1 |
|
|
|
2 |
|
|
! $Header$ |
3 |
|
|
|
4 |
|
|
SUBROUTINE diagphy(airephy, tit, iprt, tops, topl, sols, soll, sens, evap, & |
5 |
|
|
rain_fall, snow_fall, ts, d_etp_tot, d_qt_tot, d_ec_tot, fs_bound, & |
6 |
|
|
fq_bound) |
7 |
|
|
! ====================================================================== |
8 |
|
|
|
9 |
|
|
! Purpose: |
10 |
|
|
! Compute the thermal flux and the watter mass flux at the atmosphere |
11 |
|
|
! boundaries. Print them and also the atmospheric enthalpy change and |
12 |
|
|
! the atmospheric mass change. |
13 |
|
|
|
14 |
|
|
! Arguments: |
15 |
|
|
! airephy-------input-R- grid area |
16 |
|
|
! tit---------input-A15- Comment to be added in PRINT (CHARACTER*15) |
17 |
|
|
! iprt--------input-I- PRINT level ( <=0 : no PRINT) |
18 |
|
|
! tops(klon)--input-R- SW rad. at TOA (W/m2), positive up. |
19 |
|
|
! topl(klon)--input-R- LW rad. at TOA (W/m2), positive down |
20 |
|
|
! sols(klon)--input-R- Net SW flux above surface (W/m2), positive up |
21 |
|
|
! (i.e. -1 * flux absorbed by the surface) |
22 |
|
|
! soll(klon)--input-R- Net LW flux above surface (W/m2), positive up |
23 |
|
|
! (i.e. flux emited - flux absorbed by the surface) |
24 |
|
|
! sens(klon)--input-R- Sensible Flux at surface (W/m2), positive down |
25 |
|
|
! evap(klon)--input-R- Evaporation + sublimation watter vapour mass flux |
26 |
|
|
! (kg/m2/s), positive up |
27 |
|
|
! rain_fall(klon) |
28 |
|
|
! --input-R- Liquid watter mass flux (kg/m2/s), positive down |
29 |
|
|
! snow_fall(klon) |
30 |
|
|
! --input-R- Solid watter mass flux (kg/m2/s), positive down |
31 |
|
|
! ts(klon)----input-R- Surface temperature (K) |
32 |
|
|
! d_etp_tot---input-R- Heat flux equivalent to atmospheric enthalpy |
33 |
|
|
! change (W/m2) |
34 |
|
|
! d_qt_tot----input-R- Mass flux equivalent to atmospheric watter mass |
35 |
|
|
! change (kg/m2/s) |
36 |
|
|
! d_ec_tot----input-R- Flux equivalent to atmospheric cinetic energy |
37 |
|
|
! change (W/m2) |
38 |
|
|
|
39 |
|
|
! fs_bound---output-R- Thermal flux at the atmosphere boundaries (W/m2) |
40 |
|
|
! fq_bound---output-R- Watter mass flux at the atmosphere boundaries |
41 |
|
|
! (kg/m2/s) |
42 |
|
|
|
43 |
|
|
! J.L. Dufresne, July 2002 |
44 |
|
|
! Version prise sur |
45 |
|
|
! ~rlmd833/LMDZOR_201102/modipsl/modeles/LMDZ.3.3/libf/phylmd |
46 |
|
|
! le 25 Novembre 2002. |
47 |
|
|
! ====================================================================== |
48 |
|
|
|
49 |
|
|
USE dimphy |
50 |
|
|
IMPLICIT NONE |
51 |
|
|
|
52 |
|
|
include "YOMCST.h" |
53 |
|
|
include "YOETHF.h" |
54 |
|
|
|
55 |
|
|
! Input variables |
56 |
|
|
REAL airephy(klon) |
57 |
|
|
CHARACTER *15 tit |
58 |
|
|
INTEGER iprt |
59 |
|
|
REAL tops(klon), topl(klon), sols(klon), soll(klon) |
60 |
|
|
REAL sens(klon), evap(klon), rain_fall(klon), snow_fall(klon) |
61 |
|
|
REAL ts(klon) |
62 |
