1 |
|
|
|
2 |
|
|
! $Id: fisrtilp_tr.F90 2346 2015-08-21 15:13:46Z emillour $ |
3 |
|
|
|
4 |
|
|
|
5 |
|
|
SUBROUTINE fisrtilp_tr(dtime, paprs, pplay, t, q, ratqs, d_t, d_q, d_ql, & |
6 |
|
|
rneb, radliq, rain, snow, pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, & |
7 |
|
|
frac_nucl, prfl, psfl, rhcl) ! relative humidity in clear sky (needed for aer optical |
8 |
|
|
! properties; aeropt.F) |
9 |
|
|
|
10 |
|
|
|
11 |
|
|
USE dimphy |
12 |
|
|
USE print_control_mod, ONLY: lunout |
13 |
|
|
IMPLICIT NONE |
14 |
|
|
! ====================================================================== |
15 |
|
|
! Auteur(s): Z.X. Li (LMD/CNRS) |
16 |
|
|
! Date: le 20 mars 1995 |
17 |
|
|
! Objet: condensation et precipitation stratiforme. |
18 |
|
|
! schema de nuage |
19 |
|
|
! ====================================================================== |
20 |
|
|
! ====================================================================== |
21 |
|
|
include "YOMCST.h" |
22 |
|
|
|
23 |
|
|
! Arguments: |
24 |
|
|
|
25 |
|
|
REAL dtime ! intervalle du temps (s) |
26 |
|
|
REAL paprs(klon, klev+1) ! pression a inter-couche |
27 |
|
|
REAL pplay(klon, klev) ! pression au milieu de couche |
28 |
|
|
REAL t(klon, klev) ! temperature (K) |
29 |
|
|
REAL q(klon, klev) ! humidite specifique (kg/kg) |
30 |
|
|
REAL d_t(klon, klev) ! incrementation de la temperature (K) |
31 |
|
|
REAL d_q(klon, klev) ! incrementation de la vapeur d'eau |
32 |
|
|
REAL d_ql(klon, klev) ! incrementation de l'eau liquide |
33 |
|
|
REAL rneb(klon, klev) ! fraction nuageuse |
34 |
|
|
REAL radliq(klon, klev) ! eau liquide utilisee dans rayonnements |
35 |
|
|
REAL rain(klon) ! pluies (mm/s) |
36 |
|
|
REAL snow(klon) ! neige (mm/s) |
37 |
|
|
REAL prfl(klon, klev+1) ! flux d'eau precipitante aux interfaces (kg/m2/s) |
38 |
|
|
REAL psfl(klon, klev+1) ! flux d'eau precipitante aux interfaces (kg/m2/s) |
39 |
|
|
|
40 |
|
|
! jq For aerosol opt properties needed (see aeropt.F) |
41 |
|
|
REAL rhcl(klon, klev) |
42 |
|
|
|
43 |
|
|
! AA |
44 |
|
|
! Coeffients de fraction lessivee : pour OFF-LINE |
45 |
|
|
|
46 |
|
|
REAL pfrac_nucl(klon, klev) |
47 |
|
|
REAL pfrac_1nucl(klon, klev) |
48 |
|
|
REAL pfrac_impa(klon, klev) |
49 |
|
|
|
50 |
|
|
! Fraction d'aerosols lessivee par impaction et par nucleation |
51 |
|
|
! POur ON-LINE |
52 |
|
|
|
53 |
|
|
REAL frac_impa(klon, klev) |
54 |
|
|
REAL frac_nucl(klon, klev) |
55 |
|
|
! AA |
56 |
|
|
|
57 |
|
|
! Options du programme: |
58 |
|
|
|
59 |
|
|
REAL seuil_neb ! un nuage existe vraiment au-dela |
60 |
|
|
PARAMETER (seuil_neb=0.001) |
