1 |
|
|
|
2 |
|
|
! $Id: convect2.F90 2346 2015-08-21 15:13:46Z emillour $ |
3 |
|
|
|
4 |
|
|
SUBROUTINE convect2(ncum, idcum, len, nd, ndp1, nl, minorig, nk1, icb1, t1, & |
5 |
|
|
q1, qs1, u1, v1, gz1, tv1, tp1, tvp1, clw1, h1, lv1, cpn1, p1, ph1, ft1, & |
6 |
|
|
fq1, fu1, fv1, tnk1, qnk1, gznk1, plcl1, precip1, cbmf1, iflag1, delt, & |
7 |
|
|
cpd, cpv, cl, rv, rd, lv0, g, sigs, sigd, elcrit, tlcrit, omtsnow, dtmax, & |
8 |
|
|
damp, alpha, entp, coeffs, coeffr, omtrain, cu, ma) |
9 |
|
|
! .............................START PROLOGUE............................ |
10 |
|
|
|
11 |
|
|
! SCCS IDENTIFICATION: @(#)convect2.f 1.2 05/18/00 |
12 |
|
|
! 22:06:22 /h/cm/library/nogaps4/src/sub/fcst/convect2.f_v |
13 |
|
|
|
14 |
|
|
! CONFIGURATION IDENTIFICATION: None |
15 |
|
|
|
16 |
|
|
! MODULE NAME: convect2 |
17 |
|
|
|
18 |
|
|
! DESCRIPTION: |
19 |
|
|
|
20 |
|
|
! convect1 The Emanuel Cumulus Convection Scheme - compute tendencies |
21 |
|
|
|
22 |
|
|
! CONTRACT NUMBER AND TITLE: None |
23 |
|
|
|
24 |
|
|
! REFERENCES: Programmers K. Emanuel (MIT), Timothy F. Hogan, M. Peng |
25 |
|
|
! (NRL) |
26 |
|
|
|
27 |
|
|
! CLASSIFICATION: Unclassified |
28 |
|
|
|
29 |
|
|
! RESTRICTIONS: None |
30 |
|
|
|
31 |
|
|
! COMPILER DEPENDENCIES: FORTRAN 77, FORTRAN 90 |
32 |
|
|
|
33 |
|
|
! COMPILE OPTIONS: Fortran 77: -Zu -Wf"-ei -o aggress" |
34 |
|
|
! Fortran 90: -O vector3,scalar3,task1,aggress,overindex -ei -r 2 |
35 |
|
|
|
36 |
|
|
! LIBRARIES OF RESIDENCE: /a/ops/lib/libfcst159.a |
37 |
|
|
|
38 |
|
|
! USAGE: call convect2(ncum,idcum,len,nd,nl,minorig, |
39 |
|
|
! & nk1,icb1, |
40 |
|
|
! & t1,q1,qs1,u1,v1,gz1,tv1,tp1,tvp1,clw1,h1, |
41 |
|
|
! & lv1,cpn1,p1,ph1,ft1,fq1,fu1,fv1, |
42 |
|
|
! & tnk1,qnk1,gznk1,plcl1, |
43 |
|
|
! & precip1,cbmf1,iflag1, |
44 |
|
|
! & delt,cpd,cpv,cl,rv,rd,lv0,g, |
45 |
|
|
! & sigs,sigd,elcrit,tlcrit,omtsnow,dtmax,damp, |
46 |
|
|
! & alpha,entp,coeffs,coeffr,omtrain,cu) |
47 |
|
|
|
48 |
|
|
! PARAMETERS: |
49 |
|
|
! Name Type Usage Description |
50 |
|
|
! ---------- ---------- ------- ---------------------------- |
51 |
|
|
|
52 |
|
|
! ncum Integer Input number of cumulus points |
53 |
|
|
! idcum Integer Input index of cumulus point |
54 |
|
|
! len Integer Input first dimension |
55 |
|
|
! nd Integer Input total vertical dimension |
56 |
|
|
! ndp1 Integer Input nd + 1 |
57 |
|
|
! nl Integer Input vertical dimension for |
58 |
|
|
! convection |
59 |
|
|
! minorig Integer Input First level where convection is |
60 |
|
|
! allow to begin |
61 |
|
|
! nk1 Integer Input First level of convection |
62 |
|
|
! ncb1 Integer Input Level of free convection |
63 |
|
|
! t1 Real Input temperature |
64 |
|
|
! q1 Real Input specific hum |
65 |
|
|
! qs1 Real Input sat specific hum |
66 |
|
|
! u1 Real Input u-wind |
67 |
|
|
! v1 Real Input v-wind |
68 |
|
|
! gz1 Real Inout geop |
69 |
|
|
! tv1 Real Input virtual temp |
70 |
|
|
! tp1 Real Input |
71 |
|
|
! clw1 Real Inout cloud liquid water |
72 |
|
|
! h1 Real Inout |
73 |
|
|
! lv1 Real Inout |
74 |
|
|
! cpn1 Real Inout |
75 |
|
|
! p1 Real Input full level pressure |
76 |
|
|
! ph1 Real Input half level pressure |
77 |
|
|
! ft1 Real Output temp tend |
78 |
|
|
! fq1 Real Output spec hum tend |
79 |
|
|
! fu1 Real Output u-wind tend |
80 |
|
|
! fv1 Real Output v-wind tend |
81 |
|
|
! precip1 Real Output prec |
82 |
|
|
! cbmf1 Real In/Out cumulus mass flux |
83 |
|
|
! iflag1 Integer Output iflag on latitude strip |
84 |
|
|
! delt Real Input time step |
85 |
|
|
! cpd Integer Input See description below |
86 |
|
|
! cpv Integer Input See description below |
87 |
|
|
! cl Integer Input See description below |
88 |
|
|
! rv Integer Input See description below |
89 |
|
|
! rd Integer Input See description below |
90 |
|
|
! lv0 Integer Input See description below |
91 |
|
|
! g Integer Input See description below |
92 |
|
|
! sigs Integer Input See description below |
93 |
|
|
! sigd Integer Input See description below |
94 |
|
|
! elcrit Integer Input See description below |
95 |
|
|
! tlcrit Integer Input See description below |
96 |
|
|
! omtsnow Integer Input See description below |
97 |
|
|
! dtmax Integer Input See description below |
98 |
|
|
! damp Integer Input See description below |
99 |
|
|
! alpha Integer Input See description below |
100 |
|
|
! ent Integer Input See description below |
101 |
|
|
! coeffs Integer Input See description below |
102 |
|
|
! coeffr Integer Input See description below |
103 |
|
|
! omtrain Integer Input See description below |
104 |
|
|
! cu Integer Input See description below |
105 |
|
|
|
106 |
|
|
! COMMON BLOCKS: |
107 |
|
|
! Block Name Type Usage Notes |
108 |
|
|
! -------- -------- ---- ------ ------------------------ |
109 |
|
|
|
110 |
|
|
! FILES: None |
111 |
|
|
|
112 |
|
|
! DATA BASES: None |
113 |
|
|
|
114 |
|
|
! NON-FILE INPUT/OUTPUT: None |
115 |
|
|
|
116 |
|
|
! ERROR CONDITIONS: None |
117 |
|
|
|
118 |
|
|
! ADDITIONAL COMMENTS: None |
119 |
|
|
|
120 |
|
|
! .................MAINTENANCE SECTION................................ |
121 |
|
|
|
122 |
|
|
! MODULES CALLED: |
123 |
|
|
! Name Description |
124 |
|
|
! zilch Zero out an array |
125 |
|
|
! ------- ---------------------- |
126 |
|
|
! LOCAL VARIABLES AND |
127 |
|
|
! STRUCTURES: |
128 |
|
|
! Name Type Description |
129 |
|
|
! ------- ------ ----------- |
130 |
|
|
! See Comments Below |
131 |
|
|
|
132 |
|
|
! i Integer loop index |
133 |
|
|
! k Integer loop index |
134 |
|
|
|
135 |
|
|
! METHOD: |
136 |
|
|
|
137 |
|
|
! See Emanuel, K. and M. Zivkovic-Rothman, 2000: Development and evaluation |
138 |
|
|
! of a |
139 |
|
|
! convective scheme for use in climate models. |
140 |
|
|
|
141 |
|
|
! FILES: None |
142 |
|
|
|
143 |
|
|
! INCLUDE FILES: None |
144 |
|
|
|
145 |
|
|
! MAKEFILE: /a/ops/met/nogaps/src/sub/fcst/fcst159lib.mak |
146 |
|
|
|
147 |
|
|
! ..............................END PROLOGUE............................. |
148 |
|
|
|
149 |
|
|
|
150 |
|
|
USE dimphy |
151 |
|
|
IMPLICIT NONE |
152 |
|
|
|
153 |
|
|
INTEGER kmax2, imax2, kmin2, imin2 |
154 |
|
|
REAL ftmax2, ftmin2 |
155 |
|
|
INTEGER kmax, imax, kmin, imin |
156 |
|
|
REAL ftmax, ftmin |
157 |
|
|
|
158 |
|
|
INTEGER ncum |
159 |
|
|
INTEGER len |
160 |
|
|
INTEGER idcum(len) |
161 |
|
|
INTEGER nd |
162 |
|
|
INTEGER ndp1 |
163 |
|
|
INTEGER nl |
164 |
|
|