|
|
REAL d_etp_tot, d_qt_tot, d_ec_tot |
63 |
|
|
! Output variables |
64 |
|
|
REAL fs_bound, fq_bound |
65 |
|
|
|
66 |
|
|
! Local variables |
67 |
|
|
REAL stops, stopl, ssols, ssoll |
68 |
|
|
REAL ssens, sfront, slat |
69 |
|
|
REAL airetot, zcpvap, zcwat, zcice |
70 |
|
|
REAL rain_fall_tot, snow_fall_tot, evap_tot |
71 |
|
|
|
72 |
|
|
INTEGER i |
73 |
|
|
|
74 |
|
|
INTEGER pas |
75 |
|
|
SAVE pas |
76 |
|
|
DATA pas/0/ |
77 |
|
|
!$OMP THREADPRIVATE(pas) |
78 |
|
|
|
79 |
|
|
pas = pas + 1 |
80 |
|
|
stops = 0. |
81 |
|
|
stopl = 0. |
82 |
|
|
ssols = 0. |
83 |
|
|
ssoll = 0. |
84 |
|
|
ssens = 0. |
85 |
|
|
sfront = 0. |
86 |
|
|
evap_tot = 0. |
87 |
|
|
rain_fall_tot = 0. |
88 |
|
|
snow_fall_tot = 0. |
89 |
|
|
airetot = 0. |
90 |
|
|
|
91 |
|
|
! Pour les chaleur specifiques de la vapeur d'eau, de l'eau et de |
92 |
|
|
! la glace, on travaille par difference a la chaleur specifique de l' |
93 |
|
|
! air sec. En effet, comme on travaille a niveau de pression donne, |
94 |
|
|
! toute variation de la masse d'un constituant est totalement |
95 |
|
|
! compense par une variation de masse d'air. |
96 |
|
|
|
97 |
|
|
zcpvap = rcpv - rcpd |
98 |
|
|
zcwat = rcw - rcpd |
99 |
|
|
zcice = rcs - rcpd |
100 |
|
|
|
101 |
|
|
DO i = 1, klon |
102 |
|
|
stops = stops + tops(i)*airephy(i) |
103 |
|
|
stopl = stopl + topl(i)*airephy(i) |
104 |
|
|
ssols = ssols + sols(i)*airephy(i) |
105 |
|
|
ssoll = ssoll + soll(i)*airephy(i) |
106 |
|
|
ssens = ssens + sens(i)*airephy(i) |
107 |
|
|
sfront = sfront + (evap(i)*zcpvap-rain_fall(i)*zcwat-snow_fall(i)*zcice)* & |
108 |
|
|
ts(i)*airephy(i) |
109 |
|
|
evap_tot = evap_tot + evap(i)*airephy(i) |
110 |
|
|
rain_fall_tot = rain_fall_tot + rain_fall(i)*airephy(i) |
111 |
|
|
snow_fall_tot = snow_fall_tot + snow_fall(i)*airephy(i) |
112 |
|
|
airetot = airetot + airephy(i) |
113 |
|
|
END DO |
114 |
|
|
stops = stops/airetot |
115 |
|
|
stopl = stopl/airetot |
116 |
|
|
ssols = ssols/airetot |
117 |
|
|
ssoll = ssoll/airetot |
118 |
|
|
ssens = ssens/airetot |
119 |
|
|
sfront = sfront/airetot |
120 |
|
|
evap_tot = evap_tot/airetot |
121 |
|
|
rain_fall_tot = rain_fall_tot/airetot |
122 |
|
|
snow_fall_tot = snow_fall_tot/airetot |
123 |
|
|
|
124 |
|
|
slat = rlvtt*rain_fall_tot + rlstt*snow_fall_tot |
125 |
|
|
! Heat flux at atm. boundaries |
126 |
|
|
fs_bound = stops - stopl - (ssols+ssoll) + ssens + sfront + slat |
127 |
|
|
! Watter flux at atm. boundaries |
128 |
|
|
fq_bound = evap_tot - rain_fall_tot - snow_fall_tot |
129 |
|
|
|
130 |
|
|
IF (iprt>=1) WRITE (6, 6666) tit, pas, fs_bound, d_etp_tot, fq_bound, & |
131 |
|
|
d_qt_tot |
132 |
|
|
|
133 |
|
|
IF (iprt>=1) WRITE (6, 6668) tit, pas, d_etp_tot + d_ec_tot - fs_bound, & |
134 |
|
|
d_qt_tot - fq_bound |
135 |
|
|
|
136 |
|
|
IF (iprt>=2) WRITE (6, 6667) tit, pas, stops, stopl, ssols, ssoll, ssens, & |
