1 |
|
|
|
2 |
|
|
! $Header$ |
3 |
|
|
|
4 |
|
|
SUBROUTINE hbtm2l(knon, paprs, pplay, t2m, t10m, q2m, q10m, ustar, flux_t, flux_q, u, v, t, q, pblh, therm, plcl, cape, & |
5 |
|
|
cin, eauliq, ctei, d_qt, d_thv, dlt_2, xhis, posint, omega, diagok) |
6 |
|
|
USE dimphy |
7 |
|
|
IMPLICIT NONE |
8 |
|
|
|
9 |
|
|
! *************************************************************** |
10 |
|
|
! * * |
11 |
|
|
! * HBTM2L D'apres Holstag&Boville et Troen&Mahrt * |
12 |
|
|
! * JAS 47 BLM * |
13 |
|
|
! * Algorithmes These Anne Mathieu * |
14 |
|
|
! * Critere d'Entrainement Peter Duynkerke (JAS 50) * |
15 |
|
|
! * written by : Anne MATHIEU & Alain LAHELLEC, 22/11/99 * |
16 |
|
|
! * features : implem. exces Mathieu * |
17 |
|
|
! *************************************************************** |
18 |
|
|
! * mods : decembre 99 passage th a niveau plus bas. voir fixer * |
19 |
|
|
! *************************************************************** |
20 |
|
|
! * fin therm a la HBTM passage a forme Mathieu 12/09/2001 * |
21 |
|
|
! *************************************************************** |
22 |
|
|
! AM Fev 2003 Adaptation a LMDZ version couplee * |
23 |
|
|
! * |
24 |
|
|
! Pour le moment on fait passer en argument les grdeurs de surface : |
25 |
|
|
! flux, t,q2m, t,q10m, on va utiliser systematiquement les grdeurs a 2m ms |
26 |
|
|
! on garde la possibilite de changer si besoin est (jusqu'a present la |
27 |
|
|
! forme de HB avec le 1er niveau modele etait conservee) * |
28 |
|
|
! *************************************************************** |
29 |
|
|
! * re-ecriture complete Alain Mars 2012 dans LMDZ5V5 * |
30 |
|
|
! *************************************************************** |
31 |
|
|
include "YOMCST.h" |
32 |
|
|
REAL rlvcp, reps |
33 |
|
|
! Arguments: |
34 |
|
|
|
35 |
|
|
INTEGER knon ! nombre de points a calculer |
36 |
|
|
! AM |
37 |
|
|
REAL t2m(klon), t10m(klon) ! temperature a 2 et 10m |
38 |
|
|
REAL q2m(klon), q10m(klon) ! q a 2 et 10m |
39 |
|
|
REAL ustar(klon) |
40 |
|
|
REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) |
41 |
|
|
REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
42 |
|
|
REAL flux_t(klon, klev), flux_q(klon, klev) ! Flux |
43 |
|
|
REAL u(klon, klev) ! vitesse U (m/s) |
44 |
|
|
REAL v(klon, klev) ! vitesse V (m/s) |
45 |
|
|
REAL t(klon, klev) ! temperature (K) |
46 |
|
|
REAL q(klon, klev) ! vapeur d'eau (kg/kg) |
47 |
|
|
|
48 |
|
|
INTEGER isommet |
49 |
|
|
REAL vk |
50 |
|
|
PARAMETER (vk=0.35) ! Von Karman => passer a .41 ! cf U.Olgstrom |
51 |
|
|
REAL ricr |
52 |
|
|
PARAMETER (ricr=0.4) |
53 |
|
|
REAL fak |
54 |
|
|
PARAMETER (fak=8.5) ! b calcul du Prandtl et de dTetas |
55 |
|
|
REAL fakn |
56 |
|
|
PARAMETER (fakn=7.2) ! a |
57 |
|
|
REAL onet |
58 |
|
|
PARAMETER (onet=1.0/3.0) |
59 |
|
|
REAL betam |
60 |
|
|
PARAMETER (betam=15.0) ! pour Phim / h dans la S.L stable |
61 |
|
|
REAL betah |