INTEGER minorig |
165 |
|
|
INTEGER nk1(len) |
166 |
|
|
INTEGER icb1(len) |
167 |
|
|
REAL t1(len, nd) |
168 |
|
|
REAL q1(len, nd) |
169 |
|
|
REAL qs1(len, nd) |
170 |
|
|
REAL u1(len, nd) |
171 |
|
|
REAL v1(len, nd) |
172 |
|
|
REAL gz1(len, nd) |
173 |
|
|
REAL tv1(len, nd) |
174 |
|
|
REAL tp1(len, nd) |
175 |
|
|
REAL tvp1(len, nd) |
176 |
|
|
REAL clw1(len, nd) |
177 |
|
|
REAL h1(len, nd) |
178 |
|
|
REAL lv1(len, nd) |
179 |
|
|
REAL cpn1(len, nd) |
180 |
|
|
REAL p1(len, nd) |
181 |
|
|
REAL ph1(len, ndp1) |
182 |
|
|
REAL ft1(len, nd) |
183 |
|
|
REAL fq1(len, nd) |
184 |
|
|
REAL fu1(len, nd) |
185 |
|
|
REAL fv1(len, nd) |
186 |
|
|
REAL tnk1(len) |
187 |
|
|
REAL qnk1(len) |
188 |
|
|
REAL gznk1(len) |
189 |
|
|
REAL precip1(len) |
190 |
|
|
REAL cbmf1(len) |
191 |
|
|
REAL plcl1(len) |
192 |
|
|
INTEGER iflag1(len) |
193 |
|
|
REAL delt |
194 |
|
|
REAL cpd |
195 |
|
|
REAL cpv |
196 |
|
|
REAL cl |
197 |
|
|
REAL rv |
198 |
|
|
REAL rd |
199 |
|
|
REAL lv0 |
200 |
|
|
REAL g |
201 |
|
|
REAL sigs ! SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE |
202 |
|
|
REAL sigd ! SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT |
203 |
|
|
REAL elcrit ! ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) |
204 |
|
|
REAL tlcrit ! TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- |
205 |
|
|
! CONVERSION THRESHOLD IS ASSUMED TO BE ZERO |
206 |
|
|
REAL omtsnow ! OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW |
207 |
|
|
REAL dtmax ! DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION |
208 |
|
|
! A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC. |
209 |
|
|
REAL damp |
210 |
|
|
REAL alpha |
211 |
|
|
REAL entp ! ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT FORMULATION |
212 |
|
|
REAL coeffs ! COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF |
213 |
|
|
! SNOW |
214 |
|
|
REAL coeffr ! COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF |
215 |
|
|
! RAIN |
216 |
|
|
REAL omtrain ! OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN |
217 |
|
|
REAL cu ! CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM TRANSPORT |
218 |
|
|
|
219 |
|
|
REAL ma(len, nd) |
220 |
|
|
|
221 |
|
|
|
222 |
|
|
! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
223 |
|
|
! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
224 |
|
|
! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
225 |
|
|
! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
226 |
|
|
! *** BETWEEN 0 C AND TLCRIT) *** |
227 |
|
|
! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
228 |
|
|
! *** FORMULATION *** |
229 |
|
|
! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
230 |
|
|
! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
231 |
|
|
! *** OF CLOUD *** |
232 |
|
|
! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
233 |
|
|
! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
234 |
|
|
! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
235 |
|
|
! *** OF RAIN *** |
236 |
|
|
! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
237 |
|
|
! *** OF SNOW *** |
238 |
|
|
! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
239 |
|
|
! *** TRANSPORT *** |
240 |
|
|
! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
241 |
|
|
! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
242 |
|
|
! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
243 |
|
|
! *** APPROACH TO QUASI-EQUILIBRIUM *** |
244 |
|
|
! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
245 |
|
|
! *** (DAMP MUST BE LESS THAN 1) *** |
246 |
|
|
|
247 |
|
|
! Local arrays. |
248 |
|
|
|
249 |
|
|
REAL work(ncum) |
250 |
|
|
REAL t(ncum, klev) |
251 |
|
|
REAL q(ncum, klev) |
252 |
|
|
REAL qs(ncum, klev) |
253 |
|
|
REAL u(ncum, klev) |
254 |
|
|
REAL v(ncum, klev) |
255 |
|
|
REAL gz(ncum, klev) |
256 |
|
|
REAL h(ncum, klev) |
257 |
|
|
REAL lv(ncum, klev) |
258 |
|
|
REAL cpn(ncum, klev) |
259 |
|
|
REAL p(ncum, klev) |
260 |
|
|
REAL ph(ncum, klev) |
261 |
|
|
REAL ft(ncum, klev) |
262 |
|
|
REAL fq(ncum, klev) |
263 |
|
|
REAL fu(ncum, klev) |
264 |
|
|
REAL fv(ncum, klev) |
265 |
|
|
REAL precip(ncum) |
266 |
|
|
REAL cbmf(ncum) |
267 |
|
|
REAL plcl(ncum) |
268 |
|
|
REAL tnk(ncum) |
269 |
|
|
REAL qnk(ncum) |
270 |
|
|
REAL gznk(ncum) |
271 |
|
|
REAL tv(ncum, klev) |
272 |
|
|
REAL tp(ncum, klev) |
273 |
|
|
REAL tvp(ncum, klev) |
274 |
|
|
REAL clw(ncum, klev) |
275 |
|
|
! real det(ncum,klev) |
276 |
|
|
REAL dph(ncum, klev) |
277 |
|
|
! real wd(ncum) |
278 |
|
|
! real tprime(ncum) |
279 |
|
|
! real qprime(ncum) |
280 |
|
|
REAL ah0(ncum) |
281 |
|
|
REAL ep(ncum, klev) |
282 |
|
|
REAL sigp(ncum, klev) |
283 |
|
|
INTEGER nent(ncum, klev) |
284 |
|
|
REAL water(ncum, klev) |
285 |
|
|
REAL evap(ncum, klev) |
286 |
|
|
REAL mp(ncum, klev) |
287 |
|
|
REAL m(ncum, klev) |
288 |
|
|
REAL qti |
289 |
|
|
REAL wt(ncum, klev) |
290 |
|
|
REAL hp(ncum, klev) |
291 |
|
|
REAL lvcp(ncum, klev) |
292 |
|
|
REAL elij(ncum, klev, klev) |
293 |
|
|
REAL ment(ncum, klev, klev) |
294 |
|
|
REAL sij(ncum, klev, klev) |
295 |
|
|
REAL qent(ncum, klev, klev) |
296 |
|
|
REAL uent(ncum, klev, klev) |
297 |
|
|
REAL vent(ncum, klev, klev) |
298 |
|
|
REAL qp(ncum, klev) |
299 |
|
|
REAL up(ncum, klev) |
300 |
|
|
REAL vp(ncum, klev) |
301 |
|
|
REAL cape(ncum) |
302 |
|
|
REAL capem(ncum) |
303 |
|
|
REAL frac(ncum) |
304 |
|
|
REAL dtpbl(ncum) |
305 |
|
|
REAL tvpplcl(ncum) |
306 |
|
|
REAL tvaplcl(ncum) |
307 |
|
|
REAL dtmin(ncum) |
308 |
|
|
REAL w3d(ncum, klev) |
309 |
|
|
REAL am(ncum) |
310 |
|
|
REAL ents(ncum) |
311 |
|
|
REAL uav(ncum) |
312 |
|
|
REAL vav(ncum) |
313 |
|
|
|
314 |
|
|
INTEGER iflag(ncum) |
315 |
|
|
INTEGER nk(ncum) |
316 |
|
|
INTEGER icb(ncum) |
317 |
|
|
INTEGER inb(ncum) |
318 |
|
|
INTEGER inb1(ncum) |
319 |
|
|
INTEGER jtt(ncum) |
320 |
|
|
|
321 |
|
|
INTEGER nn, i, k, n, icbmax, nlp, j |
322 |
|
|
INTEGER ij |
323 |
|
|
INTEGER nn2, nn3 |
324 |
|
|
REAL clmcpv |
325 |
|
|
REAL clmcpd |
326 |
|
|
REAL cpdmcp |
327 |
|
|
REAL cpvmcpd |
328 |
|
|
REAL eps |
329 |
|
|
REAL epsi |
330 |
|
|
REAL epsim1 |
331 |
|
|
REAL tg, qg, s, alv, tc, ahg, denom, es, rg, ginv, rowl |
332 |
|
|
REAL delti |
333 |
|
|
REAL tca, elacrit |
334 |
|
|
REAL by, defrac |
335 |
|
|
! real byp |
336 |
|
|
REAL byp(ncum) |
337 |
|
|
LOGICAL lcape(ncum) |
338 |
|
|
REAL dbo |
339 |
|
|
REAL bf2, anum, dei, altem, cwat, stemp |