137 |
|
|
slat, evap_tot, rain_fall_tot + snow_fall_tot |
138 |
|
|
|
139 |
|
|
RETURN |
140 |
|
|
|
141 |
|
|
6666 FORMAT ('Phys. Flux Budget ', A15, 1I6, 2F8.2, 2(1PE13.5)) |
142 |
|
|
6667 FORMAT ('Phys. Boundary Flux ', A15, 1I6, 6F8.2, 2(1PE13.5)) |
143 |
|
|
6668 FORMAT ('Phys. Total Budget ', A15, 1I6, F8.2, 2(1PE13.5)) |
144 |
|
|
|
145 |
|
|
END SUBROUTINE diagphy |
146 |
|
|
|
147 |
|
|
! ====================================================================== |
148 |
|
|
SUBROUTINE diagetpq(airephy, tit, iprt, idiag, idiag2, dtime, t, q, ql, qs, & |
149 |
|
|
u, v, paprs, pplay, d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
150 |
|
|
! ====================================================================== |
151 |
|
|
|
152 |
|
|
! Purpose: |
153 |
|
|
! Calcul la difference d'enthalpie et de masse d'eau entre 2 appels, |
154 |
|
|
! et calcul le flux de chaleur et le flux d'eau necessaire a ces |
155 |
|
|
! changements. Ces valeurs sont moyennees sur la surface de tout |
156 |
|
|
! le globe et sont exprime en W/2 et kg/s/m2 |
157 |
|
|
! Outil pour diagnostiquer la conservation de l'energie |
158 |
|
|
! et de la masse dans la physique. Suppose que les niveau de |
159 |
|
|
! pression entre couche ne varie pas entre 2 appels. |
160 |
|
|
|
161 |
|
|
! Plusieurs de ces diagnostics peuvent etre fait en parallele: les |
162 |
|
|
! bilans sont sauvegardes dans des tableaux indices. On parlera |
163 |
|
|
! "d'indice de diagnostic" |
164 |
|
|
|
165 |
|
|
|
166 |
|
|
! ====================================================================== |
167 |
|
|
! Arguments: |
168 |
|
|
! airephy-------input-R- grid area |
169 |
|
|
! tit-----imput-A15- Comment added in PRINT (CHARACTER*15) |
170 |
|
|
! iprt----input-I- PRINT level ( <=1 : no PRINT) |
171 |
|
|
! idiag---input-I- indice dans lequel sera range les nouveaux |
172 |
|
|
! bilans d' entalpie et de masse |
173 |
|
|
! idiag2--input-I-les nouveaux bilans d'entalpie et de masse |
174 |
|
|
! sont compare au bilan de d'enthalpie de masse de |
175 |
|
|
! l'indice numero idiag2 |
176 |
|
|
! Cas parriculier : si idiag2=0, pas de comparaison, on |
177 |
|
|
! sort directement les bilans d'enthalpie et de masse |
178 |
|
|
! dtime----input-R- time step (s) |
179 |
|
|
! t--------input-R- temperature (K) |
180 |
|
|
! q--------input-R- vapeur d'eau (kg/kg) |
181 |
|
|
! ql-------input-R- liquid watter (kg/kg) |
182 |
|
|
! qs-------input-R- solid watter (kg/kg) |
183 |
|
|
! u--------input-R- vitesse u |
184 |
|
|
! v--------input-R- vitesse v |
185 |
|
|
! paprs----input-R- pression a intercouche (Pa) |
186 |
|
|
! pplay----input-R- pression au milieu de couche (Pa) |
187 |
|
|
|
188 |
|
|
! the following total value are computed by UNIT of earth surface |
189 |
|
|
|
190 |
|
|
! d_h_vcol--output-R- Heat flux (W/m2) define as the Enthalpy |
