BY ADJUSTING T,Q AND L ACCORDINGLY IN *flxadjtq*, |
795 |
|
|
! THEN CHECK FOR BUOYANCY AND SET FLAGS ACCORDINGLY |
796 |
|
|
! ---------------------------------------------------------------------- |
797 |
|
|
DO k = klev - 1, 3, -1 |
798 |
|
|
|
799 |
|
|
IF (lmfmid .AND. k<klev-1) THEN |
800 |
|
|
DO i = 1, klon |
801 |
|
|
IF (.NOT. ldcum(i) .AND. klab(i,k+1)==0 .AND. & |
802 |
|
|
pqen(i,k)>0.9*pqsen(i,k) .AND. pap(i,k)/paph(i,klev+1)>0.4) THEN |
803 |
|
|
ptu(i, k+1) = pten(i, k) + (pgeo(i,k)-pgeoh(i,k+1))/rcpd |
804 |
|
|
pqu(i, k+1) = pqen(i, k) |
805 |
|
|
plu(i, k+1) = 0.0 |
806 |
|
|
zzzmb = max(cmfcmin, -pvervel(i,k)/rg) |
807 |
|
|
zmfmax = (paph(i,k)-paph(i,k-1))/(rg*pdtime) |
808 |
|
|
pmfub(i) = min(zzzmb, zmfmax) |
809 |
|
|
pmfu(i, k+1) = pmfub(i) |
810 |
|
|
pmfus(i, k+1) = pmfub(i)*(rcpd*ptu(i,k+1)+pgeoh(i,k+1)) |
811 |
|
|
pmfuq(i, k+1) = pmfub(i)*pqu(i, k+1) |
812 |
|
|
pmful(i, k+1) = 0.0 |
813 |
|
|
pdmfup(i, k+1) = 0.0 |
814 |
|
|
kcbot(i) = k |
815 |
|
|
klab(i, k+1) = 1 |
816 |
|
|
ktype(i) = 3 |
817 |
|
|
pentr(i) = entrmid |
818 |
|
|
END IF |
819 |
|
|
END DO |
820 |
|
|
END IF |
821 |
|
|
|
822 |
|
|
is = 0 |
823 |
|
|
DO i = 1, klon |
824 |
|
|
is = is + klab(i, k+1) |
825 |
|
|
IF (klab(i,k+1)==0) klab(i, k) = 0 |
826 |
|
|
llflag(i) = .FALSE. |
827 |
|
|
IF (klab(i,k+1)>0) llflag(i) = .TRUE. |
828 |
|
|
END DO |
829 |
|
|
IF (is==0) GO TO 480 |
830 |
|
|
|
831 |
|
|
! calculer le taux d'entrainement et de detrainement |
832 |
|
|
|
833 |
|
|
DO i = 1, klon |
834 |
|
|
pen_u(i, k) = 0.0 |
835 |
|
|
pde_u(i, k) = 0.0 |
836 |
|
|
zrho(i) = paph(i, k+1)/(rd*ptenh(i,k+1)) |
837 |
|
|
zpbot(i) = paph(i, kcbot(i)) |
838 |
|
|
zptop(i) = paph(i, kctop0(i)) |
839 |
|
|
END DO |
840 |
|
|
|
841 |
|
|
DO i = 1, klon |
842 |
|
|
IF (ldcum(i)) THEN |
843 |
|
|
zdprho = (paph(i,k+1)-paph(i,k))/(rg*zrho(i)) |
844 |
|
|
zentr = pentr(i)*pmfu(i, k+1)*zdprho |
845 |
|
|
llo1 = k < kcbot(i) |
846 |
|
|
IF (llo1) pde_u(i, k) = zentr |
847 |
|
|
zpmid = 0.5*(zpbot(i)+zptop(i)) |
848 |
|
|
llo2 = llo1 .AND. ktype(i) == 2 .AND. (zpbot(i)-paph(i,k)<0.2E5 .OR. & |
849 |
|
|
paph(i,k)>zpmid) |
850 |
|
|
IF (llo2) pen_u(i, k) = zentr |
851 |
|
|
llo2 = llo1 .AND. (ktype(i)==1 .OR. ktype(i)==3) .AND. & |
852 |
|
|
(k>=max(klwmin(i),kctop0(i)+2) .OR. pap(i,k)>zpmid) |
853 |
|
|
IF (llo2) pen_u(i, k) = zentr |
854 |
|
|
llo1 = pen_u(i, k) > 0. .AND. (ktype(i)==1 .OR. ktype(i)==2) |
855 |
|
|
IF (llo1) THEN |
856 |
|
|
fact = 1. + 3.*(1.-min(1.,(zpbot(i)-pap(i,k))/1.5E4)) |
857 |
|
|
zentr = zentr*fact |
858 |
|
|
pen_u(i, k) = pen_u(i, k)*fact |
859 |
|
|
pde_u(i, k) = pde_u(i, k)*fact |
860 |
|
|
END IF |
861 |
|
|
IF (llo2 .AND. pqenh(i,k+1)>1.E-5) pen_u(i, k) = zentr + & |
862 |
|
|
max(pqte(i,k), 0.)/pqenh(i, k+1)*zrho(i)*zdprho |
863 |
|
|
END IF |
864 |
|
|
END DO |
865 |
|
|
|
866 |
|
|
! ---------------------------------------------------------------------- |
867 |
|
|
! DO ADIABATIC ASCENT FOR ENTRAINING/DETRAINING PLUME |
868 |
|
|
! ---------------------------------------------------------------------- |
869 |
|
|
|
870 |
|
|
DO i = 1, klon |
871 |
|
|
IF (llflag(i)) THEN |
872 |
|
|
IF (k<kcbot(i)) THEN |
873 |
|
|
zmftest = pmfu(i, k+1) + pen_u(i, k) - pde_u(i, k) |
874 |
|
|
zmfmax = min(zmftest, (paph(i,k)-paph(i,k-1))/(rg*pdtime)) |
875 |
|
|
pen_u(i, k) = max(pen_u(i,k)-max(0.0,zmftest-zmfmax), 0.0) |
876 |
|
|
END IF |
877 |
|
|
pde_u(i, k) = min(pde_u(i,k), 0.75*pmfu(i,k+1)) |
878 |
|
|
! calculer le flux de masse du niveau k a partir de celui du k+1 |
879 |
|
|
pmfu(i, k) = pmfu(i, k+1) + pen_u(i, k) - pde_u(i, k) |
880 |
|
|
! calculer les valeurs Su, Qu et l du niveau k dans le panache |
881 |
|
|
! montant |
882 |
|
|
zqeen = pqenh(i, k+1)*pen_u(i, k) |
883 |
|
|
zseen = (rcpd*ptenh(i,k+1)+pgeoh(i,k+1))*pen_u(i, k) |
884 |
|
|
zscde = (rcpd*ptu(i,k+1)+pgeoh(i,k+1))*pde_u(i, k) |
885 |
|
|
zqude = pqu(i, k+1)*pde_u(i, k) |
886 |
|
|
plude(i, k) = plu(i, k+1)*pde_u(i, k) |
887 |
|
|
zmfusk = pmfus(i, k+1) + zseen - zscde |
888 |
|
|
zmfuqk = pmfuq(i, k+1) + zqeen - zqude |
889 |
|
|
zmfulk = pmful(i, k+1) - plude(i, k) |
890 |
|
|