340 |
|
|
REAL alt, qp1, smid, sjmax, sjmin |
341 |
|
|
REAL delp, delm |
342 |
|
|
REAL awat, coeff, afac, revap, dhdp, fac, qstm, rat |
343 |
|
|
REAL qsm, sigt, b6, c6 |
344 |
|
|
REAL dpinv, cpinv |
345 |
|
|
REAL fqold, ftold, fuold, fvold |
346 |
|
|
REAL wdtrain(ncum), xxx |
347 |
|
|
REAL bsum(ncum, klev) |
348 |
|
|
REAL asij(ncum) |
349 |
|
|
REAL smin(ncum) |
350 |
|
|
REAL scrit(ncum) |
351 |
|
|
! real amp1,ad |
352 |
|
|
REAL amp1(ncum), ad(ncum) |
353 |
|
|
LOGICAL lwork(ncum) |
354 |
|
|
INTEGER num1, num2 |
355 |
|
|
|
356 |
|
|
! print*,'cpd en entree de convect2 ',cpd |
357 |
|
|
nlp = nl + 1 |
358 |
|
|
|
359 |
|
|
rowl = 1000.0 |
360 |
|
|
ginv = 1.0/g |
361 |
|
|
delti = 1.0/delt |
362 |
|
|
|
363 |
|
|
! Define some thermodynamic variables. |
364 |
|
|
|
365 |
|
|
clmcpv = cl - cpv |
366 |
|
|
clmcpd = cl - cpd |
367 |
|
|
cpdmcp = cpd - cpv |
368 |
|
|
cpvmcpd = cpv - cpd |
369 |
|
|
eps = rd/rv |
370 |
|
|
epsi = 1.0/eps |
371 |
|
|
epsim1 = epsi - 1.0 |
372 |
|
|
|
373 |
|
|
! Compress the fields. |
374 |
|
|
|
375 |
|
|
DO k = 1, nl + 1 |
376 |
|
|
nn = 0 |
377 |
|
|
DO i = 1, len |
378 |
|
|
IF (iflag1(i)==0) THEN |
379 |
|
|
nn = nn + 1 |
380 |
|
|
t(nn, k) = t1(i, k) |
381 |
|
|
q(nn, k) = q1(i, k) |
382 |
|
|
qs(nn, k) = qs1(i, k) |
383 |
|
|
u(nn, k) = u1(i, k) |
384 |
|
|
v(nn, k) = v1(i, k) |
385 |
|
|
gz(nn, k) = gz1(i, k) |
386 |
|
|
h(nn, k) = h1(i, k) |
387 |
|
|
lv(nn, k) = lv1(i, k) |
388 |
|
|
cpn(nn, k) = cpn1(i, k) |
389 |
|
|
p(nn, k) = p1(i, k) |
390 |
|
|
ph(nn, k) = ph1(i, k) |
391 |
|
|
tv(nn, k) = tv1(i, k) |
392 |
|
|
tp(nn, k) = tp1(i, k) |
393 |
|
|
tvp(nn, k) = tvp1(i, k) |
394 |
|
|
clw(nn, k) = clw1(i, k) |
395 |
|
|
END IF |
396 |
|
|
END DO |
397 |
|
|
! print*,'100 ncum,nn',ncum,nn |
398 |
|
|
END DO |
399 |
|
|
nn = 0 |
400 |
|
|
DO i = 1, len |
401 |
|
|
IF (iflag1(i)==0) THEN |
402 |
|
|
nn = nn + 1 |
403 |
|
|
cbmf(nn) = cbmf1(i) |
404 |
|
|
plcl(nn) = plcl1(i) |
405 |
|
|
tnk(nn) = tnk1(i) |
406 |
|
|
qnk(nn) = qnk1(i) |
407 |
|
|
gznk(nn) = gznk1(i) |
408 |
|
|
nk(nn) = nk1(i) |
409 |
|
|
icb(nn) = icb1(i) |
410 |
|
|
iflag(nn) = iflag1(i) |
411 |
|
|
END IF |
412 |
|
|
END DO |
413 |
|
|
! print*,'150 ncum,nn',ncum,nn |
414 |
|
|
|
415 |
|
|
! Initialize the tendencies, det, wd, tprime, qprime. |
416 |
|
|
|
417 |
|
|
DO k = 1, nl |
418 |
|
|
DO i = 1, ncum |
419 |
|
|
! det(i,k)=0.0 |
420 |
|
|
ft(i, k) = 0.0 |
421 |
|
|
fu(i, k) = 0.0 |
422 |
|
|
fv(i, k) = 0.0 |
423 |
|
|
fq(i, k) = 0.0 |
424 |
|
|
dph(i, k) = ph(i, k) - ph(i, k+1) |
425 |
|
|
ep(i, k) = 0.0 |
426 |
|
|
sigp(i, k) = sigs |
427 |
|
|
END DO |
428 |
|
|
END DO |
429 |
|
|
DO i = 1, ncum |
430 |
|
|
! wd(i)=0.0 |
431 |
|
|
! tprime(i)=0.0 |
432 |
|
|
! qprime(i)=0.0 |
433 |
|
|
precip(i) = 0.0 |
434 |
|
|
ft(i, nl+1) = 0.0 |
435 |
|
|
fu(i, nl+1) = 0.0 |
436 |
|
|
fv(i, nl+1) = 0.0 |
437 |
|
|
fq(i, nl+1) = 0.0 |
438 |
|
|
END DO |
439 |
|
|
|
440 |
|
|
! Compute icbmax. |
441 |
|
|
|
442 |
|
|
icbmax = 2 |
443 |
|
|
DO i = 1, ncum |
444 |
|
|
icbmax = max(icbmax, icb(i)) |
445 |
|
|
END DO |
446 |
|
|
|
447 |
|
|
|
448 |
|
|
! ===================================================================== |
449 |
|
|
! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
450 |
|
|
! ===================================================================== |
451 |
|
|
|
452 |
|
|
! --- The procedure is to solve the equation. |
453 |
|
|
! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
454 |
|
|
|
455 |
|
|
! *** Calculate certain parcel quantities, including static energy *** |
456 |
|
|
|
457 |
|
|
|
458 |
|
|
DO i = 1, ncum |
459 |
|
|
ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
460 |
|
|
273.15)) + gznk(i) |
461 |
|
|
END DO |
462 |
|
|
|
463 |
|
|
|
464 |
|
|
! *** Find lifted parcel quantities above cloud base *** |
465 |
|
|
|
466 |
|
|
|
467 |
|
|
DO k = minorig + 1, nl |
468 |
|
|
DO i = 1, ncum |
469 |
|
|
IF (k>=(icb(i)+1)) THEN |
470 |
|
|
tg = t(i, k) |
471 |
|
|
qg = qs(i, k) |
472 |
|
|
alv = lv0 - clmcpv*(t(i,k)-273.15) |
473 |
|
|
|
474 |
|
|
! First iteration. |
475 |
|
|
|
476 |
|
|
s = cpd + alv*alv*qg/(rv*t(i,k)*t(i,k)) |
477 |
|
|
s = 1./s |
478 |
|
|
ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
479 |
|
|
tg = tg + s*(ah0(i)-ahg) |
480 |
|
|
tg = max(tg, 35.0) |
481 |
|
|
tc = tg - 273.15 |
482 |
|
|
denom = 243.5 + tc |
483 |
|
|
IF (tc>=0.0) THEN |
484 |
|
|
es = 6.112*exp(17.67*tc/denom) |
485 |
|
|
ELSE |
486 |
|
|
es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
487 |
|
|
END IF |
488 |
|
|
qg = eps*es/(p(i,k)-es*(1.-eps)) |
489 |
|
|
|
490 |
|
|
! Second iteration. |
491 |
|
|
|
492 |
|
|
s = cpd + alv*alv*qg/(rv*t(i,k)*t(i,k)) |
493 |
|
|
s = 1./s |
494 |
|
|
ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
495 |
|
|
tg = tg + s*(ah0(i)-ahg) |
496 |
|
|
tg = max(tg, 35.0) |
497 |
|
|
tc = tg - 273.15 |
498 |
|
|
denom = 243.5 + tc |
499 |
|
|
IF (tc>=0.0) THEN |
500 |
|
|
es = 6.112*exp(17.67*tc/denom) |
501 |
|
|
ELSE |
502 |
|
|
es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
503 |
|
|
END IF |
504 |
|
|
qg = eps*es/(p(i,k)-es*(1.-eps)) |
505 |
|
|
|
506 |
|
|
alv = lv0 - clmcpv*(t(i,k)-273.15) |
507 |
|
|
! print*,'cpd dans convect2 ',cpd |
508 |
|
|
! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
509 |
|
|
! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
510 |
|
|
tp(i, k) = (ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
511 |
|
|
! if (.not.cpd.gt.1000.) then |
512 |
|
|
! print*,'CPD=',cpd |
513 |
|
|
! stop |
514 |
|
|
! endif |
515 |
|
|
clw(i, k) = qnk(i) - qg |
516 |
|
|
clw(i, k) = max(0.0, clw(i,k)) |
517 |
|
|
rg = qg/(1.-qnk(i)) |
518 |
|
|
tvp(i, k) = tp(i, k)*(1.+rg*epsi) |
519 |
|
|
END IF |
520 |
|
|
END DO |
521 |
|
|
END DO |
522 |
|
|
|
523 |
|
|
! ===================================================================== |
524 |
|
|
! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
525 |
|
|
! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
526 |
|
|
! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
527 |
|
|
! ===================================================================== |
528 |
|
|
|
529 |
|
|
DO k = minorig + 1, nl |
530 |
|
|
DO i = 1, ncum |
531 |
|
|
IF (k>=(nk(i)+1)) THEN |
532 |
|
|
tca = tp(i, k) - 273.15 |
533 |
|
|
IF (tca>=0.0) THEN |
534 |
|
|
elacrit = elcrit |
535 |
|
|
ELSE |
536 |
|
|