61 |
|
|
REAL ct ! inverse du temps pour qu'un nuage precipite |
62 |
|
|
PARAMETER (ct=1./1800.) |
63 |
|
|
REAL cl ! seuil de precipitation |
64 |
|
|
PARAMETER (cl=2.6E-4) |
65 |
|
|
! cc PARAMETER (cl=2.3e-4) |
66 |
|
|
! cc PARAMETER (cl=2.0e-4) |
67 |
|
|
INTEGER ninter ! sous-intervals pour la precipitation |
68 |
|
|
PARAMETER (ninter=5) |
69 |
|
|
LOGICAL evap_prec ! evaporation de la pluie |
70 |
|
|
PARAMETER (evap_prec=.TRUE.) |
71 |
|
|
REAL coef_eva |
72 |
|
|
PARAMETER (coef_eva=2.0E-05) |
73 |
|
|
LOGICAL calcrat ! calculer ratqs au lieu de fixer sa valeur |
74 |
|
|
REAL ratqs(klon, klev) ! determine la largeur de distribution de vapeur |
75 |
|
|
PARAMETER (calcrat=.TRUE.) |
76 |
|
|
REAL zx_min, rat_max |
77 |
|
|
PARAMETER (zx_min=1.0, rat_max=0.01) |
78 |
|
|
REAL zx_max, rat_min |
79 |
|
|
PARAMETER (zx_max=0.1, rat_min=0.3) |
80 |
|
|
REAL zx |
81 |
|
|
|
82 |
|
|
LOGICAL cpartiel ! condensation partielle |
83 |
|
|
PARAMETER (cpartiel=.TRUE.) |
84 |
|
|
REAL t_coup |
85 |
|
|
PARAMETER (t_coup=234.0) |
86 |
|
|
|
87 |
|
|
! Variables locales: |
88 |
|
|
|
89 |
|
|
INTEGER i, k, n, kk |
90 |
|
|
REAL zqs(klon), zdqs(klon), zdelta, zcor, zcvm5 |
91 |
|
|
REAL zrfl(klon), zrfln(klon), zqev, zqevt |
92 |
|
|
REAL zoliq(klon), zcond(klon), zq(klon), zqn(klon), zdelq |
93 |
|
|
REAL ztglace, zt(klon) |
94 |
|
|
INTEGER nexpo ! exponentiel pour glace/eau |
95 |
|
|
REAL zdz(klon), zrho(klon), ztot(klon), zrhol(klon) |
96 |
|
|
REAL zchau(klon), zfroi(klon), zfice(klon), zneb(klon) |
97 |
|
|
|
98 |
|
|
LOGICAL appel1er |
99 |
|
|
SAVE appel1er |
100 |
|
|
!$OMP THREADPRIVATE(appel1er) |
101 |
|
|
|
102 |
|
|
! --------------------------------------------------------------- |
103 |
|
|
|
104 |
|
|
! AA Variables traceurs: |
105 |
|
|
! AA Provisoire !!! Parametres alpha du lessivage |
106 |
|
|
! AA A priori on a 4 scavenging # possibles |
107 |
|
|
|
108 |
|
|
REAL a_tr_sca(4) |
109 |
|
|
SAVE a_tr_sca |
110 |
|
|
!$OMP THREADPRIVATE(a_tr_sca) |
111 |
|
|
|
112 |
|
|
! Variables intermediaires |
113 |
|
|
|
114 |
|
|
REAL zalpha_tr |
115 |
|
|
REAL zfrac_lessi |
116 |
|
|
REAL zprec_cond(klon) |
117 |
|
|
! AA |
118 |
|
|
! --------------------------------------------------------------- |
119 |
|
|
|
120 |
|
|
! Fonctions en ligne: |
121 |
|
|
|
122 |
|
|
REAL fallv ! vitesse de chute pour crystaux de glace |
123 |
|
|
REAL zzz |
124 |
|
|
include "YOETHF.h" |
125 |
|
|
include "FCTTRE.h" |
126 |
|
|
fallv(zzz) = 3.29/2.0*((zzz)**0.16) |
127 |
|
|
! cc fallv (zzz) = 3.29/3.0 * ((zzz)**0.16) |
128 |
|
|