62 |
|
|
PARAMETER (betah=15.0) |
63 |
|
|
REAL betas |
64 |
|
|
PARAMETER (betas=5.0) ! Phit dans la S.L. stable (mais 2 formes / z/OBL<>1 |
65 |
|
|
REAL sffrac |
66 |
|
|
PARAMETER (sffrac=0.1) ! S.L. = z/h < .1 |
67 |
|
|
REAL binm |
68 |
|
|
PARAMETER (binm=betam*sffrac) |
69 |
|
|
REAL binh |
70 |
|
|
PARAMETER (binh=betah*sffrac) |
71 |
|
|
|
72 |
|
|
REAL q_star, t_star |
73 |
|
|
REAL b1, b2, b212, b2sr ! Lambert correlations T' q' avec T* q* |
74 |
|
|
PARAMETER (b1=70., b2=20.) ! b1 entre 70 et 100 |
75 |
|
|
|
76 |
|
|
REAL z(klon, klev) |
77 |
|
|
! AM |
78 |
|
|
REAL zref, dt0 |
79 |
|
|
PARAMETER (zref=2.) ! Niveau de ref a 2m |
80 |
|
|
PARAMETER (dt0=0.1) ! convergence do while |
81 |
|
|
|
82 |
|
|
INTEGER i, k, j |
83 |
|
|
REAL khfs(klon) ! surface kinematic heat flux [mK/s] |
84 |
|
|
REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] |
85 |
|
|
REAL heatv(klon) ! surface virtual heat flux |
86 |
|
|
REAL rhino(klon, klev) ! bulk Richardon no. mais en Theta_v |
87 |
|
|
LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) |
88 |
|
|
LOGICAL check(klon) ! True=>chk if Richardson no.>critcal |
89 |
|
|
LOGICAL omegafl(klon) ! flag de prolongement cape pour pt Omega |
90 |
|
|
REAL obklen(klon) ! Monin-Obukhov lengh |
91 |
|
|
|
92 |
|
|
REAL pblh(klon) ! PBL H (m) |
93 |
|
|
REAL therm(klon) ! exces du thermique (K) |
94 |
|
|
REAL plcl(klon) ! Lifted Cnd Level (Pa) |
95 |
|
|
REAL cape(klon) ! Cape |
96 |
|
|
REAL cin(klon) ! Inhibition |
97 |
|
|
REAL eauliq(klon) ! Eau Liqu integree |
98 |
|
|
REAL ctei(klon) ! Cld Top Entr. Instab. |
99 |
|
|
REAL d_qt(klon) ! Saut de qT a l'inversion |
100 |
|
|
REAL d_thv(klon) ! Theta_e |
101 |
|
|
REAL dlt_2(klon) ! Ordonnee a gauche de courbe de melange |
102 |
|
|
REAL xhis(klon) ! fraction de melange pour flottab nulle |
103 |
|
|
REAL posint(klon) ! partie positive de l'int. de Peter |
104 |
|
|
REAL omega(klon) ! point ultime de l'ascention du thermique |
105 |
|
|
REAL diagok(klon) ! pour traiter les sous-mailles sans info |
106 |
|
|
! Algorithme thermique |
107 |
|
|
REAL s(klon, klev) ! [P/Po]^Kappa milieux couches |
108 |
|
|
REAL th_th(klon) ! potential temperature of thermal |
109 |
|
|
REAL the_th(klon) ! equivalent potential temperature of thermal |
110 |
|
|
REAL qt_th(klon) ! total water of thermal |
111 |
|
|
REAL tbef(klon) ! T thermique niveau ou calcul precedent |
112 |
|
|
LOGICAL zsat(klon) ! le thermique est sature |
113 |
|
|
LOGICAL zcin(klon) ! calcul d'inhibition |
114 |
|
|
REAL kape(klon) ! Cape locale |
115 |
|
|
REAL kin(klon) ! Cin locale |
116 |
|
|
! calcul de CTEI etc |
117 |
|
|
REAL the1, the2, aa, bb, zthvd, zthvu, qsat, chi, rh, zxt, zdu2 |
118 |
|
|
REAL rnum, denom, th1, th2, tv1, tv2, thv1, thv2, ql1, ql2, dt |
119 |
|
|
REAL dqsat_dt, qsat2, qt1, q1, q2, t1, t2, tl1, te2, xnull, delt_the |
120 |
|
|
REAL delt_qt, quadsat, spblh, reduc |
121 |