plu(i, k) = zmfulk*(1./max(cmfcmin,pmfu(i,k))) |
891 |
|
|
pqu(i, k) = zmfuqk*(1./max(cmfcmin,pmfu(i,k))) |
892 |
|
|
ptu(i, k) = (zmfusk*(1./max(cmfcmin,pmfu(i,k)))-pgeoh(i,k))/rcpd |
893 |
|
|
ptu(i, k) = max(100., ptu(i,k)) |
894 |
|
|
ptu(i, k) = min(400., ptu(i,k)) |
895 |
|
|
zqold(i) = pqu(i, k) |
896 |
|
|
ELSE |
897 |
|
|
zqold(i) = 0.0 |
898 |
|
|
END IF |
899 |
|
|
END DO |
900 |
|
|
|
901 |
|
|
! ---------------------------------------------------------------------- |
902 |
|
|
! DO CORRECTIONS FOR MOIST ASCENT BY ADJUSTING T,Q AND L |
903 |
|
|
! ---------------------------------------------------------------------- |
904 |
|
|
|
905 |
|
|
icall = 1 |
906 |
|
|
CALL flxadjtq(paph(1,k), ptu(1,k), pqu(1,k), llflag, icall) |
907 |
|
|
|
908 |
|
|
DO i = 1, klon |
909 |
|
|
IF (llflag(i) .AND. pqu(i,k)/=zqold(i)) THEN |
910 |
|
|
klab(i, k) = 2 |
911 |
|
|
plu(i, k) = plu(i, k) + zqold(i) - pqu(i, k) |
912 |
|
|
zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
913 |
|
|
) |
914 |
|
|
IF (klab(i,k+1)==1) zbuo = zbuo + 0.5 |
915 |
|
|
IF (zbuo>0. .AND. pmfu(i,k)>=0.1*pmfub(i)) THEN |
916 |
|
|
kctop(i) = k |
917 |
|
|
ldcum(i) = .TRUE. |
918 |
|
|
zdnoprc = 1.5E4 |
919 |
|
|
IF (ldland(i)) zdnoprc = zdland(i) |
920 |
|
|
zprcon = cprcon |
921 |
|
|
IF ((zpbot(i)-paph(i,k))<zdnoprc) zprcon = 0.0 |
922 |
|
|
zlnew = plu(i, k)/(1.+zprcon*(pgeoh(i,k)-pgeoh(i,k+1))) |
923 |
|
|
pdmfup(i, k) = max(0., (plu(i,k)-zlnew)*pmfu(i,k)) |
924 |
|
|
plu(i, k) = zlnew |
925 |
|
|
ELSE |
926 |
|
|
klab(i, k) = 0 |
927 |
|
|
pmfu(i, k) = 0. |
928 |
|
|
END IF |
929 |
|
|
END IF |
930 |
|
|
END DO |
931 |
|
|
DO i = 1, klon |
932 |
|
|
IF (llflag(i)) THEN |
933 |
|
|
pmful(i, k) = plu(i, k)*pmfu(i, k) |
934 |
|
|
pmfus(i, k) = (rcpd*ptu(i,k)+pgeoh(i,k))*pmfu(i, k) |
935 |
|
|
pmfuq(i, k) = pqu(i, k)*pmfu(i, k) |
936 |
|
|
END IF |
937 |
|
|
END DO |
938 |
|
|
|
939 |
|
|
480 END DO |
940 |
|
|
! ---------------------------------------------------------------------- |
941 |
|
|
! DETERMINE CONVECTIVE FLUXES ABOVE NON-BUOYANCY LEVEL |
942 |
|
|
! (NOTE: CLOUD VARIABLES LIKE T,Q AND L ARE NOT |
943 |
|
|
! AFFECTED BY DETRAINMENT AND ARE ALREADY KNOWN |
944 |
|
|
! FROM PREVIOUS CALCULATIONS ABOVE) |
945 |
|
|
! ---------------------------------------------------------------------- |
946 |
|
|
DO i = 1, klon |
947 |
|
|
IF (kctop(i)==klev-1) ldcum(i) = .FALSE. |
948 |
|
|
kcbot(i) = max(kcbot(i), kctop(i)) |
949 |
|
|
END DO |
950 |
|
|
|
951 |
|
|
ldcum(1) = ldcum(1) |
952 |
|
|
|
953 |
|
|
is = 0 |
954 |
|
|
DO i = 1, klon |
955 |
|
|
IF (ldcum(i)) is = is + 1 |
956 |
|
|
END DO |
957 |
|
|
kcum = is |
958 |
|
|
IF (is==0) GO TO 800 |
959 |
|
|
|
960 |
|
|
DO i = 1, klon |
961 |
|
|
IF (ldcum(i)) THEN |
962 |
|
|
k = kctop(i) - 1 |
963 |
|
|
pde_u(i, k) = (1.-cmfctop)*pmfu(i, k+1) |
964 |
|
|
plude(i, k) = pde_u(i, k)*plu(i, k+1) |
965 |
|
|
pmfu(i, k) = pmfu(i, k+1) - pde_u(i, k) |
966 |
|
|
zlnew = plu(i, k) |
967 |
|
|
pdmfup(i, k) = max(0., (plu(i,k)-zlnew)*pmfu(i,k)) |
968 |
|
|
plu(i, k) = zlnew |
969 |
|
|
pmfus(i, k) = (rcpd*ptu(i,k)+pgeoh(i,k))*pmfu(i, k) |
970 |
|
|
pmfuq(i, k) = pqu(i, k)*pmfu(i, k) |
971 |
|
|
pmful(i, k) = plu(i, k)*pmfu(i, k) |
972 |
|
|
plude(i, k-1) = pmful(i, k) |
973 |
|
|
END IF |
974 |
|
|
END DO |
975 |
|
|
|
976 |
|
|
800 CONTINUE |
977 |
|
|
RETURN |
978 |
|
|
END SUBROUTINE flxasc |
979 |
|
|
SUBROUTINE flxflux(pdtime, pqen, pqsen, ptenh, pqenh, pap, paph, ldland, & |
980 |
|
|
pgeoh, kcbot, kctop, lddraf, kdtop, ktype, ldcum, pmfu, pmfd, pmfus, & |
981 |
|
|
pmfds, pmfuq, pmfdq, pmful, plude, pdmfup, pdmfdp, pten, prfl, psfl, & |
982 |
|
|
pdpmel, ktopm2, pmflxr, pmflxs) |
983 |
|
|
USE dimphy |
984 |
|
|
USE print_control_mod, ONLY: prt_level |
985 |
|
|
IMPLICIT NONE |
986 |
|
|
! ---------------------------------------------------------------------- |
987 |
|
|
! THIS ROUTINE DOES THE FINAL CALCULATION OF CONVECTIVE |
988 |
|
|
! FLUXES IN THE CLOUD LAYER AND IN THE SUBCLOUD LAYER |
989 |
|
|
! ---------------------------------------------------------------------- |
990 |
|
|
include "YOMCST.h" |
991 |
|
|
include "YOETHF.h" |
992 |
|
|