191 |
|
|
! change (J/m2) during one time step (dtime) for the whole |
192 |
|
|
! atmosphere (air, watter vapour, liquid and solid) |
193 |
|
|
! d_qt------output-R- total water mass flux (kg/m2/s) defined as the |
194 |
|
|
! total watter (kg/m2) change during one time step (dtime), |
195 |
|
|
! d_qw------output-R- same, for the watter vapour only (kg/m2/s) |
196 |
|
|
! d_ql------output-R- same, for the liquid watter only (kg/m2/s) |
197 |
|
|
! d_qs------output-R- same, for the solid watter only (kg/m2/s) |
198 |
|
|
! d_ec------output-R- Cinetic Energy Budget (W/m2) for vertical air column |
199 |
|
|
|
200 |
|
|
! other (COMMON...) |
201 |
|
|
! RCPD, RCPV, .... |
202 |
|
|
|
203 |
|
|
! J.L. Dufresne, July 2002 |
204 |
|
|
! ====================================================================== |
205 |
|
|
|
206 |
|
|
USE dimphy |
207 |
|
|
IMPLICIT NONE |
208 |
|
|
|
209 |
|
|
include "YOMCST.h" |
210 |
|
|
include "YOETHF.h" |
211 |
|
|
|
212 |
|
|
! Input variables |
213 |
|
|
REAL airephy(klon) |
214 |
|
|
CHARACTER *15 tit |
215 |
|
|
INTEGER iprt, idiag, idiag2 |
216 |
|
|
REAL dtime |
217 |
|
|
REAL t(klon, klev), q(klon, klev), ql(klon, klev), qs(klon, klev) |
218 |
|
|
REAL u(klon, klev), v(klon, klev) |
219 |
|
|
REAL paprs(klon, klev+1), pplay(klon, klev) |
220 |
|
|
! Output variables |
221 |
|
|
REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec |
222 |
|
|
|
223 |
|
|
! Local variables |
224 |
|
|
|
225 |
|
|
REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot, h_qs_tot, qw_tot, ql_tot, & |
226 |
|
|
qs_tot, ec_tot |
227 |
|
|
! h_vcol_tot-- total enthalpy of vertical air column |
228 |
|
|
! (air with watter vapour, liquid and solid) (J/m2) |
229 |
|
|
! h_dair_tot-- total enthalpy of dry air (J/m2) |
230 |
|
|
! h_qw_tot---- total enthalpy of watter vapour (J/m2) |
231 |
|
|
! h_ql_tot---- total enthalpy of liquid watter (J/m2) |
232 |
|
|
! h_qs_tot---- total enthalpy of solid watter (J/m2) |
233 |
|
|
! qw_tot------ total mass of watter vapour (kg/m2) |
234 |
|
|
! ql_tot------ total mass of liquid watter (kg/m2) |
235 |
|
|
! qs_tot------ total mass of solid watter (kg/m2) |
236 |
|
|
! ec_tot------ total cinetic energy (kg/m2) |
237 |
|
|
|
238 |
|
|
REAL zairm(klon, klev) ! layer air mass (kg/m2) |
239 |
|
|
REAL zqw_col(klon) |
240 |
|
|
REAL zql_col(klon) |
241 |
|
|
REAL zqs_col(klon) |
242 |
|
|
REAL zec_col(klon) |
243 |
|
|
REAL zh_dair_col(klon) |
244 |
|
|
REAL zh_qw_col(klon), zh_ql_col(klon), zh_qs_col(klon) |
245 |
|
|
|
246 |
|
|
REAL d_h_dair, d_h_qw, d_h_ql, d_h_qs |
247 |
|
|
|
248 |
|
|
REAL airetot, zcpvap, zcwat, zcice |
249 |
|
|
|
250 |
|
|
INTEGER i, k |
251 |
|
|
|
252 |
|
|
INTEGER ndiag ! max number of diagnostic in parallel |
253 |
|
|
PARAMETER (ndiag=10) |
254 |
|
|
INTEGER pas(ndiag) |
255 |
|
|
SAVE pas |
256 |
|
|
DATA pas/ndiag*0/ |
257 |