! cc fallv (zzz) = 3.29 * ((zzz)**0.16) |
129 |
|
|
|
130 |
|
|
DATA appel1er/.TRUE./ |
131 |
|
|
|
132 |
|
|
IF (appel1er) THEN |
133 |
|
|
|
134 |
|
|
WRITE (lunout, *) 'fisrtilp, calcrat:', calcrat |
135 |
|
|
WRITE (lunout, *) 'fisrtilp, ninter:', ninter |
136 |
|
|
WRITE (lunout, *) 'fisrtilp, evap_prec:', evap_prec |
137 |
|
|
WRITE (lunout, *) 'fisrtilp, cpartiel:', cpartiel |
138 |
|
|
IF (abs(dtime/real(ninter)-360.0)>0.001) THEN |
139 |
|
|
WRITE (lunout, *) 'fisrtilp: Ce n est pas prevu, voir Z.X.Li', dtime |
140 |
|
|
WRITE (lunout, *) 'Je prefere un sous-intervalle de 6 minutes' |
141 |
|
|
CALL abort |
142 |
|
|
END IF |
143 |
|
|
appel1er = .FALSE. |
144 |
|
|
|
145 |
|
|
! AA initialiation provisoire |
146 |
|
|
a_tr_sca(1) = -0.5 |
147 |
|
|
a_tr_sca(2) = -0.5 |
148 |
|
|
a_tr_sca(3) = -0.5 |
149 |
|
|
a_tr_sca(4) = -0.5 |
150 |
|
|
|
151 |
|
|
! AA Initialisation a 1 des coefs des fractions lessivees |
152 |
|
|
|
153 |
|
|
DO k = 1, klev |
154 |
|
|
DO i = 1, klon |
155 |
|
|
pfrac_nucl(i, k) = 1. |
156 |
|
|
pfrac_1nucl(i, k) = 1. |
157 |
|
|
pfrac_impa(i, k) = 1. |
158 |
|
|
END DO |
159 |
|
|
END DO |
160 |
|
|
|
161 |
|
|
END IF ! test sur appel1er |
162 |
|
|
|
163 |
|
|
! MAf Initialisation a 0 de zoliq |
164 |
|
|
DO i = 1, klon |
165 |
|
|
zoliq(i) = 0. |
166 |
|
|
END DO |
167 |
|
|
! Determiner les nuages froids par leur temperature |
168 |
|
|
|
169 |
|
|
ztglace = rtt - 15.0 |
170 |
|
|
nexpo = 6 |
171 |
|
|
! cc nexpo = 1 |
172 |
|
|
|
173 |
|
|
! Initialiser les sorties: |
174 |
|
|
|
175 |
|
|
DO k = 1, klev + 1 |
176 |
|
|
DO i = 1, klon |
177 |
|
|
prfl(i, k) = 0.0 |
178 |
|
|
psfl(i, k) = 0.0 |
179 |
|
|
END DO |
180 |
|
|
END DO |
181 |
|
|
|
182 |
|
|
DO k = 1, klev |
183 |
|
|
DO i = 1, klon |
184 |
|
|
d_t(i, k) = 0.0 |
185 |
|
|
d_q(i, k) = 0.0 |
186 |
|
|
d_ql(i, k) = 0.0 |
187 |
|
|
rneb(i, k) = 0.0 |
188 |
|
|
radliq(i, k) = 0.0 |
189 |
|
|
frac_nucl(i, k) = 1. |
190 |
|
|
frac_impa(i, k) = 1. |
191 |
|
|
END DO |
192 |
|
|
END DO |
193 |
|
|
DO i = 1, klon |
194 |
|
|
rain(i) = 0.0 |
195 |
|
|
snow(i) = 0.0 |
196 |
|
|
END DO |
197 |
|
|
|
198 |
|
|
! Initialiser le flux de precipitation a zero |
199 |
|
|
|
200 |
|
|
DO i = 1, klon |
201 |
|
|
zrfl(i) = 0.0 |
202 |
|
|
zneb(i) = seuil_neb |
203 |
|
|
END DO |
204 |
|
|
|
205 |
|
|
|
206 |
|
|
! AA Pour plus de securite |
207 |
|
|
|
208 |
|
|
zalpha_tr = 0. |
209 |
|
|
zfrac_lessi = 0. |
210 |
|
|
|
211 |
|
|
! AA---------------------------------------------------------- |
212 |
|
|
|
213 |
|
|
! Boucle verticale (du haut vers le bas) |
214 |