include "YOECUMF.h" |
993 |
|
|
|
994 |
|
|
REAL cevapcu(klon, klev) |
995 |
|
|
! ----------------------------------------------------------------- |
996 |
|
|
REAL pqen(klon, klev), pqenh(klon, klev), pqsen(klon, klev) |
997 |
|
|
REAL pten(klon, klev), ptenh(klon, klev) |
998 |
|
|
REAL paph(klon, klev+1), pgeoh(klon, klev) |
999 |
|
|
|
1000 |
|
|
REAL pap(klon, klev) |
1001 |
|
|
REAL ztmsmlt, zdelta, zqsat |
1002 |
|
|
|
1003 |
|
|
REAL pmfu(klon, klev), pmfus(klon, klev) |
1004 |
|
|
REAL pmfd(klon, klev), pmfds(klon, klev) |
1005 |
|
|
REAL pmfuq(klon, klev), pmful(klon, klev) |
1006 |
|
|
REAL pmfdq(klon, klev) |
1007 |
|
|
REAL plude(klon, klev) |
1008 |
|
|
REAL pdmfup(klon, klev), pdpmel(klon, klev) |
1009 |
|
|
! jq The variable maxpdmfdp(klon) has been introduced by Olivier Boucher |
1010 |
|
|
! jq 14/11/00 to fix the problem with the negative precipitation. |
1011 |
|
|
REAL pdmfdp(klon, klev), maxpdmfdp(klon, klev) |
1012 |
|
|
REAL prfl(klon), psfl(klon) |
1013 |
|
|
REAL pmflxr(klon, klev+1), pmflxs(klon, klev+1) |
1014 |
|
|
INTEGER kcbot(klon), kctop(klon), ktype(klon) |
1015 |
|
|
LOGICAL ldland(klon), ldcum(klon) |
1016 |
|
|
INTEGER k, kp, i |
1017 |
|
|
REAL zcons1, zcons2, zcucov, ztmelp2 |
1018 |
|
|
REAL pdtime, zdp, zzp, zfac, zsnmlt, zrfl, zrnew |
1019 |
|
|
REAL zrmin, zrfln, zdrfl |
1020 |
|
|
REAL zpds, zpdr, zdenom |
1021 |
|
|
INTEGER ktopm2, itop, ikb |
1022 |
|
|
|
1023 |
|
|
LOGICAL lddraf(klon) |
1024 |
|
|
INTEGER kdtop(klon) |
1025 |
|
|
|
1026 |
|
|
include "FCTTRE.h" |
1027 |
|
|
|
1028 |
|
|
DO k = 1, klev |
1029 |
|
|
DO i = 1, klon |
1030 |
|
|
cevapcu(i, k) = 1.93E-6*261.*sqrt(1.E3/(38.3*0.293)*sqrt(0.5*(paph(i,k) & |
1031 |
|
|
+paph(i,k+1))/paph(i,klev+1)))*0.5/rg |
1032 |
|
|
END DO |
1033 |
|
|
END DO |
1034 |
|
|
|
1035 |
|
|
! SPECIFY CONSTANTS |
1036 |
|
|
|
1037 |
|
|
zcons1 = rcpd/(rlmlt*rg*pdtime) |
1038 |
|
|
zcons2 = 1./(rg*pdtime) |
1039 |
|
|
zcucov = 0.05 |
1040 |
|
|
ztmelp2 = rtt + 2. |
1041 |
|
|
|
1042 |
|
|
! DETERMINE FINAL CONVECTIVE FLUXES |
1043 |
|
|
|
1044 |
|
|
itop = klev |
1045 |
|
|
DO i = 1, klon |
1046 |
|
|
itop = min(itop, kctop(i)) |
1047 |
|
|
IF (.NOT. ldcum(i) .OR. kdtop(i)<kctop(i)) lddraf(i) = .FALSE. |
1048 |
|
|
IF (.NOT. ldcum(i)) ktype(i) = 0 |
1049 |
|
|
END DO |
1050 |
|
|
|
1051 |
|
|
ktopm2 = itop - 2 |
1052 |
|
|
DO k = ktopm2, klev |
1053 |
|
|
DO i = 1, klon |
1054 |
|
|
IF (ldcum(i) .AND. k>=kctop(i)-1) THEN |
1055 |
|
|
pmfus(i, k) = pmfus(i, k) - pmfu(i, k)*(rcpd*ptenh(i,k)+pgeoh(i,k)) |
1056 |
|
|
pmfuq(i, k) = pmfuq(i, k) - pmfu(i, k)*pqenh(i, k) |
1057 |
|
|
zdp = 1.5E4 |
1058 |
|
|
IF (ldland(i)) zdp = 3.E4 |
1059 |
|
|
|
1060 |
|
|
! l'eau liquide detrainee est precipitee quand certaines |
1061 |
|
|
! conditions sont reunies (sinon, elle est consideree |
1062 |
|
|
! evaporee dans l'environnement) |
1063 |
|
|
|
1064 |
|
|
IF (paph(i,kcbot(i))-paph(i,kctop(i))>=zdp .AND. pqen(i,k-1)>0.8* & |
1065 |
|
|
pqsen(i,k-1)) pdmfup(i, k-1) = pdmfup(i, k-1) + plude(i, k-1) |
1066 |
|
|
|
1067 |
|
|
IF (lddraf(i) .AND. k>=kdtop(i)) THEN |
1068 |
|
|
pmfds(i, k) = pmfds(i, k) - pmfd(i, k)*(rcpd*ptenh(i,k)+pgeoh(i,k)) |
1069 |
|
|
pmfdq(i, k) = pmfdq(i, k) - pmfd(i, k)*pqenh(i, k) |
1070 |
|
|
ELSE |
1071 |
|
|
pmfd(i, k) = 0. |
1072 |
|
|
pmfds(i, k) = 0. |
1073 |
|
|
pmfdq(i, k) = 0. |
1074 |
|
|
pdmfdp(i, k-1) = 0. |
1075 |
|
|
END IF |
1076 |
|
|
ELSE |
1077 |
|
|
pmfu(i, k) = 0. |
1078 |
|
|
pmfus(i, k) = 0. |
1079 |
|
|
pmfuq(i, k) = 0. |
1080 |
|
|
pmful(i, k) = 0. |
1081 |
|
|
pdmfup(i, k-1) = 0. |
1082 |
|
|
plude(i, k-1) = 0. |
1083 |
|
|
pmfd(i, k) = 0. |
1084 |
|
|
pmfds(i, k) = 0. |
1085 |
|
|
pmfdq(i, k) = 0. |
1086 |
|
|
pdmfdp(i, k-1) = 0. |
1087 |
|
|
END IF |
1088 |
|
|
END DO |
1089 |
|
|
END DO |
1090 |
|
|
|
1091 |
|
|
DO k = ktopm2, klev |
1092 |
|
|
DO i = 1, klon |
1093 |
|
|
IF (ldcum(i) .AND. k>kcbot(i)) THEN |
1094 |
|
|
ikb = kcbot(i) |
1095 |
|
|
zzp = ((paph(i,klev+1)-paph(i,k))/(paph(i,klev+1)-paph(i,ikb))) |
1096 |
|
|
IF (ktype(i)==3) zzp = zzp**2 |
1097 |
|
|
pmfu(i, k) = pmfu(i, ikb)*zzp |
1098 |
|
|
pmfus(i, k) = pmfus(i, ikb)*zzp |
1099 |
|
|