|
|
!$OMP THREADPRIVATE(pas) |
258 |
|
|
|
259 |
|
|
REAL h_vcol_pre(ndiag), h_dair_pre(ndiag), h_qw_pre(ndiag), & |
260 |
|
|
h_ql_pre(ndiag), h_qs_pre(ndiag), qw_pre(ndiag), ql_pre(ndiag), & |
261 |
|
|
qs_pre(ndiag), ec_pre(ndiag) |
262 |
|
|
SAVE h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre, h_qs_pre, qw_pre, ql_pre, & |
263 |
|
|
qs_pre, ec_pre |
264 |
|
|
!$OMP THREADPRIVATE(h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre) |
265 |
|
|
!$OMP THREADPRIVATE(h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre) |
266 |
|
|
! ====================================================================== |
267 |
|
|
|
268 |
|
|
DO k = 1, klev |
269 |
|
|
DO i = 1, klon |
270 |
|
|
! layer air mass |
271 |
|
|
zairm(i, k) = (paprs(i,k)-paprs(i,k+1))/rg |
272 |
|
|
END DO |
273 |
|
|
END DO |
274 |
|
|
|
275 |
|
|
! Reset variables |
276 |
|
|
DO i = 1, klon |
277 |
|
|
zqw_col(i) = 0. |
278 |
|
|
zql_col(i) = 0. |
279 |
|
|
zqs_col(i) = 0. |
280 |
|
|
zec_col(i) = 0. |
281 |
|
|
zh_dair_col(i) = 0. |
282 |
|
|
zh_qw_col(i) = 0. |
283 |
|
|
zh_ql_col(i) = 0. |
284 |
|
|
zh_qs_col(i) = 0. |
285 |
|
|
END DO |
286 |
|
|
|
287 |
|
|
zcpvap = rcpv |
288 |
|
|
zcwat = rcw |
289 |
|
|
zcice = rcs |
290 |
|
|
|
291 |
|
|
! Compute vertical sum for each atmospheric column |
292 |
|
|
! ================================================ |
293 |
|
|
DO k = 1, klev |
294 |
|
|
DO i = 1, klon |
295 |
|
|
! Watter mass |
296 |
|
|
zqw_col(i) = zqw_col(i) + q(i, k)*zairm(i, k) |
297 |
|
|
zql_col(i) = zql_col(i) + ql(i, k)*zairm(i, k) |
298 |
|
|
zqs_col(i) = zqs_col(i) + qs(i, k)*zairm(i, k) |
299 |
|
|
! Cinetic Energy |
300 |
|
|
zec_col(i) = zec_col(i) + 0.5*(u(i,k)**2+v(i,k)**2)*zairm(i, k) |
301 |
|
|
! Air enthalpy |
302 |
|
|
zh_dair_col(i) = zh_dair_col(i) + rcpd*(1.-q(i,k)-ql(i,k)-qs(i,k))* & |
303 |
|
|
zairm(i, k)*t(i, k) |
304 |
|
|
zh_qw_col(i) = zh_qw_col(i) + zcpvap*q(i, k)*zairm(i, k)*t(i, k) |
305 |
|
|
zh_ql_col(i) = zh_ql_col(i) + zcwat*ql(i, k)*zairm(i, k)*t(i, k) - & |
306 |
|
|
rlvtt*ql(i, k)*zairm(i, k) |
307 |
|
|
zh_qs_col(i) = zh_qs_col(i) + zcice*qs(i, k)*zairm(i, k)*t(i, k) - & |
308 |
|
|
rlstt*qs(i, k)*zairm(i, k) |
309 |
|
|
|
310 |
|
|
END DO |
311 |
|
|
END DO |
312 |
|
|
|
313 |
|
|
! Mean over the planete surface |
314 |
|
|
! ============================= |
315 |
|
|
qw_tot = 0. |
316 |
|
|
ql_tot = 0. |
317 |
|
|
qs_tot = 0. |
318 |
|
|
ec_tot = 0. |
319 |
|
|
h_vcol_tot = 0. |
320 |
|
|
h_dair_tot = 0. |
321 |
|
|
h_qw_tot = 0. |
322 |
|
|
h_ql_tot = 0. |
323 |
|
|
h_qs_tot = 0. |
324 |
|
|
airetot = 0. |
325 |
|
|
|
326 |
|
|
DO i = 1, klon |
327 |
|
|
qw_tot = qw_tot + zqw_col(i)*airephy(i) |
328 |
|
|
ql_tot = ql_tot + zql_col(i)*airephy(i) |
329 |
|
|
qs_tot = qs_tot + zqs_col(i)*airephy(i) |
330 |
|
|
ec_tot = ec_tot + zec_col(i)*airephy(i) |
331 |
|
|