|
|
|
215 |
|
|
DO k = klev, 1, -1 |
216 |
|
|
|
217 |
|
|
! AA---------------------------------------------------------- |
218 |
|
|
|
219 |
|
|
DO i = 1, klon |
220 |
|
|
zt(i) = t(i, k) |
221 |
|
|
zq(i) = q(i, k) |
222 |
|
|
END DO |
223 |
|
|
|
224 |
|
|
! Calculer l'evaporation de la precipitation |
225 |
|
|
|
226 |
|
|
IF (evap_prec) THEN |
227 |
|
|
DO i = 1, klon |
228 |
|
|
IF (zrfl(i)>0.) THEN |
229 |
|
|
IF (thermcep) THEN |
230 |
|
|
zdelta = max(0., sign(1.,rtt-zt(i))) |
231 |
|
|
zqs(i) = r2es*foeew(zt(i), zdelta)/pplay(i, k) |
232 |
|
|
zqs(i) = min(0.5, zqs(i)) |
233 |
|
|
zcor = 1./(1.-retv*zqs(i)) |
234 |
|
|
zqs(i) = zqs(i)*zcor |
235 |
|
|
ELSE |
236 |
|
|
IF (zt(i)<t_coup) THEN |
237 |
|
|
zqs(i) = qsats(zt(i))/pplay(i, k) |
238 |
|
|
ELSE |
239 |
|
|
zqs(i) = qsatl(zt(i))/pplay(i, k) |
240 |
|
|
END IF |
241 |
|
|
END IF |
242 |
|
|
zqev = max(0.0, (zqs(i)-zq(i))*zneb(i)) |
243 |
|
|
zqevt = coef_eva*(1.0-zq(i)/zqs(i))*sqrt(zrfl(i))* & |
244 |
|
|
(paprs(i,k)-paprs(i,k+1))/pplay(i, k)*zt(i)*rd/rg |
245 |
|
|
zqevt = max(0.0, min(zqevt,zrfl(i)))*rg*dtime/ & |
246 |
|
|
(paprs(i,k)-paprs(i,k+1)) |
247 |
|
|
zqev = min(zqev, zqevt) |
248 |
|
|
zrfln(i) = zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1))/rg/dtime |
249 |
|
|
zq(i) = zq(i) - (zrfln(i)-zrfl(i))*(rg/(paprs(i,k)-paprs(i, & |
250 |
|
|
k+1)))*dtime |
251 |
|
|
zt(i) = zt(i) + (zrfln(i)-zrfl(i))*(rg/(paprs(i,k)-paprs(i, & |
252 |
|
|
k+1)))*dtime*rlvtt/rcpd/(1.0+rvtmp2*zq(i)) |
253 |
|
|
zrfl(i) = zrfln(i) |
254 |
|
|
END IF |
255 |
|
|
END DO |
256 |
|
|
END IF |
257 |
|
|
|
258 |
|
|
! Calculer Qs et L/Cp*dQs/dT: |
259 |
|
|
|
260 |
|
|
IF (thermcep) THEN |
261 |
|
|
DO i = 1, klon |
262 |
|
|
zdelta = max(0., sign(1.,rtt-zt(i))) |
263 |
|
|
zcvm5 = r5les*rlvtt*(1.-zdelta) + r5ies*rlstt*zdelta |
264 |
|
|
zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*zq(i)) |
265 |
|
|
zqs(i) = r2es*foeew(zt(i), zdelta)/pplay(i, k) |
266 |
|
|
zqs(i) = min(0.5, zqs(i)) |
267 |
|
|
zcor = 1./(1.-retv*zqs(i)) |
268 |
|
|
zqs(i) = zqs(i)*zcor |
269 |
|
|
zdqs(i) = foede(zt(i), zdelta, zcvm5, zqs(i), zcor) |
270 |
|
|
END DO |
271 |
|
|
ELSE |
272 |
|
|
DO i = 1, klon |
273 |
|
|
IF (zt(i)<t_coup) THEN |
274 |
|
|
zqs(i) = qsats(zt(i))/pplay(i, k) |
275 |
|
|
zdqs(i) = dqsats(zt(i), zqs(i)) |
276 |
|
|
ELSE |
277 |
|
|
zqs(i) = qsatl(zt(i))/pplay(i, k) |
278 |
|
|
zdqs(i) = dqsatl(zt(i), zqs(i)) |
279 |
|
|
END IF |
280 |
|
|
END DO |
281 |
|
|
END IF |
282 |
|
|
|
283 |
|
|
! Determiner la condensation partielle et calculer la quantite |
284 |
|
|