pmfuq(i, k) = pmfuq(i, ikb)*zzp |
1100 |
|
|
pmful(i, k) = pmful(i, ikb)*zzp |
1101 |
|
|
END IF |
1102 |
|
|
END DO |
1103 |
|
|
END DO |
1104 |
|
|
|
1105 |
|
|
! CALCULATE RAIN/SNOW FALL RATES |
1106 |
|
|
! CALCULATE MELTING OF SNOW |
1107 |
|
|
! CALCULATE EVAPORATION OF PRECIP |
1108 |
|
|
|
1109 |
|
|
DO k = 1, klev + 1 |
1110 |
|
|
DO i = 1, klon |
1111 |
|
|
pmflxr(i, k) = 0.0 |
1112 |
|
|
pmflxs(i, k) = 0.0 |
1113 |
|
|
END DO |
1114 |
|
|
END DO |
1115 |
|
|
DO k = ktopm2, klev |
1116 |
|
|
DO i = 1, klon |
1117 |
|
|
IF (ldcum(i)) THEN |
1118 |
|
|
IF (pmflxs(i,k)>0.0 .AND. pten(i,k)>ztmelp2) THEN |
1119 |
|
|
zfac = zcons1*(paph(i,k+1)-paph(i,k)) |
1120 |
|
|
zsnmlt = min(pmflxs(i,k), zfac*(pten(i,k)-ztmelp2)) |
1121 |
|
|
pdpmel(i, k) = zsnmlt |
1122 |
|
|
ztmsmlt = pten(i, k) - zsnmlt/zfac |
1123 |
|
|
zdelta = max(0., sign(1.,rtt-ztmsmlt)) |
1124 |
|
|
zqsat = r2es*foeew(ztmsmlt, zdelta)/pap(i, k) |
1125 |
|
|
zqsat = min(0.5, zqsat) |
1126 |
|
|
zqsat = zqsat/(1.-retv*zqsat) |
1127 |
|
|
pqsen(i, k) = zqsat |
1128 |
|
|
END IF |
1129 |
|
|
IF (pten(i,k)>rtt) THEN |
1130 |
|
|
pmflxr(i, k+1) = pmflxr(i, k) + pdmfup(i, k) + pdmfdp(i, k) + & |
1131 |
|
|
pdpmel(i, k) |
1132 |
|
|
pmflxs(i, k+1) = pmflxs(i, k) - pdpmel(i, k) |
1133 |
|
|
ELSE |
1134 |
|
|
pmflxs(i, k+1) = pmflxs(i, k) + pdmfup(i, k) + pdmfdp(i, k) |
1135 |
|
|
pmflxr(i, k+1) = pmflxr(i, k) |
1136 |
|
|
END IF |
1137 |
|
|
! si la precipitation est negative, on ajuste le plux du |
1138 |
|
|
! panache descendant pour eliminer la negativite |
1139 |
|
|
IF ((pmflxr(i,k+1)+pmflxs(i,k+1))<0.0) THEN |
1140 |
|
|
pdmfdp(i, k) = -pmflxr(i, k) - pmflxs(i, k) - pdmfup(i, k) |
1141 |
|
|
pmflxr(i, k+1) = 0.0 |
1142 |
|
|
pmflxs(i, k+1) = 0.0 |
1143 |
|
|
pdpmel(i, k) = 0.0 |
1144 |
|
|
END IF |
1145 |
|
|
END IF |
1146 |
|
|
END DO |
1147 |
|
|
END DO |
1148 |
|
|
|
1149 |
|
|
! jq The new variable is initialized here. |
1150 |
|
|
! jq It contains the humidity which is fed to the downdraft |
1151 |
|
|
! jq by evaporation of precipitation in the column below the base |
1152 |
|
|
! jq of convection. |
1153 |
|
|
! jq |
1154 |
|
|
! jq In the former version, this term has been subtracted from precip |
1155 |
|
|
! jq as well as the evaporation. |
1156 |
|
|
! jq |
1157 |
|
|
DO k = 1, klev |
1158 |
|
|
DO i = 1, klon |
1159 |
|
|
maxpdmfdp(i, k) = 0.0 |
1160 |
|
|
END DO |
1161 |
|
|
END DO |
1162 |
|
|
DO k = 1, klev |
1163 |
|
|
DO kp = k, klev |
1164 |
|
|
DO i = 1, klon |
1165 |
|
|
maxpdmfdp(i, k) = maxpdmfdp(i, k) + pdmfdp(i, kp) |
1166 |
|
|
END DO |
1167 |
|
|
END DO |
1168 |
|
|
END DO |
1169 |
|
|
! jq End of initialization |
1170 |
|
|
|
1171 |
|
|
DO k = ktopm2, klev |
1172 |
|
|
DO i = 1, klon |
1173 |
|
|
IF (ldcum(i) .AND. k>=kcbot(i)) THEN |
1174 |
|
|
zrfl = pmflxr(i, k) + pmflxs(i, k) |
1175 |
|
|
IF (zrfl>1.0E-20) THEN |
1176 |
|
|
zrnew = (max(0.,sqrt(zrfl/zcucov)-cevapcu(i, & |
1177 |
|
|
k)*(paph(i,k+1)-paph(i,k))*max(0.,pqsen(i,k)-pqen(i,k))))**2* & |
1178 |
|
|
zcucov |
1179 |
|
|
zrmin = zrfl - zcucov*max(0., 0.8*pqsen(i,k)-pqen(i,k))*zcons2*( & |
1180 |
|
|
paph(i,k+1)-paph(i,k)) |
1181 |
|
|
zrnew = max(zrnew, zrmin) |
1182 |
|
|
zrfln = max(zrnew, 0.) |
1183 |
|
|
zdrfl = min(0., zrfln-zrfl) |
1184 |
|
|
! jq At least the amount of precipiation needed to feed the |
1185 |
|
|
! downdraft |
1186 |
|
|
! jq with humidity below the base of convection has to be left and |
1187 |
|
|
! can't |
1188 |
|
|
! jq be evaporated (surely the evaporation can't be positive): |
1189 |
|
|
zdrfl = max(zdrfl, min(-pmflxr(i,k)-pmflxs(i,k)-maxpdmfdp(i, & |
1190 |
|
|
k),0.0)) |
1191 |
|
|
! jq End of insertion |
1192 |
|
|
|
1193 |
|
|
zdenom = 1.0/max(1.0E-20, pmflxr(i,k)+pmflxs(i,k)) |
1194 |
|
|
IF (pten(i,k)>rtt) THEN |
1195 |
|
|
zpdr = pdmfdp(i, k) |
1196 |
|
|
zpds = 0.0 |
1197 |
|
|
ELSE |
1198 |
|
|
zpdr = 0.0 |
1199 |
|
|
zpds = pdmfdp(i, k) |
1200 |
|
|
END IF |
1201 |
|
|
pmflxr(i, k+1) = pmflxr(i, k) + zpdr + pdpmel(i, k) + & |
1202 |
|
|
zdrfl*pmflxr(i, k)*zdenom |
1203 |
|
|
pmflxs(i, k+1) = pmflxs(i, k) + zpds - pdpmel(i, k) + & |
1204 |
|
|
zdrfl*pmflxs(i, k)*zdenom |