elacrit = elcrit*(1.0-tca/tlcrit) |
537 |
|
|
END IF |
538 |
|
|
elacrit = max(elacrit, 0.0) |
539 |
|
|
ep(i, k) = 1.0 - elacrit/max(clw(i,k), 1.0E-8) |
540 |
|
|
ep(i, k) = max(ep(i,k), 0.0) |
541 |
|
|
ep(i, k) = min(ep(i,k), 1.0) |
542 |
|
|
sigp(i, k) = sigs |
543 |
|
|
END IF |
544 |
|
|
END DO |
545 |
|
|
END DO |
546 |
|
|
|
547 |
|
|
! ===================================================================== |
548 |
|
|
! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
549 |
|
|
! --- VIRTUAL TEMPERATURE |
550 |
|
|
! ===================================================================== |
551 |
|
|
|
552 |
|
|
DO k = minorig + 1, nl |
553 |
|
|
DO i = 1, ncum |
554 |
|
|
IF (k>=(icb(i)+1)) THEN |
555 |
|
|
tvp(i, k) = tvp(i, k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
556 |
|
|
! print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
557 |
|
|
! print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
558 |
|
|
END IF |
559 |
|
|
END DO |
560 |
|
|
END DO |
561 |
|
|
DO i = 1, ncum |
562 |
|
|
tvp(i, nlp) = tvp(i, nl) - (gz(i,nlp)-gz(i,nl))/cpd |
563 |
|
|
END DO |
564 |
|
|
|
565 |
|
|
|
566 |
|
|
! ===================================================================== |
567 |
|
|
! --- NOW INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
568 |
|
|
! ===================================================================== |
569 |
|
|
|
570 |
|
|
DO i = 1, ncum*nlp |
571 |
|
|
nent(i, 1) = 0 |
572 |
|
|
water(i, 1) = 0.0 |
573 |
|
|
evap(i, 1) = 0.0 |
574 |
|
|
mp(i, 1) = 0.0 |
575 |
|
|
m(i, 1) = 0.0 |
576 |
|
|
wt(i, 1) = omtsnow |
577 |
|
|
hp(i, 1) = h(i, 1) |
578 |
|
|
! if(.not.cpn(i,1).gt.900.) then |
579 |
|
|
! print*,'i,lv(i,1),cpn(i,1)' |
580 |
|
|
! print*, i,lv(i,1),cpn(i,1) |
581 |
|
|
! k=(i-1)/ncum+1 |
582 |
|
|
! print*,'i,k',mod(i,ncum),k,' cpn',cpn(mod(i,ncum),k) |
583 |
|
|
! stop |
584 |
|
|
! endif |
585 |
|
|
lvcp(i, 1) = lv(i, 1)/cpn(i, 1) |
586 |
|
|
END DO |
587 |
|
|
|
588 |
|
|
DO i = 1, ncum*nlp*nlp |
589 |
|
|
elij(i, 1, 1) = 0.0 |
590 |
|
|
ment(i, 1, 1) = 0.0 |
591 |
|
|
sij(i, 1, 1) = 0.0 |
592 |
|
|
END DO |
593 |
|
|
|
594 |
|
|
DO k = 1, nlp |
595 |
|
|
DO j = 1, nlp |
596 |
|
|
DO i = 1, ncum |
597 |
|
|
qent(i, k, j) = q(i, j) |
598 |
|
|
uent(i, k, j) = u(i, j) |
599 |
|
|
vent(i, k, j) = v(i, j) |
600 |
|
|
END DO |
601 |
|
|
END DO |
602 |
|
|
END DO |
603 |
|
|
|
604 |
|
|
DO i = 1, ncum |
605 |
|
|
qp(i, 1) = q(i, 1) |
606 |
|
|
up(i, 1) = u(i, 1) |
607 |
|
|
vp(i, 1) = v(i, 1) |
608 |
|
|
END DO |
609 |
|
|
DO k = 2, nlp |
610 |
|
|
DO i = 1, ncum |
611 |
|
|
qp(i, k) = q(i, k-1) |
612 |
|
|
up(i, k) = u(i, k-1) |
613 |
|
|
vp(i, k) = v(i, k-1) |
614 |
|
|
END DO |
615 |
|
|
END DO |
616 |
|
|
|
617 |
|
|
! ===================================================================== |
618 |
|
|
! --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S |
619 |
|
|
! --- HIGHEST LEVEL OF NEUTRAL BUOYANCY |
620 |
|
|
! --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) |
621 |
|
|
! ===================================================================== |
622 |
|
|
|
623 |
|
|
DO i = 1, ncum |
624 |
|
|
cape(i) = 0.0 |
625 |
|
|
capem(i) = 0.0 |
626 |
|
|
inb(i) = icb(i) + 1 |
627 |
|
|
inb1(i) = inb(i) |
628 |
|
|
END DO |
629 |
|
|
|
630 |
|
|
! Originial Code |
631 |
|
|
|
632 |
|
|
! do 530 k=minorig+1,nl-1 |
633 |
|
|
! do 520 i=1,ncum |
634 |
|
|
! if(k.ge.(icb(i)+1))then |
635 |
|
|
! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
636 |
|
|
! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
637 |
|
|
! cape(i)=cape(i)+by |
638 |
|
|
! if(by.ge.0.0)inb1(i)=k+1 |
639 |
|
|
! if(cape(i).gt.0.0)then |
640 |
|
|
! inb(i)=k+1 |
641 |
|
|
! capem(i)=cape(i) |
642 |
|
|
! endif |
643 |
|
|
! endif |
644 |
|
|
! 520 continue |
645 |
|
|
! 530 continue |
646 |
|
|
! do 540 i=1,ncum |
647 |
|
|
! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
648 |
|
|
! cape(i)=capem(i)+byp |
649 |
|
|
! defrac=capem(i)-cape(i) |
650 |
|
|
! defrac=max(defrac,0.001) |
651 |
|
|
! frac(i)=-cape(i)/defrac |
652 |
|
|
! frac(i)=min(frac(i),1.0) |
653 |
|
|
! frac(i)=max(frac(i),0.0) |
654 |
|
|
! 540 continue |
655 |
|
|
|
656 |
|
|
! K Emanuel fix |
657 |
|
|
|
658 |
|
|
! call zilch(byp,ncum) |
659 |
|
|
! do 530 k=minorig+1,nl-1 |
660 |
|
|
! do 520 i=1,ncum |
661 |
|
|
! if(k.ge.(icb(i)+1))then |
662 |
|
|
! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
663 |
|
|
! cape(i)=cape(i)+by |
664 |
|
|
! if(by.ge.0.0)inb1(i)=k+1 |
665 |
|
|
! if(cape(i).gt.0.0)then |
666 |
|
|
! inb(i)=k+1 |
667 |
|
|
! capem(i)=cape(i) |
668 |
|
|
! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
669 |
|
|
! endif |
670 |
|
|
! endif |
671 |
|
|
! 520 continue |
672 |
|
|
! 530 continue |
673 |
|
|
! do 540 i=1,ncum |
674 |
|
|
! inb(i)=max(inb(i),inb1(i)) |
675 |
|
|
! cape(i)=capem(i)+byp(i) |
676 |
|
|
! defrac=capem(i)-cape(i) |
677 |
|
|
! defrac=max(defrac,0.001) |
678 |
|
|
! frac(i)=-cape(i)/defrac |
679 |
|
|
! frac(i)=min(frac(i),1.0) |
680 |
|
|
! frac(i)=max(frac(i),0.0) |
681 |
|
|
! 540 continue |
682 |
|
|
|
683 |
|
|
! J Teixeira fix |
684 |
|
|
|
685 |
|
|
CALL zilch(byp, ncum) |
686 |
|
|
DO i = 1, ncum |
687 |
|
|
lcape(i) = .TRUE. |
688 |
|
|
END DO |
689 |
|
|
DO k = minorig + 1, nl - 1 |
690 |
|
|
DO i = 1, ncum |
691 |
|
|
IF (cape(i)<0.0) lcape(i) = .FALSE. |
692 |
|
|
IF ((k>=(icb(i)+1)) .AND. lcape(i)) THEN |
693 |
|
|
by = (tvp(i,k)-tv(i,k))*dph(i, k)/p(i, k) |
694 |
|
|
byp(i) = (tvp(i,k+1)-tv(i,k+1))*dph(i, k+1)/p(i, k+1) |
695 |
|
|
cape(i) = cape(i) + by |
696 |
|
|
IF (by>=0.0) inb1(i) = k + 1 |
697 |
|
|
IF (cape(i)>0.0) THEN |
698 |
|
|
inb(i) = k + 1 |
699 |
|
|
capem(i) = cape(i) |
700 |
|
|
END IF |
701 |
|
|
END IF |
702 |
|
|
END DO |
703 |
|
|
END DO |
704 |
|
|
DO i = 1, ncum |
705 |
|
|
cape(i) = capem(i) + byp(i) |
706 |
|
|
defrac = capem(i) - cape(i) |
707 |
|
|
defrac = max(defrac, 0.001) |
708 |
|
|
frac(i) = -cape(i)/defrac |
709 |
|
|
frac(i) = min(frac(i), 1.0) |
710 |
|
|
frac(i) = max(frac(i), 0.0) |
711 |
|
|
END DO |
712 |
|
|
|
713 |
|
|
! ===================================================================== |
714 |
|
|
! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
715 |
|
|
! ===================================================================== |
716 |
|
|
|
717 |
|
|
DO k = minorig + 1, nl |
718 |
|
|
DO i = 1, ncum |
719 |
|
|
IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
720 |
|
|
hp(i, k) = h(i, nk(i)) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k & |
721 |
|
|
) |
722 |
|
|
END IF |
723 |
|
|
END DO |
724 |
|
|
END DO |
725 |
|
|
|
726 |
|
|
! ===================================================================== |
727 |
|
|
! --- CALCULATE CLOUD BASE MASS FLUX AND RATES OF MIXING, M(I), |
728 |
|
|
! --- AT EACH MODEL LEVEL |
729 |
|
|
! ===================================================================== |
730 |
|
|
|
731 |
|
|
! tvpplcl = parcel temperature lifted adiabatically from level |
732 |
|
|
! icb-1 to the LCL. |
733 |
|
|
! tvaplcl = virtual temperature at the LCL. |
734 |
|
|
|
735 |
|
|
DO i = 1, ncum |
736 |
|
|
dtpbl(i) = 0.0 |
737 |
|
|
tvpplcl(i) = tvp(i, icb(i)-1) - rd*tvp(i, icb(i)-1)*(p(i,icb(i)-1)-plcl(i & |
738 |
|
|
))/(cpn(i,icb(i)-1)*p(i,icb(i)-1)) |
739 |
|
|
tvaplcl(i) = tv(i, icb(i)) + (tvp(i,icb(i))-tvp(i,icb(i)+1))*(plcl(i)-p(i & |
740 |
|
|
,icb(i)))/(p(i,icb(i))-p(i,icb(i)+1)) |
741 |
|
|
END DO |
742 |
|
|
|
743 |
|
|
! ------------------------------------------------------------------- |
744 |
|
|
! --- Interpolate difference between lifted parcel and |
745 |
|
|
! --- environmental temperatures to lifted condensation level |
746 |
|
|
! ------------------------------------------------------------------- |
747 |
|
|
|
748 |
|
|
! dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). |
749 |
|
|
|
750 |
|
|
DO k = minorig, icbmax |
751 |
|
|
DO i = 1, ncum |
752 |
|
|
IF ((k>=nk(i)) .AND. (k<=(icb(i)-1))) THEN |
753 |
|
|
dtpbl(i) = dtpbl(i) + (tvp(i,k)-tv(i,k))*dph(i, k) |
754 |
|
|
END IF |
755 |
|
|
END DO |
756 |
|
|
END DO |
757 |
|
|
DO i = 1, ncum |
758 |
|
|
dtpbl(i) = dtpbl(i)/(ph(i,nk(i))-ph(i,icb(i))) |
759 |
|
|
dtmin(i) = tvpplcl(i) - tvaplcl(i) + dtmax + dtpbl(i) |
760 |
|
|
END DO |
761 |
|
|
|
762 |
|
|
! ------------------------------------------------------------------- |
763 |
|
|
! --- Adjust cloud base mass flux |
764 |
|
|
! ------------------------------------------------------------------- |
765 |
|
|
|
766 |
|
|
DO i = 1, ncum |
767 |
|
|
work(i) = cbmf(i) |
768 |
|
|
cbmf(i) = max(0.0, (1.0-damp)*cbmf(i)+0.1*alpha*dtmin(i)) |
769 |
|
|
IF ((work(i)==0.0) .AND. (cbmf(i)==0.0)) THEN |
770 |
|
|
iflag(i) = 3 |
771 |
|
|
END IF |
772 |
|
|
END DO |
773 |
|
|
|
774 |
|
|
! ------------------------------------------------------------------- |
775 |
|
|
! --- Calculate rates of mixing, m(i) |
776 |
|
|
! ------------------------------------------------------------------- |
777 |
|
|
|
778 |
|
|
CALL zilch(work, ncum) |
779 |
|
|
|
780 |
|
|
DO j = minorig + 1, nl |
781 |
|
|
DO i = 1, ncum |
782 |
|
|
IF ((j>=(icb(i)+1)) .AND. (j<=inb(i))) THEN |
783 |
|
|
k = min(j, inb1(i)) |
784 |
|
|
dbo = abs(tv(i,k+1)-tvp(i,k+1)-tv(i,k-1)+tvp(i,k-1)) + & |
785 |
|
|
entp*0.04*(ph(i,k)-ph(i,k+1)) |
786 |
|
|
work(i) = work(i) + dbo |
787 |
|
|
m(i, j) = cbmf(i)*dbo |
788 |
|
|
END IF |
789 |
|
|
END DO |
790 |
|
|
END DO |
791 |
|
|
DO k = minorig + 1, nl |
792 |
|
|
DO i = 1, ncum |
793 |
|
|
IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN |
794 |
|
|
m(i, k) = m(i, k)/work(i) |
795 |
|
|
END IF |
796 |
|
|
END DO |
797 |
|
|
END DO |
798 |
|
|
|
799 |
|
|
|
800 |
|
|
! ===================================================================== |
801 |
|
|
! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
802 |
|
|
! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
803 |
|
|
! --- FRACTION (sij) |
804 |
|
|
! ===================================================================== |
805 |
|
|
|
806 |
|
|
|
807 |
|
|
DO i = minorig + 1, nl |
808 |
|
|
DO j = minorig + 1, nl |
809 |
|
|
DO ij = 1, ncum |
810 |
|
|
IF ((i>=(icb(ij)+1)) .AND. (j>=icb(ij)) .AND. (i<=inb(ij)) .AND. (j<= & |
811 |
|
|
inb(ij))) THEN |
812 |
|
|
qti = qnk(ij) - ep(ij, i)*clw(ij, i) |
813 |
|
|
bf2 = 1. + lv(ij, j)*lv(ij, j)*qs(ij, j)/(rv*t(ij,j)*t(ij,j)*cpd) |
814 |
|
|
anum = h(ij, j) - hp(ij, i) + (cpv-cpd)*t(ij, j)*(qti-q(ij,j)) |
815 |
|
|
denom = h(ij, i) - hp(ij, i) + (cpd-cpv)*(q(ij,i)-qti)*t(ij, j) |
816 |
|
|
dei = denom |
817 |
|
|
IF (abs(dei)<0.01) dei = 0.01 |
818 |
|
|
sij(ij, i, j) = anum/dei |
819 |
|
|
sij(ij, i, i) = 1.0 |
820 |
|
|
altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
821 |
|
|
altem = altem/bf2 |
822 |
|
|
cwat = clw(ij, j)*(1.-ep(ij,j)) |
823 |
|
|
stemp = sij(ij, i, j) |
824 |
|
|
IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
825 |
|
|
anum = anum - lv(ij, j)*(qti-qs(ij,j)-cwat*bf2) |
826 |
|
|
denom = denom + lv(ij, j)*(q(ij,i)-qti) |
827 |
|
|
IF (abs(denom)<0.01) denom = 0.01 |
828 |
|
|
sij(ij, i, j) = anum/denom |
829 |
|
|
altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
830 |
|
|
altem = altem - (bf2-1.)*cwat |
831 |
|
|
END IF |
832 |
|
|
IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
833 |
|
|
qent(ij, i, j) = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti |
834 |
|
|
uent(ij, i, j) = sij(ij, i, j)*u(ij, i) + & |
835 |
|
|
(1.-sij(ij,i,j))*u(ij, nk(ij)) |
836 |
|
|
vent(ij, i, j) = sij(ij, i, j)*v(ij, i) + & |
837 |
|
|
(1.-sij(ij,i,j))*v(ij, nk(ij)) |
838 |
|
|
elij(ij, i, j) = altem |
839 |
|
|
elij(ij, i, j) = max(0.0, elij(ij,i,j)) |
840 |
|
|
ment(ij, i, j) = m(ij, i)/(1.-sij(ij,i,j)) |
841 |
|
|
nent(ij, i) = nent(ij, i) + 1 |
842 |
|
|
END IF |
843 |
|
|
sij(ij, i, j) = max(0.0, sij(ij,i,j)) |
844 |
|
|
sij(ij, i, j) = min(1.0, sij(ij,i,j)) |
845 |
|
|
END IF |
846 |
|
|
END DO |
847 |
|
|
END DO |
848 |
|
|
|
849 |
|
|
! *** If no air can entrain at level i assume that updraft detrains |
850 |
|
|
! *** |
851 |
|
|
! *** at that level and calculate detrained air flux and properties |
852 |
|
|
! *** |
853 |
|
|
|
854 |
|
|
DO ij = 1, ncum |
855 |
|
|
IF ((i>=(icb(ij)+1)) .AND. (i<=inb(ij)) .AND. (nent(ij,i)==0)) THEN |
856 |
|
|
ment(ij, i, i) = m(ij, i) |
857 |
|
|
qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
858 |
|
|
uent(ij, i, i) = u(ij, nk(ij)) |
859 |
|
|
vent(ij, i, i) = v(ij, nk(ij)) |
860 |
|
|
elij(ij, i, i) = clw(ij, i) |
861 |
|
|
sij(ij, i, i) = 1.0 |
862 |
|
|
END IF |
863 |
|
|
END DO |
864 |
|
|
END DO |
865 |
|
|
|
866 |
|
|
DO i = 1, ncum |
867 |
|
|
sij(i, inb(i), inb(i)) = 1.0 |
868 |
|
|
END DO |
869 |
|
|
|
870 |
|
|
! ===================================================================== |
871 |
|
|
! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