! de l'eau condensee: |
285 |
|
|
|
286 |
|
|
IF (cpartiel) THEN |
287 |
|
|
DO i = 1, klon |
288 |
|
|
|
289 |
|
|
zdelq = ratqs(i, k)*zq(i) |
290 |
|
|
rneb(i, k) = (zq(i)+zdelq-zqs(i))/(2.0*zdelq) |
291 |
|
|
zqn(i) = (zq(i)+zdelq+zqs(i))/2.0 |
292 |
|
|
IF (rneb(i,k)<=0.0) zqn(i) = 0.0 |
293 |
|
|
IF (rneb(i,k)>=1.0) zqn(i) = zq(i) |
294 |
|
|
rneb(i, k) = max(0.0, min(1.0,rneb(i,k))) |
295 |
|
|
zcond(i) = max(0.0, zqn(i)-zqs(i))*rneb(i, k)/(1.+zdqs(i)) |
296 |
|
|
|
297 |
|
|
! --Olivier |
298 |
|
|
rhcl(i, k) = (zqs(i)+zq(i)-zdelq)/2./zqs(i) |
299 |
|
|
IF (rneb(i,k)<=0.0) rhcl(i, k) = zq(i)/zqs(i) |
300 |
|
|
IF (rneb(i,k)>=1.0) rhcl(i, k) = 1.0 |
301 |
|
|
! --fin |
302 |
|
|
|
303 |
|
|
END DO |
304 |
|
|
ELSE |
305 |
|
|
DO i = 1, klon |
306 |
|
|
IF (zq(i)>zqs(i)) THEN |
307 |
|
|
rneb(i, k) = 1.0 |
308 |
|
|
ELSE |
309 |
|
|
rneb(i, k) = 0.0 |
310 |
|
|
END IF |
311 |
|
|
zcond(i) = max(0.0, zq(i)-zqs(i))/(1.+zdqs(i)) |
312 |
|
|
END DO |
313 |
|
|
END IF |
314 |
|
|
|
315 |
|
|
DO i = 1, klon |
316 |
|
|
zq(i) = zq(i) - zcond(i) |
317 |
|
|
zt(i) = zt(i) + zcond(i)*rlvtt/rcpd |
318 |
|
|
END DO |
319 |
|
|
|
320 |
|
|
! Partager l'eau condensee en precipitation et eau liquide nuageuse |
321 |
|
|
|
322 |
|
|
DO i = 1, klon |
323 |
|
|
IF (rneb(i,k)>0.0) THEN |
324 |
|
|
zoliq(i) = zcond(i) |
325 |
|
|
zrho(i) = pplay(i, k)/zt(i)/rd |
326 |
|
|
zdz(i) = (paprs(i,k)-paprs(i,k+1))/(zrho(i)*rg) |
327 |
|
|
zfice(i) = 1.0 - (zt(i)-ztglace)/(273.13-ztglace) |
328 |
|
|
zfice(i) = min(max(zfice(i),0.0), 1.0) |
329 |
|
|
zfice(i) = zfice(i)**nexpo |
330 |
|
|
zneb(i) = max(rneb(i,k), seuil_neb) |
331 |
|
|
radliq(i, k) = zoliq(i)/real(ninter+1) |
332 |
|
|
END IF |
333 |
|
|
END DO |
334 |
|
|
|
335 |
|
|
DO n = 1, ninter |
336 |
|
|
DO i = 1, klon |
337 |
|
|
IF (rneb(i,k)>0.0) THEN |
338 |
|
|
zchau(i) = ct*dtime/real(ninter)*zoliq(i)* & |
339 |
|
|
(1.0-exp(-(zoliq(i)/zneb(i)/cl)**2))*(1.-zfice(i)) |
340 |
|
|
zrhol(i) = zrho(i)*zoliq(i)/zneb(i) |
341 |
|
|
zfroi(i) = dtime/real(ninter)/zdz(i)*zoliq(i)*fallv(zrhol(i))* & |
342 |
|
|
zfice(i) |
343 |
|
|
ztot(i) = zchau(i) + zfroi(i) |
344 |
|
|
IF (zneb(i)==seuil_neb) ztot(i) = 0.0 |
345 |
|
|
ztot(i) = min(max(ztot(i),0.0), zoliq(i)) |
346 |
|
|
zoliq(i) = max(zoliq(i)-ztot(i), 0.0) |
347 |
|
|
radliq(i, k) = radliq(i, k) + zoliq(i)/real(ninter+1) |
348 |
|
|
END IF |
349 |
|
|
END DO |
350 |
|
|
END DO |
351 |
|
|
|
352 |
|
|
DO i = 1, klon |
353 |
|
|
IF (rneb(i,k)>0.0) THEN |
354 |
|
|
d_ql(i, k) = zoliq(i) |
355 |
|
|
zrfl(i) = zrfl(i) + max(zcond(i)-zoliq(i), 0.0)*(paprs(i,k)-paprs(i,k & |