1205 |
|
|
pdmfup(i, k) = pdmfup(i, k) + zdrfl |
1206 |
|
|
ELSE |
1207 |
|
|
pmflxr(i, k+1) = 0.0 |
1208 |
|
|
pmflxs(i, k+1) = 0.0 |
1209 |
|
|
pdmfdp(i, k) = 0.0 |
1210 |
|
|
pdpmel(i, k) = 0.0 |
1211 |
|
|
END IF |
1212 |
|
|
IF (pmflxr(i,k)+pmflxs(i,k)<-1.E-26 .AND. prt_level>=1) WRITE (*, *) & |
1213 |
|
|
'precip. < 1e-16 ', pmflxr(i, k) + pmflxs(i, k) |
1214 |
|
|
END IF |
1215 |
|
|
END DO |
1216 |
|
|
END DO |
1217 |
|
|
|
1218 |
|
|
DO i = 1, klon |
1219 |
|
|
prfl(i) = pmflxr(i, klev+1) |
1220 |
|
|
psfl(i) = pmflxs(i, klev+1) |
1221 |
|
|
END DO |
1222 |
|
|
|
1223 |
|
|
RETURN |
1224 |
|
|
END SUBROUTINE flxflux |
1225 |
|
|
SUBROUTINE flxdtdq(pdtime, ktopm2, paph, ldcum, pten, pmfus, pmfds, pmfuq, & |
1226 |
|
|
pmfdq, pmful, pdmfup, pdmfdp, pdpmel, dt_con, dq_con) |
1227 |
|
|
USE dimphy |
1228 |
|
|
IMPLICIT NONE |
1229 |
|
|
! ---------------------------------------------------------------------- |
1230 |
|
|
! calculer les tendances T et Q |
1231 |
|
|
! ---------------------------------------------------------------------- |
1232 |
|
|
include "YOMCST.h" |
1233 |
|
|
include "YOETHF.h" |
1234 |
|
|
include "YOECUMF.h" |
1235 |
|
|
! ----------------------------------------------------------------- |
1236 |
|
|
LOGICAL llo1 |
1237 |
|
|
|
1238 |
|
|
REAL pten(klon, klev), paph(klon, klev+1) |
1239 |
|
|
REAL pmfus(klon, klev), pmfuq(klon, klev), pmful(klon, klev) |
1240 |
|
|
REAL pmfds(klon, klev), pmfdq(klon, klev) |
1241 |
|
|
REAL pdmfup(klon, klev) |
1242 |
|
|
REAL pdmfdp(klon, klev) |
1243 |
|
|
REAL pdpmel(klon, klev) |
1244 |
|
|
LOGICAL ldcum(klon) |
1245 |
|
|
REAL dt_con(klon, klev), dq_con(klon, klev) |
1246 |
|
|
|
1247 |
|
|
INTEGER ktopm2 |
1248 |
|
|
REAL pdtime |
1249 |
|
|
|
1250 |
|
|
INTEGER i, k |
1251 |
|
|
REAL zalv, zdtdt, zdqdt |
1252 |
|
|
|
1253 |
|
|
DO k = ktopm2, klev - 1 |
1254 |
|
|
DO i = 1, klon |
1255 |
|
|
IF (ldcum(i)) THEN |
1256 |
|
|
llo1 = (pten(i,k)-rtt) > 0. |
1257 |
|
|
zalv = rlstt |
1258 |
|
|
IF (llo1) zalv = rlvtt |
1259 |
|
|
zdtdt = rg/(paph(i,k+1)-paph(i,k))/rcpd*(pmfus(i,k+1)-pmfus(i,k)+ & |
1260 |
|
|
pmfds(i,k+1)-pmfds(i,k)-rlmlt*pdpmel(i,k)-zalv*(pmful(i, & |
1261 |
|
|
k+1)-pmful(i,k)-pdmfup(i,k)-pdmfdp(i,k))) |
1262 |
|
|
dt_con(i, k) = zdtdt |
1263 |
|
|
zdqdt = rg/(paph(i,k+1)-paph(i,k))*(pmfuq(i,k+1)-pmfuq(i,k)+pmfdq(i,k & |
1264 |
|
|
+1)-pmfdq(i,k)+pmful(i,k+1)-pmful(i,k)-pdmfup(i,k)-pdmfdp(i,k)) |
1265 |
|
|
dq_con(i, k) = zdqdt |
1266 |
|
|
END IF |
1267 |
|
|
END DO |
1268 |
|
|
END DO |
1269 |
|
|
|
1270 |
|
|
k = klev |
1271 |
|
|
DO i = 1, klon |
1272 |
|
|
IF (ldcum(i)) THEN |
1273 |
|
|
llo1 = (pten(i,k)-rtt) > 0. |
1274 |
|
|
zalv = rlstt |
1275 |
|
|
IF (llo1) zalv = rlvtt |
1276 |
|
|
zdtdt = -rg/(paph(i,k+1)-paph(i,k))/rcpd*(pmfus(i,k)+pmfds(i,k)+rlmlt* & |
1277 |
|
|
pdpmel(i,k)-zalv*(pmful(i,k)+pdmfup(i,k)+pdmfdp(i,k))) |
1278 |
|
|
dt_con(i, k) = zdtdt |
1279 |
|
|
zdqdt = -rg/(paph(i,k+1)-paph(i,k))*(pmfuq(i,k)+pmfdq(i,k)+pmful(i,k)+ & |
1280 |
|
|
pdmfup(i,k)+pdmfdp(i,k)) |
1281 |
|
|
dq_con(i, k) = zdqdt |
1282 |
|
|
END IF |
1283 |
|
|
END DO |
1284 |
|
|
|
1285 |
|
|
RETURN |
1286 |
|
|
END SUBROUTINE flxdtdq |
1287 |
|
|
SUBROUTINE flxdlfs(ptenh, pqenh, pgeoh, paph, ptu, pqu, ldcum, kcbot, kctop, & |
1288 |
|
|
pmfub, prfl, ptd, pqd, pmfd, pmfds, pmfdq, pdmfdp, kdtop, lddraf) |
1289 |
|
|
USE dimphy |
1290 |
|
|
IMPLICIT NONE |
1291 |
|
|
|
1292 |
|
|
! ---------------------------------------------------------------------- |
1293 |
|
|
! THIS ROUTINE CALCULATES LEVEL OF FREE SINKING FOR |
1294 |
|
|
! CUMULUS DOWNDRAFTS AND SPECIFIES T,Q,U AND V VALUES |
1295 |
|
|
|
1296 |
|
|
! TO PRODUCE LFS-VALUES FOR CUMULUS DOWNDRAFTS |
1297 |
|
|
! FOR MASSFLUX CUMULUS PARAMETERIZATION |
1298 |
|
|
|
1299 |
|
|
! INPUT ARE ENVIRONMENTAL VALUES OF T,Q,U,V,P,PHI |
1300 |
|
|
! AND UPDRAFT VALUES T,Q,U AND V AND ALSO |
1301 |
|
|
! CLOUD BASE MASSFLUX AND CU-PRECIPITATION RATE. |
1302 |
|
|
! IT RETURNS T,Q,U AND V VALUES AND MASSFLUX AT LFS. |
1303 |
|
|
|
1304 |
|
|
! CHECK FOR NEGATIVE BUOYANCY OF AIR OF EQUAL PARTS OF |
1305 |
|
|
! MOIST ENVIRONMENTAL AIR AND CLOUD AIR. |
1306 |