872 |
|
|
! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
873 |
|
|
! ===================================================================== |
874 |
|
|
|
875 |
|
|
|
876 |
|
|
CALL zilch(bsum, ncum*nlp) |
877 |
|
|
DO ij = 1, ncum |
878 |
|
|
lwork(ij) = .FALSE. |
879 |
|
|
END DO |
880 |
|
|
DO i = minorig + 1, nl |
881 |
|
|
|
882 |
|
|
num1 = 0 |
883 |
|
|
DO ij = 1, ncum |
884 |
|
|
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) num1 = num1 + 1 |
885 |
|
|
END DO |
886 |
|
|
IF (num1<=0) GO TO 789 |
887 |
|
|
|
888 |
|
|
DO ij = 1, ncum |
889 |
|
|
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) THEN |
890 |
|
|
lwork(ij) = (nent(ij,i)/=0) |
891 |
|
|
qp1 = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
892 |
|
|
anum = h(ij, i) - hp(ij, i) - lv(ij, i)*(qp1-qs(ij,i)) |
893 |
|
|
denom = h(ij, i) - hp(ij, i) + lv(ij, i)*(q(ij,i)-qp1) |
894 |
|
|
IF (abs(denom)<0.01) denom = 0.01 |
895 |
|
|
scrit(ij) = anum/denom |
896 |
|
|
alt = qp1 - qs(ij, i) + scrit(ij)*(q(ij,i)-qp1) |
897 |
|
|
IF (scrit(ij)<0.0 .OR. alt<0.0) scrit(ij) = 1.0 |
898 |
|
|
asij(ij) = 0.0 |
899 |
|
|
smin(ij) = 1.0 |
900 |
|
|
END IF |
901 |
|
|
END DO |
902 |
|
|
DO j = minorig, nl |
903 |
|
|
|
904 |
|
|
num2 = 0 |
905 |
|
|
DO ij = 1, ncum |
906 |
|
|
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
907 |
|
|
ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) num2 = num2 + 1 |
908 |
|
|
END DO |
909 |
|
|
IF (num2<=0) GO TO 783 |
910 |
|
|
|
911 |
|
|
DO ij = 1, ncum |
912 |
|
|
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
913 |
|
|
ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
914 |
|
|
IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
915 |
|
|
IF (j>i) THEN |
916 |
|
|
smid = min(sij(ij,i,j), scrit(ij)) |
917 |
|
|
sjmax = smid |
918 |
|
|
sjmin = smid |
919 |
|
|
IF (smid<smin(ij) .AND. sij(ij,i,j+1)<smid) THEN |
920 |
|
|
smin(ij) = smid |
921 |
|
|
sjmax = min(sij(ij,i,j+1), sij(ij,i,j), scrit(ij)) |
922 |
|
|
sjmin = max(sij(ij,i,j-1), sij(ij,i,j)) |
923 |
|
|
sjmin = min(sjmin, scrit(ij)) |
924 |
|
|
END IF |
925 |
|
|
ELSE |
926 |
|
|
sjmax = max(sij(ij,i,j+1), scrit(ij)) |
927 |
|
|
smid = max(sij(ij,i,j), scrit(ij)) |
928 |
|
|
sjmin = 0.0 |
929 |
|
|
IF (j>1) sjmin = sij(ij, i, j-1) |
930 |
|
|
sjmin = max(sjmin, scrit(ij)) |
931 |
|
|
END IF |
932 |
|
|
delp = abs(sjmax-smid) |
933 |
|
|
delm = abs(sjmin-smid) |
934 |
|
|
asij(ij) = asij(ij) + (delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
935 |
|
|
ment(ij, i, j) = ment(ij, i, j)*(delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
936 |
|
|
END IF |
937 |
|
|
END IF |
938 |
|
|
END DO |
939 |
|
|
783 END DO |
940 |
|
|
DO ij = 1, ncum |
941 |
|
|
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. lwork(ij)) THEN |
942 |
|
|
asij(ij) = max(1.0E-21, asij(ij)) |
943 |
|
|
asij(ij) = 1.0/asij(ij) |
944 |
|
|
bsum(ij, i) = 0.0 |
945 |
|
|
END IF |
946 |
|
|
END DO |
947 |
|
|
DO j = minorig, nl + 1 |
948 |
|
|
DO ij = 1, ncum |
949 |
|
|
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
950 |
|
|
ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
951 |
|
|
ment(ij, i, j) = ment(ij, i, j)*asij(ij) |
952 |
|
|
bsum(ij, i) = bsum(ij, i) + ment(ij, i, j) |
953 |
|
|
END IF |
954 |
|
|
END DO |
955 |
|
|
END DO |
956 |
|
|
DO ij = 1, ncum |
957 |
|
|
IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (bsum(ij, & |
958 |
|
|
i)<1.0E-18) .AND. lwork(ij)) THEN |
959 |
|
|
nent(ij, i) = 0 |
960 |
|
|
ment(ij, i, i) = m(ij, i) |
961 |
|
|
qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
962 |
|
|
uent(ij, i, i) = u(ij, nk(ij)) |
963 |
|
|
vent(ij, i, i) = v(ij, nk(ij)) |
964 |
|
|
elij(ij, i, i) = clw(ij, i) |
965 |
|
|
sij(ij, i, i) = 1.0 |
966 |
|
|
END IF |
967 |
|
|
END DO |
968 |
|
|
789 END DO |
969 |
|
|
|
970 |
|
|
! ===================================================================== |
971 |
|
|
! --- PRECIPITATING DOWNDRAFT CALCULATION |
972 |
|
|
! ===================================================================== |
973 |
|
|
|
974 |
|
|
! *** Check whether ep(inb)=0, if so, skip precipitating *** |
975 |
|
|
! *** downdraft calculation *** |
976 |
|
|
|
977 |
|
|
|
978 |
|
|
! *** Integrate liquid water equation to find condensed water *** |
979 |
|
|
! *** and condensed water flux *** |
980 |
|
|
|
981 |
|
|
|
982 |
|
|
DO i = 1, ncum |
983 |
|
|
jtt(i) = 2 |
984 |
|
|
IF (ep(i,inb(i))<=0.0001) iflag(i) = 2 |
985 |
|
|
IF (iflag(i)==0) THEN |
986 |
|
|
lwork(i) = .TRUE. |
987 |
|
|
ELSE |
988 |
|
|
lwork(i) = .FALSE. |
989 |
|
|
END IF |
990 |
|
|
END DO |
991 |
|
|
|
992 |
|
|
! *** Begin downdraft loop *** |
993 |
|
|
|
994 |
|
|
|
995 |
|
|
CALL zilch(wdtrain, ncum) |
996 |
|
|
DO i = nl + 1, 1, -1 |
997 |
|
|
|
998 |
|
|
num1 = 0 |
999 |
|
|
DO ij = 1, ncum |
1000 |
|
|
IF ((i<=inb(ij)) .AND. lwork(ij)) num1 = num1 + 1 |
1001 |
|
|
END DO |
1002 |
|
|
IF (num1<=0) GO TO 899 |
1003 |
|
|
|
1004 |
|
|
|
1005 |
|
|
! *** Calculate detrained precipitation *** |
1006 |
|
|
|
1007 |
|
|
DO ij = 1, ncum |
1008 |
|
|
IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
1009 |
|
|
wdtrain(ij) = g*ep(ij, i)*m(ij, i)*clw(ij, i) |
1010 |
|
|
END IF |
1011 |
|
|
END DO |
1012 |
|
|
|
1013 |
|
|
IF (i>1) THEN |
1014 |
|
|
DO j = 1, i - 1 |
1015 |
|
|
DO ij = 1, ncum |
1016 |
|
|
IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
1017 |
|
|
awat = elij(ij, j, i) - (1.-ep(ij,i))*clw(ij, i) |
1018 |
|
|
awat = max(0.0, awat) |
1019 |
|
|
wdtrain(ij) = wdtrain(ij) + g*awat*ment(ij, j, i) |
1020 |
|
|
END IF |
1021 |
|
|
END DO |
1022 |
|
|
END DO |
1023 |
|
|
END IF |
1024 |
|
|
|
1025 |
|
|
! *** Find rain water and evaporation using provisional *** |
1026 |
|
|
! *** estimates of qp(i)and qp(i-1) *** |
1027 |
|
|
|
1028 |
|
|
|
1029 |
|
|
! *** Value of terminal velocity and coeffecient of evaporation for snow |
1030 |
|
|
! *** |
1031 |
|
|
|
1032 |
|
|
DO ij = 1, ncum |
1033 |
|
|
IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
1034 |
|
|
coeff = coeffs |
1035 |
|
|
wt(ij, i) = omtsnow |
1036 |
|
|
|
1037 |
|
|
! *** Value of terminal velocity and coeffecient of evaporation for |
1038 |
|
|
! rain *** |
1039 |
|
|
|
1040 |
|
|
IF (t(ij,i)>273.0) THEN |
1041 |
|
|
coeff = coeffr |
1042 |
|
|
wt(ij, i) = omtrain |
1043 |
|
|
END IF |
1044 |
|
|
qsm = 0.5*(q(ij,i)+qp(ij,i+1)) |
1045 |
|
|