356 |
|
|
+1))/(rg*dtime) |
357 |
|
|
END IF |
358 |
|
|
IF (zt(i)<rtt) THEN |
359 |
|
|
psfl(i, k) = zrfl(i) |
360 |
|
|
ELSE |
361 |
|
|
prfl(i, k) = zrfl(i) |
362 |
|
|
END IF |
363 |
|
|
END DO |
364 |
|
|
|
365 |
|
|
! Calculer les tendances de q et de t: |
366 |
|
|
|
367 |
|
|
DO i = 1, klon |
368 |
|
|
d_q(i, k) = zq(i) - q(i, k) |
369 |
|
|
d_t(i, k) = zt(i) - t(i, k) |
370 |
|
|
END DO |
371 |
|
|
|
372 |
|
|
! AA--------------- Calcul du lessivage stratiforme ------------- |
373 |
|
|
|
374 |
|
|
DO i = 1, klon |
375 |
|
|
|
376 |
|
|
zprec_cond(i) = max(zcond(i)-zoliq(i), 0.0)*(paprs(i,k)-paprs(i,k+1))/ & |
377 |
|
|
rg |
378 |
|
|
IF (rneb(i,k)>0.0 .AND. zprec_cond(i)>0.) THEN |
379 |
|
|
! AA lessivage nucleation LMD5 dans la couche elle-meme |
380 |
|
|
IF (t(i,k)>=ztglace) THEN |
381 |
|
|
zalpha_tr = a_tr_sca(3) |
382 |
|
|
ELSE |
383 |
|
|
zalpha_tr = a_tr_sca(4) |
384 |
|
|
END IF |
385 |
|
|
zfrac_lessi = 1. - exp(zalpha_tr*zprec_cond(i)/zneb(i)) |
386 |
|
|
pfrac_nucl(i, k) = pfrac_nucl(i, k)*(1.-zneb(i)*zfrac_lessi) |
387 |
|
|
frac_nucl(i, k) = 1. - zneb(i)*zfrac_lessi |
388 |
|
|
|
389 |
|
|
! nucleation avec un facteur -1 au lieu de -0.5 |
390 |
|
|
zfrac_lessi = 1. - exp(-zprec_cond(i)/zneb(i)) |
391 |
|
|
pfrac_1nucl(i, k) = pfrac_1nucl(i, k)*(1.-zneb(i)*zfrac_lessi) |
392 |
|
|
END IF |
393 |
|
|
|
394 |
|
|
END DO ! boucle sur i |
395 |
|
|
|
396 |
|
|
! AA Lessivage par impaction dans les couches en-dessous |
397 |
|
|
DO kk = k - 1, 1, -1 |
398 |
|
|
DO i = 1, klon |
399 |
|
|
IF (rneb(i,k)>0.0 .AND. zprec_cond(i)>0.) THEN |
400 |
|
|
IF (t(i,kk)>=ztglace) THEN |
401 |
|
|
zalpha_tr = a_tr_sca(1) |
402 |
|
|
ELSE |
403 |
|
|
zalpha_tr = a_tr_sca(2) |
404 |
|
|
END IF |
405 |
|
|
zfrac_lessi = 1. - exp(zalpha_tr*zprec_cond(i)/zneb(i)) |
406 |
|
|
pfrac_impa(i, kk) = pfrac_impa(i, kk)*(1.-zneb(i)*zfrac_lessi) |
407 |
|
|
frac_impa(i, kk) = 1. - zneb(i)*zfrac_lessi |
408 |
|
|
END IF |
409 |
|
|
END DO |
410 |
|
|
END DO |
411 |
|
|
|
412 |
|
|
! AA---------------------------------------------------------- |
413 |
|
|
! FIN DE BOUCLE SUR K |
414 |
|
|
END DO |
415 |
|
|
|
416 |
|
|
! AA----------------------------------------------------------- |
417 |
|
|
|
418 |
|
|
! Pluie ou neige au sol selon la temperature de la 1ere couche |
419 |
|
|
|
420 |
|
|
DO i = 1, klon |
421 |
|
|
IF ((t(i,1)+d_t(i,1))<rtt) THEN |
422 |
|
|
snow(i) = zrfl(i) |
423 |
|
|
ELSE |
424 |
|
|
rain(i) = zrfl(i) |
425 |
|
|
END IF |
426 |
|
|
END DO |
427 |
|
|
|
428 |
|
|
RETURN |
429 |
|
|
END SUBROUTINE fisrtilp_tr |