|
|
! ---------------------------------------------------------------------- |
1307 |
|
|
include "YOMCST.h" |
1308 |
|
|
include "YOETHF.h" |
1309 |
|
|
include "YOECUMF.h" |
1310 |
|
|
|
1311 |
|
|
REAL ptenh(klon, klev) |
1312 |
|
|
REAL pqenh(klon, klev) |
1313 |
|
|
REAL pgeoh(klon, klev), paph(klon, klev+1) |
1314 |
|
|
REAL ptu(klon, klev), pqu(klon, klev) |
1315 |
|
|
REAL pmfub(klon) |
1316 |
|
|
REAL prfl(klon) |
1317 |
|
|
|
1318 |
|
|
REAL ptd(klon, klev), pqd(klon, klev) |
1319 |
|
|
REAL pmfd(klon, klev), pmfds(klon, klev), pmfdq(klon, klev) |
1320 |
|
|
REAL pdmfdp(klon, klev) |
1321 |
|
|
INTEGER kcbot(klon), kctop(klon), kdtop(klon) |
1322 |
|
|
LOGICAL ldcum(klon), lddraf(klon) |
1323 |
|
|
|
1324 |
|
|
REAL ztenwb(klon, klev), zqenwb(klon, klev), zcond(klon) |
1325 |
|
|
REAL zttest, zqtest, zbuo, zmftop |
1326 |
|
|
LOGICAL llo2(klon) |
1327 |
|
|
INTEGER i, k, is, icall |
1328 |
|
|
! ---------------------------------------------------------------------- |
1329 |
|
|
DO i = 1, klon |
1330 |
|
|
lddraf(i) = .FALSE. |
1331 |
|
|
kdtop(i) = klev + 1 |
1332 |
|
|
END DO |
1333 |
|
|
|
1334 |
|
|
! ---------------------------------------------------------------------- |
1335 |
|
|
! DETERMINE LEVEL OF FREE SINKING BY |
1336 |
|
|
! DOING A SCAN FROM TOP TO BASE OF CUMULUS CLOUDS |
1337 |
|
|
|
1338 |
|
|
! FOR EVERY POINT AND PROCEED AS FOLLOWS: |
1339 |
|
|
! (1) DETEMINE WET BULB ENVIRONMENTAL T AND Q |
1340 |
|
|
! (2) DO MIXING WITH CUMULUS CLOUD AIR |
1341 |
|
|
! (3) CHECK FOR NEGATIVE BUOYANCY |
1342 |
|
|
|
1343 |
|
|
! THE ASSUMPTION IS THAT AIR OF DOWNDRAFTS IS MIXTURE |
1344 |
|
|
! OF 50% CLOUD AIR + 50% ENVIRONMENTAL AIR AT WET BULB |
1345 |
|
|
! TEMPERATURE (I.E. WHICH BECAME SATURATED DUE TO |
1346 |
|
|
! EVAPORATION OF RAIN AND CLOUD WATER) |
1347 |
|
|
! ---------------------------------------------------------------------- |
1348 |
|
|
|
1349 |
|
|
DO k = 3, klev - 3 |
1350 |
|
|
|
1351 |
|
|
is = 0 |
1352 |
|
|
DO i = 1, klon |
1353 |
|
|
ztenwb(i, k) = ptenh(i, k) |
1354 |
|
|
zqenwb(i, k) = pqenh(i, k) |
1355 |
|
|
llo2(i) = ldcum(i) .AND. prfl(i) > 0. .AND. .NOT. lddraf(i) .AND. & |
1356 |
|
|
(k<kcbot(i) .AND. k>kctop(i)) |
1357 |
|
|
IF (llo2(i)) is = is + 1 |
1358 |
|
|
END DO |
1359 |
|
|
IF (is==0) GO TO 290 |
1360 |
|
|
|
1361 |
|
|
icall = 2 |
1362 |
|
|
CALL flxadjtq(paph(1,k), ztenwb(1,k), zqenwb(1,k), llo2, icall) |
1363 |
|
|
|
1364 |
|
|
! ---------------------------------------------------------------------- |
1365 |
|
|
! DO MIXING OF CUMULUS AND ENVIRONMENTAL AIR |
1366 |
|
|
! AND CHECK FOR NEGATIVE BUOYANCY. |
1367 |
|
|
! THEN SET VALUES FOR DOWNDRAFT AT LFS. |
1368 |
|
|
! ---------------------------------------------------------------------- |
1369 |
|
|
DO i = 1, klon |
1370 |
|
|
IF (llo2(i)) THEN |
1371 |
|
|
zttest = 0.5*(ptu(i,k)+ztenwb(i,k)) |
1372 |
|
|
zqtest = 0.5*(pqu(i,k)+zqenwb(i,k)) |
1373 |
|
|
zbuo = zttest*(1.+retv*zqtest) - ptenh(i, k)*(1.+retv*pqenh(i,k)) |
1374 |
|
|
zcond(i) = pqenh(i, k) - zqenwb(i, k) |
1375 |
|
|
zmftop = -cmfdeps*pmfub(i) |
1376 |
|
|
IF (zbuo<0. .AND. prfl(i)>10.*zmftop*zcond(i)) THEN |
1377 |
|
|
kdtop(i) = k |
1378 |
|
|
lddraf(i) = .TRUE. |
1379 |
|
|
ptd(i, k) = zttest |
1380 |
|
|
pqd(i, k) = zqtest |
1381 |
|
|
pmfd(i, k) = zmftop |
1382 |
|
|
pmfds(i, k) = pmfd(i, k)*(rcpd*ptd(i,k)+pgeoh(i,k)) |
1383 |
|
|
pmfdq(i, k) = pmfd(i, k)*pqd(i, k) |
1384 |
|
|
pdmfdp(i, k-1) = -0.5*pmfd(i, k)*zcond(i) |
1385 |
|
|
prfl(i) = prfl(i) + pdmfdp(i, k-1) |
1386 |
|
|
END IF |
1387 |
|
|
END IF |
1388 |
|
|
END DO |
1389 |
|
|
|
1390 |
|
|
290 END DO |
1391 |
|
|
|
1392 |
|
|
RETURN |
1393 |
|
|
END SUBROUTINE flxdlfs |
1394 |
|
|
SUBROUTINE flxddraf(ptenh, pqenh, pgeoh, paph, prfl, ptd, pqd, pmfd, pmfds, & |
1395 |
|
|
pmfdq, pdmfdp, lddraf, pen_d, pde_d) |
1396 |
|
|
USE dimphy |
1397 |
|
|
IMPLICIT NONE |
1398 |
|
|
|
1399 |
|
|
! ---------------------------------------------------------------------- |
1400 |
|
|
! THIS ROUTINE CALCULATES CUMULUS DOWNDRAFT DESCENT |
1401 |
|
|
|
1402 |
|
|
! TO PRODUCE THE VERTICAL PROFILES FOR CUMULUS DOWNDRAFTS |
1403 |
|
|