h_dair_tot = h_dair_tot + zh_dair_col(i)*airephy(i) |
332 |
|
|
h_qw_tot = h_qw_tot + zh_qw_col(i)*airephy(i) |
333 |
|
|
h_ql_tot = h_ql_tot + zh_ql_col(i)*airephy(i) |
334 |
|
|
h_qs_tot = h_qs_tot + zh_qs_col(i)*airephy(i) |
335 |
|
|
airetot = airetot + airephy(i) |
336 |
|
|
END DO |
337 |
|
|
|
338 |
|
|
qw_tot = qw_tot/airetot |
339 |
|
|
ql_tot = ql_tot/airetot |
340 |
|
|
qs_tot = qs_tot/airetot |
341 |
|
|
ec_tot = ec_tot/airetot |
342 |
|
|
h_dair_tot = h_dair_tot/airetot |
343 |
|
|
h_qw_tot = h_qw_tot/airetot |
344 |
|
|
h_ql_tot = h_ql_tot/airetot |
345 |
|
|
h_qs_tot = h_qs_tot/airetot |
346 |
|
|
|
347 |
|
|
h_vcol_tot = h_dair_tot + h_qw_tot + h_ql_tot + h_qs_tot |
348 |
|
|
|
349 |
|
|
! Compute the change of the atmospheric state compare to the one |
350 |
|
|
! stored in "idiag2", and convert it in flux. THis computation |
351 |
|
|
! is performed IF idiag2 /= 0 and IF it is not the first CALL |
352 |
|
|
! for "idiag" |
353 |
|
|
! =================================== |
354 |
|
|
|
355 |
|
|
IF ((idiag2>0) .AND. (pas(idiag2)/=0)) THEN |
356 |
|
|
d_h_vcol = (h_vcol_tot-h_vcol_pre(idiag2))/dtime |
357 |
|
|
d_h_dair = (h_dair_tot-h_dair_pre(idiag2))/dtime |
358 |
|
|
d_h_qw = (h_qw_tot-h_qw_pre(idiag2))/dtime |
359 |
|
|
d_h_ql = (h_ql_tot-h_ql_pre(idiag2))/dtime |
360 |
|
|
d_h_qs = (h_qs_tot-h_qs_pre(idiag2))/dtime |
361 |
|
|
d_qw = (qw_tot-qw_pre(idiag2))/dtime |
362 |
|
|
d_ql = (ql_tot-ql_pre(idiag2))/dtime |
363 |
|
|
d_qs = (qs_tot-qs_pre(idiag2))/dtime |
364 |
|
|
d_ec = (ec_tot-ec_pre(idiag2))/dtime |
365 |
|
|
d_qt = d_qw + d_ql + d_qs |
366 |
|
|
ELSE |
367 |
|
|
d_h_vcol = 0. |
368 |
|
|
d_h_dair = 0. |
369 |
|
|
d_h_qw = 0. |
370 |
|
|
d_h_ql = 0. |
371 |
|
|
d_h_qs = 0. |
372 |
|
|
d_qw = 0. |
373 |
|
|
d_ql = 0. |
374 |
|
|
d_qs = 0. |
375 |
|
|
d_ec = 0. |
376 |
|
|
d_qt = 0. |
377 |
|
|
END IF |
378 |
|
|
|
379 |
|
|
IF (iprt>=2) THEN |
380 |
|
|
WRITE (6, 9000) tit, pas(idiag), d_qt, d_qw, d_ql, d_qs |
381 |
|
|
9000 FORMAT ('Phys. Watter Mass Budget (kg/m2/s)', A15, 1I6, 10(1PE14.6)) |
382 |
|
|
WRITE (6, 9001) tit, pas(idiag), d_h_vcol |
383 |
|
|
9001 FORMAT ('Phys. Enthalpy Budget (W/m2) ', A15, 1I6, 10(F8.2)) |
384 |
|
|
WRITE (6, 9002) tit, pas(idiag), d_ec |
385 |
|
|
9002 FORMAT ('Phys. Cinetic Energy Budget (W/m2) ', A15, 1I6, 10(F8.2)) |
386 |
|
|
END IF |
387 |
|
|
|
388 |
|
|
! Store the new atmospheric state in "idiag" |
389 |
|
|
|
390 |
|
|
pas(idiag) = pas(idiag) + 1 |
391 |
|
|
h_vcol_pre(idiag) = h_vcol_tot |
392 |
|
|
h_dair_pre(idiag) = h_dair_tot |
393 |
|
|
h_qw_pre(idiag) = h_qw_tot |
394 |
|
|
h_ql_pre(idiag) = h_ql_tot |
395 |
|
|
h_qs_pre(idiag) = h_qs_tot |
396 |
|
|
qw_pre(idiag) = qw_tot |
397 |
|
|
ql_pre(idiag) = ql_tot |
398 |
|
|
qs_pre(idiag) = qs_tot |
399 |
|
|
ec_pre(idiag) = ec_tot |
400 |
|
|
|
401 |
|
|
RETURN |
402 |
|
|
END SUBROUTINE diagetpq |