|
|
! diag REAL dTv21(klon,klev) |
122 |
|
|
|
123 |
|
|
REAL phiminv(klon) ! inverse phi function for momentum |
124 |
|
|
REAL phihinv(klon) ! inverse phi function for heat |
125 |
|
|
REAL wm(klon) ! turbulent velocity scale for momentum |
126 |
|
|
REAL zm(klon) ! current level height |
127 |
|
|
REAL zp(klon) ! current level height + one level up |
128 |
|
|
REAL zcor, zdelta, zcvm5 |
129 |
|
|
REAL fac, pblmin |
130 |
|
|
REAL missing_val |
131 |
|
|
|
132 |
|
|
include "YOETHF.h" |
133 |
|
|
include "FCTTRE.h" |
134 |
|
|
|
135 |
|
|
! c missing_val=nf90_fill_real (avec include netcdf) |
136 |
|
|
missing_val = 0. |
137 |
|
|
|
138 |
|
|
! initialisations (Anne) |
139 |
|
|
isommet = klev |
140 |
|
|
b212 = sqrt(b1*b2) |
141 |
|
|
b2sr = sqrt(b2) |
142 |
|
|
|
143 |
|
|
! Initialisation thermo |
144 |
|
|
rlvcp = rlvtt/rcpd |
145 |
|
|
reps = rd/rv |
146 |
|
|
! raz |
147 |
|
|
q_star = 0. |
148 |
|
|
t_star = 0. |
149 |
|
|
cape(:) = missing_val |
150 |
|
|
kape(:) = 0. |
151 |
|
|
cin(:) = missing_val |
152 |
|
|
eauliq(:) = missing_val |
153 |
|
|
ctei(:) = missing_val |
154 |
|
|
d_qt(:) = missing_val |
155 |
|
|
d_thv(:) = missing_val |
156 |
|
|
dlt_2(:) = missing_val |
157 |
|
|
xhis(:) = missing_val |
158 |
|
|
posint(:) = missing_val |
159 |
|
|
kin(:) = missing_val |
160 |
|
|
omega(:) = missing_val |
161 |
|
|
diagok(:) = 0. |
162 |
|
|
! diag dTv21(:,:)= missing_val |
163 |
|
|
|
164 |
|
|
! Calculer les hauteurs de chaque couche |
165 |
|
|
DO i = 1, knon |
166 |
|
|
z(i, 1) = rd*t(i, 1)/(0.5*(paprs(i,1)+pplay(i,1)))*(paprs(i,1)-pplay(i,1))/rg |
167 |
|
|
s(i, 1) = (pplay(i,1)/paprs(i,1))**rkappa |
168 |
|
|
END DO |
169 |
|
|
! s(k) = [pplay(k)/ps]^kappa |
170 |
|
|
! + + + + + + + + + pplay <-> s(k) t dp=pplay(k-1)-pplay(k) |
171 |
|
|
|
172 |
|
|
! ----------------- paprs <-> sig(k) |
173 |
|
|
|
174 |
|
|
! + + + + + + + + + pplay <-> s(k-1) |
175 |
|
|
|
176 |
|
|
|
177 |
|
|
! + + + + + + + + + pplay <-> s(1) t dp=paprs-pplay z(1) |
178 |
|
|
|
179 |
|
|
! ----------------- paprs <-> sig(1) |
180 |
|
|
|
181 |
|
|
DO k = 2, klev |
182 |
|
|
DO i = 1, knon |
183 |
|
|
z(i, k) = z(i, k-1) + rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i,k-1)-pplay(i,k))/rg |
184 |
|
|
s(i, k) = (pplay(i,k)/paprs(i,1))**rkappa |
185 |
|
|
END DO |
186 |
|
|
END DO |
187 |
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
188 |
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
189 |
|
|
! +++ Determination des grandeurs de surface +++++++++++++++++++++ |
190 |
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
191 |
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
192 |
|
|
DO i = 1, knon |
193 |
|
|
! AM Niveau de ref choisi a 2m |
194 |
|
|
zxt = t2m(i) |
195 |
|
|
|
196 |
|
|
! *************************************************** |
197 |
|
|
! attention, il doit s'agir de <w'theta'> |
198 |
|
|
! ;Calcul de tcls virtuel et de w'theta'virtuel |