afac = coeff*ph(ij, i)*(qs(ij,i)-qsm)/(1.0E4+2.0E3*ph(ij,i)*qs(ij,i)) |
1046 |
|
|
afac = max(afac, 0.0) |
1047 |
|
|
sigt = sigp(ij, i) |
1048 |
|
|
sigt = max(0.0, sigt) |
1049 |
|
|
sigt = min(1.0, sigt) |
1050 |
|
|
b6 = 100.*(ph(ij,i)-ph(ij,i+1))*sigt*afac/wt(ij, i) |
1051 |
|
|
c6 = (water(ij,i+1)*wt(ij,i+1)+wdtrain(ij)/sigd)/wt(ij, i) |
1052 |
|
|
revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) |
1053 |
|
|
evap(ij, i) = sigt*afac*revap |
1054 |
|
|
water(ij, i) = revap*revap |
1055 |
|
|
|
1056 |
|
|
! *** Calculate precipitating downdraft mass flux under *** |
1057 |
|
|
! *** hydrostatic approximation *** |
1058 |
|
|
|
1059 |
|
|
IF (i>1) THEN |
1060 |
|
|
dhdp = (h(ij,i)-h(ij,i-1))/(p(ij,i-1)-p(ij,i)) |
1061 |
|
|
dhdp = max(dhdp, 10.0) |
1062 |
|
|
mp(ij, i) = 100.*ginv*lv(ij, i)*sigd*evap(ij, i)/dhdp |
1063 |
|
|
mp(ij, i) = max(mp(ij,i), 0.0) |
1064 |
|
|
|
1065 |
|
|
! *** Add small amount of inertia to downdraft *** |
1066 |
|
|
|
1067 |
|
|
fac = 20.0/(ph(ij,i-1)-ph(ij,i)) |
1068 |
|
|
mp(ij, i) = (fac*mp(ij,i+1)+mp(ij,i))/(1.+fac) |
1069 |
|
|
|
1070 |
|
|
! *** Force mp to decrease linearly to zero |
1071 |
|
|
! *** |
1072 |
|
|
! *** between about 950 mb and the surface |
1073 |
|
|
! *** |
1074 |
|
|
|
1075 |
|
|
IF (p(ij,i)>(0.949*p(ij,1))) THEN |
1076 |
|
|
jtt(ij) = max(jtt(ij), i) |
1077 |
|
|
mp(ij, i) = mp(ij, jtt(ij))*(p(ij,1)-p(ij,i))/ & |
1078 |
|
|
(p(ij,1)-p(ij,jtt(ij))) |
1079 |
|
|
END IF |
1080 |
|
|
END IF |
1081 |
|
|
|
1082 |
|
|
! *** Find mixing ratio of precipitating downdraft *** |
1083 |
|
|
|
1084 |
|
|
IF (i/=inb(ij)) THEN |
1085 |
|
|
IF (i==1) THEN |
1086 |
|
|
qstm = qs(ij, 1) |
1087 |
|
|
ELSE |
1088 |
|
|
qstm = qs(ij, i-1) |
1089 |
|
|
END IF |
1090 |
|
|
IF (mp(ij,i)>mp(ij,i+1)) THEN |
1091 |
|
|
rat = mp(ij, i+1)/mp(ij, i) |
1092 |
|
|
qp(ij, i) = qp(ij, i+1)*rat + q(ij, i)*(1.0-rat) + & |
1093 |
|
|
100.*ginv*sigd*(ph(ij,i)-ph(ij,i+1))*(evap(ij,i)/mp(ij,i)) |
1094 |
|
|
up(ij, i) = up(ij, i+1)*rat + u(ij, i)*(1.-rat) |
1095 |
|
|
vp(ij, i) = vp(ij, i+1)*rat + v(ij, i)*(1.-rat) |
1096 |
|
|
ELSE |
1097 |
|
|
IF (mp(ij,i+1)>0.0) THEN |
1098 |
|
|
qp(ij, i) = (gz(ij,i+1)-gz(ij,i)+qp(ij,i+1)*(lv(ij,i+1)+t(ij, & |
1099 |
|
|
i+1)*(cl-cpd))+cpd*(t(ij,i+1)-t(ij, & |
1100 |
|
|
i)))/(lv(ij,i)+t(ij,i)*(cl-cpd)) |
1101 |
|
|
up(ij, i) = up(ij, i+1) |
1102 |
|
|
vp(ij, i) = vp(ij, i+1) |
1103 |
|
|
END IF |
1104 |
|
|
END IF |
1105 |
|
|
qp(ij, i) = min(qp(ij,i), qstm) |
1106 |
|
|
qp(ij, i) = max(qp(ij,i), 0.0) |
1107 |
|
|
END IF |
1108 |
|
|
END IF |
1109 |
|
|
END DO |
1110 |
|
|
899 END DO |
1111 |
|
|
|
1112 |
|
|
! *** Calculate surface precipitation in mm/day *** |
1113 |
|
|
|
1114 |
|
|
DO i = 1, ncum |
1115 |
|
|
IF (iflag(i)<=1) THEN |
1116 |
|
|
! c precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. |
1117 |
|
|
! c & /(rowl*g) |
1118 |
|
|
! c precip(i)=precip(i)*delt/86400. |
1119 |
|
|
precip(i) = wt(i, 1)*sigd*water(i, 1)*86400/g |
1120 |
|
|
END IF |
1121 |
|
|
END DO |
1122 |
|
|
|
1123 |
|
|
|
1124 |
|
|
! *** Calculate downdraft velocity scale and surface temperature and *** |
1125 |
|
|
! *** water vapor fluctuations *** |
1126 |
|
|
|
1127 |
|
|
! wd=beta*abs(mp(icb))*0.01*rd*t(icb)/(sigd*p(icb)) |
1128 |
|
|
! qprime=0.5*(qp(1)-q(1)) |
1129 |
|
|
! tprime=lv0*qprime/cpd |
1130 |
|
|
|
1131 |
|
|
! *** Calculate tendencies of lowest level potential temperature *** |
1132 |
|
|
! *** and mixing ratio *** |
1133 |
|
|
|
1134 |
|
|
DO i = 1, ncum |
1135 |
|
|
work(i) = 0.01/(ph(i,1)-ph(i,2)) |
1136 |
|
|
am(i) = 0.0 |
1137 |
|
|
END DO |
1138 |
|
|
DO k = 2, nl |
1139 |
|
|
DO i = 1, ncum |
1140 |
|
|
IF ((nk(i)==1) .AND. (k<=inb(i)) .AND. (nk(i)==1)) THEN |
1141 |
|
|
am(i) = am(i) + m(i, k) |
1142 |
|
|
END IF |
1143 |
|
|
END DO |
1144 |
|
|
END DO |
1145 |
|
|
DO i = 1, ncum |
1146 |
|
|
IF ((g*work(i)*am(i))>=delti) iflag(i) = 1 |
1147 |
|
|
ft(i, 1) = ft(i, 1) + g*work(i)*am(i)*(t(i,2)-t(i,1)+(gz(i,2)-gz(i, & |
1148 |
|
|
1))/cpn(i,1)) |
1149 |
|
|
ft(i, 1) = ft(i, 1) - lvcp(i, 1)*sigd*evap(i, 1) |
1150 |
|
|
ft(i, 1) = ft(i, 1) + sigd*wt(i, 2)*(cl-cpd)*water(i, 2)*(t(i,2)-t(i,1))* & |
1151 |
|
|
work(i)/cpn(i, 1) |
1152 |
|
|
fq(i, 1) = fq(i, 1) + g*mp(i, 2)*(qp(i,2)-q(i,1))*work(i) + & |
1153 |
|
|
sigd*evap(i, 1) |
1154 |
|
|
fq(i, 1) = fq(i, 1) + g*am(i)*(q(i,2)-q(i,1))*work(i) |
1155 |
|
|
fu(i, 1) = fu(i, 1) + g*work(i)*(mp(i,2)*(up(i,2)-u(i,1))+am(i)*(u(i, & |
1156 |
|
|
2)-u(i,1))) |
1157 |
|
|
fv(i, 1) = fv(i, 1) + g*work(i)*(mp(i,2)*(vp(i,2)-v(i,1))+am(i)*(v(i, & |
1158 |
|
|
2)-v(i,1))) |
1159 |
|
|
END DO |
1160 |
|
|
DO j = 2, nl |
1161 |
|
|
DO i = 1, ncum |
1162 |
|
|
IF (j<=inb(i)) THEN |
1163 |
|
|
fq(i, 1) = fq(i, 1) + g*work(i)*ment(i, j, 1)*(qent(i,j,1)-q(i,1)) |
1164 |
|
|
fu(i, 1) = fu(i, 1) + g*work(i)*ment(i, j, 1)*(uent(i,j,1)-u(i,1)) |
1165 |
|
|
fv(i, 1) = fv(i, 1) + g*work(i)*ment(i, j, 1)*(vent(i,j,1)-v(i,1)) |
1166 |
|
|
END IF |
1167 |
|
|
END DO |
1168 |
|
|
END DO |
1169 |
|
|
|
1170 |
|
|
! *** Calculate tendencies of potential temperature and mixing ratio *** |
1171 |
|
|
! *** at levels above the lowest level *** |
1172 |
|
|
|
1173 |
|
|
! *** First find the net saturated updraft and downdraft mass fluxes *** |
1174 |
|
|
! *** through each level *** |
1175 |
|
|
|
1176 |
|
|
DO i = 2, nl + 1 |
1177 |
|
|
|
1178 |
|
|
num1 = 0 |
1179 |
|
|
DO ij = 1, ncum |
1180 |
|
|
IF (i<=inb(ij)) num1 = num1 + 1 |
1181 |
|
|
END DO |
1182 |
|
|
IF (num1<=0) GO TO 1500 |
1183 |
|
|
|
1184 |
|
|
CALL zilch(amp1, ncum) |
1185 |
|
|
CALL zilch(ad, ncum) |
1186 |
|
|
|
1187 |
|
|
DO k = i + 1, nl + 1 |
1188 |
|
|
DO ij = 1, ncum |
1189 |
|
|
IF ((i>=nk(ij)) .AND. (i<=inb(ij)) .AND. (k<=(inb(ij)+1))) THEN |
1190 |
|
|
amp1(ij) = amp1(ij) + m(ij, k) |
1191 |
|
|
END IF |
1192 |
|
|
END DO |
1193 |
|
|
END DO |
1194 |
|
|
|
1195 |
|
|
DO k = 1, i |
1196 |
|
|
DO j = i + 1, nl + 1 |
1197 |
|
|
DO ij = 1, ncum |
1198 |
|
|
IF ((j<=(inb(ij)+1)) .AND. (i<=inb(ij))) THEN |
1199 |
|
|
amp1(ij) = amp1(ij) + ment(ij, k, j) |
1200 |
|
|
END IF |
1201 |
|
|
END DO |
1202 |
|
|
END DO |
1203 |
|
|
END DO |
1204 |
|
|
DO k = 1, i - 1 |
1205 |
|
|
DO j = i, nl + 1 |
1206 |
|
|
DO ij = 1, ncum |
1207 |
|
|
IF ((i<=inb(ij)) .AND. (j<=inb(ij))) THEN |
1208 |
|
|
ad(ij) = ad(ij) + ment(ij, j, k) |
1209 |
|
|
END IF |
1210 |
|
|
END DO |
1211 |
|
|
END DO |
1212 |
|
|
END DO |
1213 |
|
|
|
1214 |
|
|