! (I.E. T,Q,U AND V AND FLUXES) |
1404 |
|
|
|
1405 |
|
|
! INPUT IS T,Q,P,PHI,U,V AT HALF LEVELS. |
1406 |
|
|
! IT RETURNS FLUXES OF S,Q AND EVAPORATION RATE |
1407 |
|
|
! AND U,V AT LEVELS WHERE DOWNDRAFT OCCURS |
1408 |
|
|
|
1409 |
|
|
! CALCULATE MOIST DESCENT FOR ENTRAINING/DETRAINING PLUME BY |
1410 |
|
|
! A) MOVING AIR DRY-ADIABATICALLY TO NEXT LEVEL BELOW AND |
1411 |
|
|
! B) CORRECTING FOR EVAPORATION TO OBTAIN SATURATED STATE. |
1412 |
|
|
|
1413 |
|
|
! ---------------------------------------------------------------------- |
1414 |
|
|
include "YOMCST.h" |
1415 |
|
|
include "YOETHF.h" |
1416 |
|
|
include "YOECUMF.h" |
1417 |
|
|
|
1418 |
|
|
REAL ptenh(klon, klev), pqenh(klon, klev) |
1419 |
|
|
REAL pgeoh(klon, klev), paph(klon, klev+1) |
1420 |
|
|
|
1421 |
|
|
REAL ptd(klon, klev), pqd(klon, klev) |
1422 |
|
|
REAL pmfd(klon, klev), pmfds(klon, klev), pmfdq(klon, klev) |
1423 |
|
|
REAL pdmfdp(klon, klev) |
1424 |
|
|
REAL prfl(klon) |
1425 |
|
|
LOGICAL lddraf(klon) |
1426 |
|
|
|
1427 |
|
|
REAL pen_d(klon, klev), pde_d(klon, klev), zcond(klon) |
1428 |
|
|
LOGICAL llo2(klon), llo1 |
1429 |
|
|
INTEGER i, k, is, icall, itopde |
1430 |
|
|
REAL zentr, zseen, zqeen, zsdde, zqdde, zmfdsk, zmfdqk, zdmfdp |
1431 |
|
|
REAL zbuo |
1432 |
|
|
! ---------------------------------------------------------------------- |
1433 |
|
|
! CALCULATE MOIST DESCENT FOR CUMULUS DOWNDRAFT BY |
1434 |
|
|
! (A) CALCULATING ENTRAINMENT RATES, ASSUMING |
1435 |
|
|
! LINEAR DECREASE OF MASSFLUX IN PBL |
1436 |
|
|
! (B) DOING MOIST DESCENT - EVAPORATIVE COOLING |
1437 |
|
|
! AND MOISTENING IS CALCULATED IN *flxadjtq* |
1438 |
|
|
! (C) CHECKING FOR NEGATIVE BUOYANCY AND |
1439 |
|
|
! SPECIFYING FINAL T,Q,U,V AND DOWNWARD FLUXES |
1440 |
|
|
|
1441 |
|
|
DO k = 3, klev |
1442 |
|
|
|
1443 |
|
|
is = 0 |
1444 |
|
|
DO i = 1, klon |
1445 |
|
|
llo2(i) = lddraf(i) .AND. pmfd(i, k-1) < 0. |
1446 |
|
|
IF (llo2(i)) is = is + 1 |
1447 |
|
|
END DO |
1448 |
|
|
IF (is==0) GO TO 180 |
1449 |
|
|
|
1450 |
|
|
DO i = 1, klon |
1451 |
|
|
IF (llo2(i)) THEN |
1452 |
|
|
zentr = entrdd*pmfd(i, k-1)*rd*ptenh(i, k-1)/(rg*paph(i,k-1))* & |
1453 |
|
|
(paph(i,k)-paph(i,k-1)) |
1454 |
|
|
pen_d(i, k) = zentr |
1455 |
|
|
pde_d(i, k) = zentr |
1456 |
|
|
END IF |
1457 |
|
|
END DO |
1458 |
|
|
|
1459 |
|
|
itopde = klev - 2 |
1460 |
|
|
IF (k>itopde) THEN |
1461 |
|
|
DO i = 1, klon |
1462 |
|
|
IF (llo2(i)) THEN |
1463 |
|
|
pen_d(i, k) = 0. |
1464 |
|
|
pde_d(i, k) = pmfd(i, itopde)*(paph(i,k)-paph(i,k-1))/ & |
1465 |
|
|
(paph(i,klev+1)-paph(i,itopde)) |
1466 |
|
|
END IF |
1467 |
|
|
END DO |
1468 |
|
|
END IF |
1469 |
|
|
|
1470 |
|
|
DO i = 1, klon |
1471 |
|
|
IF (llo2(i)) THEN |
1472 |
|
|
pmfd(i, k) = pmfd(i, k-1) + pen_d(i, k) - pde_d(i, k) |
1473 |
|
|
zseen = (rcpd*ptenh(i,k-1)+pgeoh(i,k-1))*pen_d(i, k) |
1474 |
|
|
zqeen = pqenh(i, k-1)*pen_d(i, k) |
1475 |
|
|
zsdde = (rcpd*ptd(i,k-1)+pgeoh(i,k-1))*pde_d(i, k) |
1476 |
|
|
zqdde = pqd(i, k-1)*pde_d(i, k) |
1477 |
|
|
zmfdsk = pmfds(i, k-1) + zseen - zsdde |
1478 |
|
|
zmfdqk = pmfdq(i, k-1) + zqeen - zqdde |
1479 |
|
|
pqd(i, k) = zmfdqk*(1./min(-cmfcmin,pmfd(i,k))) |
1480 |
|
|
ptd(i, k) = (zmfdsk*(1./min(-cmfcmin,pmfd(i,k)))-pgeoh(i,k))/rcpd |
1481 |
|
|
ptd(i, k) = min(400., ptd(i,k)) |
1482 |
|
|
ptd(i, k) = max(100., ptd(i,k)) |
1483 |
|
|
zcond(i) = pqd(i, k) |
1484 |
|
|
END IF |
1485 |
|
|
END DO |
1486 |
|
|
|
1487 |
|
|
icall = 2 |
1488 |
|
|
CALL flxadjtq(paph(1,k), ptd(1,k), pqd(1,k), llo2, icall) |
1489 |
|
|
|
1490 |
|
|
DO i = 1, klon |
1491 |
|
|
IF (llo2(i)) THEN |
1492 |
|
|
zcond(i) = zcond(i) - pqd(i, k) |
1493 |
|
|
zbuo = ptd(i, k)*(1.+retv*pqd(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
1494 |
|
|
) |
1495 |
|
|
llo1 = zbuo < 0. .AND. (prfl(i)-pmfd(i,k)*zcond(i)>0.) |
1496 |
|
|
IF (.NOT. llo1) pmfd(i, k) = 0.0 |
1497 |
|
|
pmfds(i, k) = (rcpd*ptd(i,k)+pgeoh(i,k))*pmfd(i, k) |
1498 |
|
|
pmfdq(i, k) = pqd(i, k)*pmfd(i, k) |
1499 |
|
|
zdmfdp = -pmfd(i, k)*zcond(i) |
1500 |
|
|
pdmfdp(i, k-1) = zdmfdp |
1501 |
|
|
prfl(i) = prfl(i) + zdmfdp |
1502 |
|
|
END IF |
1503 |
|
|
END DO |
1504 |
|
|
|
1505 |