199 |
|
|
! ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; |
200 |
|
|
! tcls=tcls*(1+.608*qcls) |
201 |
|
|
|
202 |
|
|
! ;Pour avoir w'theta', |
203 |
|
|
! ; il faut diviser par ro.Cp |
204 |
|
|
! Cp=Cpd*(1+0.84*qcls) |
205 |
|
|
! fcs=fcs/(ro_surf*Cp) |
206 |
|
|
! ;On transforme w'theta' en w'thetav' |
207 |
|
|
! Lv=(2.501-0.00237*(tcls-273.15))*1.E6 |
208 |
|
|
! xle=xle/(ro_surf*Lv) |
209 |
|
|
! fcsv=fcs+.608*xle*tcls |
210 |
|
|
! *************************************************** |
211 |
|
|
! dif khfs est deja w't'_v / heatv(i) = khfs(i) + RETV*zxt*kqfs(i) |
212 |
|
|
! AM calcul de Ro = paprs(i,1)/Rd zxt |
213 |
|
|
! AM convention >0 vers le bas ds lmdz |
214 |
|
|
khfs(i) = -flux_t(i, 1)*zxt*rd/(rcpd*paprs(i,1)) |
215 |
|
|
kqfs(i) = -flux_q(i, 1)*zxt*rd/(paprs(i,1)) |
216 |
|
|
! AM verifier que khfs et kqfs sont bien de la forme w'l' |
217 |
|
|
heatv(i) = khfs(i) + retv*zxt*kqfs(i) |
218 |
|
|
! a comparer aussi aux sorties de clqh : flux_T/RoCp et flux_q/RoLv |
219 |
|
|
! AM ustar est en entree (calcul dans stdlevvar avec t2m q2m) |
220 |
|
|
! Theta et qT du thermique sans exces |
221 |
|
|
qt_th(i) = q2m(i) |
222 |
|
|
! Al1 Th_th restera la Theta du thermique sans exces jusqu'au 3eme calcul |
223 |
|
|
th_th(i) = t2m(i) |
224 |
|
|
END DO |
225 |
|
|
|
226 |
|
|
DO i = 1, knon |
227 |
|
|
rhino(i, 1) = 0.0 ! Global Richardson |
228 |
|
|
check(i) = .TRUE. |
229 |
|
|
pblh(i) = z(i, 1) ! on initialise pblh a l'altitude du 1er niveau |
230 |
|
|
! Attention Plcl est pression ou altitude ? |
231 |
|
|
! plcl(i) = 6000. ! m |
232 |
|
|
plcl(i) = 200. ! hPa |
233 |
|
|
IF (heatv(i)>0.0001) THEN |
234 |
|
|
! Lambda = -u*^3 / (alpha.g.kvon.<w'Theta'v> |
235 |
|
|
obklen(i) = -t(i, 1)*ustar(i)**3/(rg*vk*heatv(i)) |
236 |
|
|
ELSE |
237 |
|
|
! set pblh to the friction high (cf + bas) |
238 |
|
|
pblh(i) = 700.0*ustar(i) |
239 |
|
|
check(i) = .FALSE. |
240 |
|
|
END IF |
241 |
|
|
END DO |
242 |
|
|
|
243 |
|
|
|
244 |
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
245 |
|
|
! PBL height calculation: |
246 |
|
|
! Search for level of pbl. Scan upward until the Richardson number between |
247 |
|
|
! the first level and the current level exceeds the "critical" value. |
248 |
|
|
! (bonne idee Nu de separer le Ric et l'exces de temp du thermique) |
249 |
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
250 |
|
|
fac = 100.0 |
251 |
|
|
DO k = 2, isommet |
252 |
|
|
DO i = 1, knon |
253 |
|
|
IF (check(i)) THEN |
254 |
|
|
zdu2 = u(i, k)**2 + v(i, k)**2 |
255 |
|
|
zdu2 = max(zdu2, 1.0E-20) |
256 |
|
|
! Theta_v environnement |
257 |
|
|
zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) |
258 |
|
|
zthvu = th_th(i)*(1.+retv*qt_th(i)) |
259 |
|
|
! Le Ri bulk par Theta_v |
260 |
|
|
rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5*(zthvd+zthvu)) |
261 |
|
|
|
262 |
|
|
IF (rhino(i,k)>=ricr) THEN |