DO ij = 1, ncum |
1215 |
|
|
IF (i<=inb(ij)) THEN |
1216 |
|
|
dpinv = 0.01/(ph(ij,i)-ph(ij,i+1)) |
1217 |
|
|
cpinv = 1.0/cpn(ij, i) |
1218 |
|
|
|
1219 |
|
|
ft(ij, i) = ft(ij, i) + g*dpinv*(amp1(ij)*(t(ij,i+1)-t(ij, & |
1220 |
|
|
i)+(gz(ij,i+1)-gz(ij,i))*cpinv)-ad(ij)*(t(ij,i)-t(ij, & |
1221 |
|
|
i-1)+(gz(ij,i)-gz(ij,i-1))*cpinv)) - sigd*lvcp(ij, i)*evap(ij, i) |
1222 |
|
|
ft(ij, i) = ft(ij, i) + g*dpinv*ment(ij, i, i)*(hp(ij,i)-h(ij,i)+t(ij & |
1223 |
|
|
,i)*(cpv-cpd)*(q(ij,i)-qent(ij,i,i)))*cpinv |
1224 |
|
|
ft(ij, i) = ft(ij, i) + sigd*wt(ij, i+1)*(cl-cpd)*water(ij, i+1)*(t( & |
1225 |
|
|
ij,i+1)-t(ij,i))*dpinv*cpinv |
1226 |
|
|
fq(ij, i) = fq(ij, i) + g*dpinv*(amp1(ij)*(q(ij,i+1)-q(ij, & |
1227 |
|
|
i))-ad(ij)*(q(ij,i)-q(ij,i-1))) |
1228 |
|
|
fu(ij, i) = fu(ij, i) + g*dpinv*(amp1(ij)*(u(ij,i+1)-u(ij, & |
1229 |
|
|
i))-ad(ij)*(u(ij,i)-u(ij,i-1))) |
1230 |
|
|
fv(ij, i) = fv(ij, i) + g*dpinv*(amp1(ij)*(v(ij,i+1)-v(ij, & |
1231 |
|
|
i))-ad(ij)*(v(ij,i)-v(ij,i-1))) |
1232 |
|
|
END IF |
1233 |
|
|
END DO |
1234 |
|
|
DO k = 1, i - 1 |
1235 |
|
|
DO ij = 1, ncum |
1236 |
|
|
IF (i<=inb(ij)) THEN |
1237 |
|
|
awat = elij(ij, k, i) - (1.-ep(ij,i))*clw(ij, i) |
1238 |
|
|
awat = max(awat, 0.0) |
1239 |
|
|
fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-awat-q & |
1240 |
|
|
(ij,i)) |
1241 |
|
|
fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
1242 |
|
|
)) |
1243 |
|
|
fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
1244 |
|
|
)) |
1245 |
|
|
END IF |
1246 |
|
|
END DO |
1247 |
|
|
END DO |
1248 |
|
|
DO k = i, nl + 1 |
1249 |
|
|
DO ij = 1, ncum |
1250 |
|
|
IF ((i<=inb(ij)) .AND. (k<=inb(ij))) THEN |
1251 |
|
|
fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-q(ij,i & |
1252 |
|
|
)) |
1253 |
|
|
fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
1254 |
|
|
)) |
1255 |
|
|
fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
1256 |
|
|
)) |
1257 |
|
|
END IF |
1258 |
|
|
END DO |
1259 |
|
|
END DO |
1260 |
|
|
DO ij = 1, ncum |
1261 |
|
|
IF (i<=inb(ij)) THEN |
1262 |
|
|
fq(ij, i) = fq(ij, i) + sigd*evap(ij, i) + g*(mp(ij,i+1)*(qp(ij, & |
1263 |
|
|
i+1)-q(ij,i))-mp(ij,i)*(qp(ij,i)-q(ij,i-1)))*dpinv |
1264 |
|
|
fu(ij, i) = fu(ij, i) + g*(mp(ij,i+1)*(up(ij,i+1)-u(ij, & |
1265 |
|
|
i))-mp(ij,i)*(up(ij,i)-u(ij,i-1)))*dpinv |
1266 |
|
|
fv(ij, i) = fv(ij, i) + g*(mp(ij,i+1)*(vp(ij,i+1)-v(ij, & |
1267 |
|
|
i))-mp(ij,i)*(vp(ij,i)-v(ij,i-1)))*dpinv |
1268 |
|
|
END IF |
1269 |
|
|
END DO |
1270 |
|
|
1500 END DO |
1271 |
|
|
|
1272 |
|
|
! *** Adjust tendencies at top of convection layer to reflect *** |
1273 |
|
|
! *** actual position of the level zero cape *** |
1274 |
|
|
|
1275 |
|
|
DO ij = 1, ncum |
1276 |
|
|
fqold = fq(ij, inb(ij)) |
1277 |
|
|
fq(ij, inb(ij)) = fq(ij, inb(ij))*(1.-frac(ij)) |
1278 |
|
|
fq(ij, inb(ij)-1) = fq(ij, inb(ij)-1) + frac(ij)*fqold*((ph(ij, & |
1279 |
|
|
inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
1280 |
|
|
inb(ij))))*lv(ij, inb(ij))/lv(ij, inb(ij)-1) |
1281 |
|
|
ftold = ft(ij, inb(ij)) |
1282 |
|
|
ft(ij, inb(ij)) = ft(ij, inb(ij))*(1.-frac(ij)) |
1283 |
|
|
ft(ij, inb(ij)-1) = ft(ij, inb(ij)-1) + frac(ij)*ftold*((ph(ij, & |
1284 |
|
|
inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
1285 |
|
|
inb(ij))))*cpn(ij, inb(ij))/cpn(ij, inb(ij)-1) |
1286 |
|
|
fuold = fu(ij, inb(ij)) |
1287 |
|
|
fu(ij, inb(ij)) = fu(ij, inb(ij))*(1.-frac(ij)) |
1288 |
|
|
fu(ij, inb(ij)-1) = fu(ij, inb(ij)-1) + frac(ij)*fuold*((ph(ij, & |
1289 |
|
|
inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
1290 |
|
|
fvold = fv(ij, inb(ij)) |
1291 |
|
|
fv(ij, inb(ij)) = fv(ij, inb(ij))*(1.-frac(ij)) |
1292 |
|
|
fv(ij, inb(ij)-1) = fv(ij, inb(ij)-1) + frac(ij)*fvold*((ph(ij, & |
1293 |
|
|
inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
1294 |
|
|
END DO |
1295 |
|
|
|
1296 |
|
|
! *** Very slightly adjust tendencies to force exact *** |
1297 |
|
|
! *** enthalpy, momentum and tracer conservation *** |
1298 |
|
|
|
1299 |
|
|
DO ij = 1, ncum |
1300 |
|
|
ents(ij) = 0.0 |
1301 |
|
|
uav(ij) = 0.0 |
1302 |
|
|
vav(ij) = 0.0 |
1303 |
|
|
DO i = 1, inb(ij) |
1304 |
|
|
ents(ij) = ents(ij) + (cpn(ij,i)*ft(ij,i)+lv(ij,i)*fq(ij,i))*(ph(ij,i)- & |
1305 |
|
|
ph(ij,i+1)) |
1306 |
|
|
uav(ij) = uav(ij) + fu(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
1307 |
|
|
vav(ij) = vav(ij) + fv(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
1308 |
|
|
END DO |
1309 |
|
|
END DO |
1310 |
|
|
DO ij = 1, ncum |
1311 |
|
|
ents(ij) = ents(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
1312 |
|
|
uav(ij) = uav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
1313 |
|
|
vav(ij) = vav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
1314 |
|
|
END DO |
1315 |
|
|
DO ij = 1, ncum |
1316 |
|
|
DO i = 1, inb(ij) |
1317 |
|
|
ft(ij, i) = ft(ij, i) - ents(ij)/cpn(ij, i) |
1318 |
|
|
fu(ij, i) = (1.-cu)*(fu(ij,i)-uav(ij)) |
1319 |
|
|
fv(ij, i) = (1.-cu)*(fv(ij,i)-vav(ij)) |
1320 |
|
|
END DO |
1321 |
|
|
END DO |
1322 |
|
|
|
1323 |
|
|
DO k = 1, nl + 1 |
1324 |
|
|
DO i = 1, ncum |
1325 |
|
|
IF ((q(i,k)+delt*fq(i,k))<0.0) iflag(i) = 10 |
1326 |
|
|
END DO |
1327 |
|
|
END DO |
1328 |
|
|
|
1329 |
|
|
|
1330 |
|
|
DO i = 1, ncum |
1331 |
|
|
IF (iflag(i)>2) THEN |
1332 |
|
|
precip(i) = 0.0 |
1333 |
|
|
cbmf(i) = 0.0 |
1334 |
|
|
END IF |
1335 |
|
|
END DO |
1336 |
|
|
DO k = 1, nl |
1337 |
|
|
DO i = 1, ncum |
1338 |
|
|
IF (iflag(i)>2) THEN |
1339 |
|
|
ft(i, k) = 0.0 |
1340 |
|
|
fq(i, k) = 0.0 |
1341 |
|
|
fu(i, k) = 0.0 |
1342 |
|
|
fv(i, k) = 0.0 |
1343 |
|
|
END IF |
1344 |
|
|
END DO |
1345 |
|
|
END DO |
1346 |
|
|
DO i = 1, ncum |
1347 |
|
|
precip1(idcum(i)) = precip(i) |
1348 |
|
|
cbmf1(idcum(i)) = cbmf(i) |
1349 |
|
|
iflag1(idcum(i)) = iflag(i) |
1350 |
|
|
END DO |
1351 |
|
|
DO k = 1, nl |
1352 |
|
|
DO i = 1, ncum |
1353 |
|
|
ft1(idcum(i), k) = ft(i, k) |
1354 |
|
|
fq1(idcum(i), k) = fq(i, k) |
1355 |
|
|
fu1(idcum(i), k) = fu(i, k) |
1356 |
|
|
fv1(idcum(i), k) = fv(i, k) |
1357 |
|
|
END DO |
1358 |
|
|
END DO |
1359 |
|
|
|
1360 |
|
|
DO k = 1, nd |
1361 |
|
|
DO i = 1, len |
1362 |
|
|
ma(i, k) = 0. |
1363 |
|
|
END DO |
1364 |
|
|
END DO |
1365 |
|
|
DO k = nl, 1, -1 |
1366 |
|
|
DO i = 1, ncum |
1367 |
|
|
ma(i, k) = ma(i, k+1) + m(i, k) |
1368 |
|
|
END DO |
1369 |
|
|
END DO |
1370 |
|
|
|
1371 |
|
|
RETURN |
1372 |
|
|
END SUBROUTINE convect2 |
1373 |
|
|
|