|
|
180 END DO |
1506 |
|
|
RETURN |
1507 |
|
|
END SUBROUTINE flxddraf |
1508 |
|
|
SUBROUTINE flxadjtq(pp, pt, pq, ldflag, kcall) |
1509 |
|
|
USE dimphy |
1510 |
|
|
IMPLICIT NONE |
1511 |
|
|
! ====================================================================== |
1512 |
|
|
! Objet: ajustement entre T et Q |
1513 |
|
|
! ====================================================================== |
1514 |
|
|
! NOTE: INPUT PARAMETER kcall DEFINES CALCULATION AS |
1515 |
|
|
! kcall=0 ENV. T AND QS IN*CUINI* |
1516 |
|
|
! kcall=1 CONDENSATION IN UPDRAFTS (E.G. CUBASE, CUASC) |
1517 |
|
|
! kcall=2 EVAPORATION IN DOWNDRAFTS (E.G. CUDLFS,CUDDRAF) |
1518 |
|
|
|
1519 |
|
|
include "YOMCST.h" |
1520 |
|
|
|
1521 |
|
|
REAL pt(klon), pq(klon), pp(klon) |
1522 |
|
|
LOGICAL ldflag(klon) |
1523 |
|
|
INTEGER kcall |
1524 |
|
|
|
1525 |
|
|
REAL zcond(klon), zcond1 |
1526 |
|
|
REAL z5alvcp, z5alscp, zalvdcp, zalsdcp |
1527 |
|
|
REAL zdelta, zcvm5, zldcp, zqsat, zcor |
1528 |
|
|
INTEGER is, i |
1529 |
|
|
include "YOETHF.h" |
1530 |
|
|
include "FCTTRE.h" |
1531 |
|
|
|
1532 |
|
|
z5alvcp = r5les*rlvtt/rcpd |
1533 |
|
|
z5alscp = r5ies*rlstt/rcpd |
1534 |
|
|
zalvdcp = rlvtt/rcpd |
1535 |
|
|
zalsdcp = rlstt/rcpd |
1536 |
|
|
|
1537 |
|
|
|
1538 |
|
|
DO i = 1, klon |
1539 |
|
|
zcond(i) = 0.0 |
1540 |
|
|
END DO |
1541 |
|
|
|
1542 |
|
|
DO i = 1, klon |
1543 |
|
|
IF (ldflag(i)) THEN |
1544 |
|
|
zdelta = max(0., sign(1.,rtt-pt(i))) |
1545 |
|
|
zcvm5 = z5alvcp*(1.-zdelta) + zdelta*z5alscp |
1546 |
|
|
zldcp = zalvdcp*(1.-zdelta) + zdelta*zalsdcp |
1547 |
|
|
zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
1548 |
|
|
zqsat = min(0.5, zqsat) |
1549 |
|
|
zcor = 1./(1.-retv*zqsat) |
1550 |
|
|
zqsat = zqsat*zcor |
1551 |
|
|
zcond(i) = (pq(i)-zqsat)/(1.+foede(pt(i),zdelta,zcvm5,zqsat,zcor)) |
1552 |
|
|
IF (kcall==1) zcond(i) = max(zcond(i), 0.) |
1553 |
|
|
IF (kcall==2) zcond(i) = min(zcond(i), 0.) |
1554 |
|
|
pt(i) = pt(i) + zldcp*zcond(i) |
1555 |
|
|
pq(i) = pq(i) - zcond(i) |
1556 |
|
|
END IF |
1557 |
|
|
END DO |
1558 |
|
|
|
1559 |
|
|
is = 0 |
1560 |
|
|
DO i = 1, klon |
1561 |
|
|
IF (zcond(i)/=0.) is = is + 1 |
1562 |
|
|
END DO |
1563 |
|
|
IF (is==0) GO TO 230 |
1564 |
|
|
|
1565 |
|
|
DO i = 1, klon |
1566 |
|
|
IF (ldflag(i) .AND. zcond(i)/=0.) THEN |
1567 |
|
|
zdelta = max(0., sign(1.,rtt-pt(i))) |
1568 |
|
|
zcvm5 = z5alvcp*(1.-zdelta) + zdelta*z5alscp |
1569 |
|
|
zldcp = zalvdcp*(1.-zdelta) + zdelta*zalsdcp |
1570 |
|
|
zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
1571 |
|
|
zqsat = min(0.5, zqsat) |
1572 |
|
|
zcor = 1./(1.-retv*zqsat) |
1573 |
|
|
zqsat = zqsat*zcor |
1574 |
|
|
zcond1 = (pq(i)-zqsat)/(1.+foede(pt(i),zdelta,zcvm5,zqsat,zcor)) |
1575 |
|
|
pt(i) = pt(i) + zldcp*zcond1 |
1576 |
|
|
pq(i) = pq(i) - zcond1 |
1577 |
|
|
END IF |
1578 |
|
|
END DO |
1579 |
|
|
|
1580 |
|
|
230 CONTINUE |
1581 |
|
|
RETURN |
1582 |
|
|
END SUBROUTINE flxadjtq |
1583 |
|
|
SUBROUTINE flxsetup |
1584 |
|
|
IMPLICIT NONE |
1585 |
|
|
|
1586 |
|
|
! THIS ROUTINE DEFINES DISPOSABLE PARAMETERS FOR MASSFLUX SCHEME |
1587 |
|
|
|
1588 |
|
|
include "YOECUMF.h" |
1589 |
|
|
|
1590 |
|
|
entrpen = 1.0E-4 ! ENTRAINMENT RATE FOR PENETRATIVE CONVECTION |
1591 |
|
|
entrscv = 3.0E-4 ! ENTRAINMENT RATE FOR SHALLOW CONVECTION |
1592 |
|
|
entrmid = 1.0E-4 ! ENTRAINMENT RATE FOR MIDLEVEL CONVECTION |
1593 |
|
|
entrdd = 2.0E-4 ! ENTRAINMENT RATE FOR DOWNDRAFTS |
1594 |
|
|
cmfctop = 0.33 ! RELATIVE CLOUD MASSFLUX AT LEVEL ABOVE NONBUO LEVEL |
1595 |
|
|
cmfcmax = 1.0 ! MAXIMUM MASSFLUX VALUE ALLOWED FOR UPDRAFTS ETC |
1596 |
|
|
cmfcmin = 1.E-10 ! MINIMUM MASSFLUX VALUE (FOR SAFETY) |
1597 |
|
|
cmfdeps = 0.3 ! FRACTIONAL MASSFLUX FOR DOWNDRAFTS AT LFS |
1598 |
|
|
cprcon = 2.0E-4 ! CONVERSION FROM CLOUD WATER TO RAIN |
1599 |
|
|
rhcdd = 1. ! RELATIVE SATURATION IN DOWNDRAFRS (NO LONGER USED) |
1600 |
|
|
! (FORMULATION IMPLIES SATURATION) |
1601 |
|
|
lmfpen = .TRUE. |
1602 |
|
|
lmfscv = .TRUE. |
1603 |
|
|
lmfmid = .TRUE. |
1604 |
|
|
lmfdd = .TRUE. |
1605 |
|
|
lmfdudv = .TRUE. |
1606 |
|
|
|
1607 |
|
|
RETURN |
1608 |
|
|
END SUBROUTINE flxsetup |