263 |
|
|
pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))/(rhino(i,k-1)-rhino(i,k)) |
264 |
|
|
! test04 (la pblh est encore ici sous-estime'e) |
265 |
|
|
pblh(i) = pblh(i) + 100. |
266 |
|
|
! pblT(i) = t(i,k-1) + (t(i,k)-t(i,k-1)) * |
267 |
|
|
! . (pblh(i)-z(i,k-1))/(z(i,k)-z(i,k-1)) |
268 |
|
|
check(i) = .FALSE. |
269 |
|
|
END IF |
270 |
|
|
END IF |
271 |
|
|
END DO |
272 |
|
|
END DO |
273 |
|
|
|
274 |
|
|
|
275 |
|
|
! Set pbl height to maximum value where computation exceeds number of |
276 |
|
|
! layers allowed |
277 |
|
|
|
278 |
|
|
DO i = 1, knon |
279 |
|
|
IF (check(i)) pblh(i) = z(i, isommet) |
280 |
|
|
END DO |
281 |
|
|
|
282 |
|
|
! Improve estimate of pbl height for the unstable points. |
283 |
|
|
! Find unstable points (sensible heat flux is upward): |
284 |
|
|
|
285 |
|
|
DO i = 1, knon |
286 |
|
|
IF (heatv(i)>0.) THEN |
287 |
|
|
unstbl(i) = .TRUE. |
288 |
|
|
check(i) = .TRUE. |
289 |
|
|
ELSE |
290 |
|
|
unstbl(i) = .FALSE. |
291 |
|
|
check(i) = .FALSE. |
292 |
|
|
END IF |
293 |
|
|
END DO |
294 |
|
|
|
295 |
|
|
! For the unstable case, compute velocity scale and the |
296 |
|
|
! convective temperature excess: |
297 |
|
|
|
298 |
|
|
DO i = 1, knon |
299 |
|
|
IF (check(i)) THEN |
300 |
|
|
phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
301 |
|
|
! *************************************************** |
302 |
|
|
! Wm ? et W* ? c'est la formule pour z/h < .1 |
303 |
|
|
! ;Calcul de w* ;; |
304 |
|
|
! ;;;;;;;;;;;;;;;; |
305 |
|
|
! w_star=((g/tcls)*fcsv*z(ind))^(1/3.) [ou prendre la premiere approx de h) |
306 |
|
|
! ;; CALCUL DE wm ;; |
307 |
|
|
! ;;;;;;;;;;;;;;;;;; |
308 |
|
|
! ; Ici on considerera que l'on est dans la couche de surf jusqu'a 100m |
309 |
|
|
! ; On prend svt couche de surface=0.1*h mais on ne connait pas h |
310 |
|
|
! ;;;;;;;;;;;Dans la couche de surface |
311 |
|
|
! if (z(ind) le 20) then begin |
312 |
|
|
! Phim=(1.-15.*(z(ind)/L))^(-1/3.) |
313 |
|
|
! wm=u_star/Phim |
314 |
|
|
! ;;;;;;;;;;;En dehors de la couche de surface |
315 |
|
|
! endif else if (z(ind) gt 20) then begin |
316 |
|
|
! wm=(u_star^3+c1*w_star^3)^(1/3.) |
317 |
|
|
! endif |
318 |
|
|
! *************************************************** |
319 |
|
|
wm(i) = ustar(i)*phiminv(i) |
320 |
|
|
! ====================================================================== |
321 |
|
|
! valeurs de Dominique Lambert de la campagne SEMAPHORE : |
322 |
|
|
! <T'^2> = 100.T*^2; <q'^2> = 20.q*^2 a 10m |
323 |
|
|
! <Tv'^2> = (1+1.2q).100.T* + 1.2Tv.sqrt(20*100).T*.q* + (.608*Tv)^2*20.q*^2; |
324 |
|
|
! et dTetavS = sqrt(<Tv'^2>) ainsi calculee. |
325 |
|
|
! avec : T*=<w'T'>_s/w* et q*=<w'q'>/w* |
326 |
|
|
! !!! on peut donc utiliser w* pour les fluctuations <-> Lambert |
327 |
|
|
! (leur corellation pourrait dependre de beta par ex) |
328 |
|
|
! if fcsv(i,j) gt 0 then begin |
329 |
|
|
! dTetavs=b1*(1.+2.*.608*q_10(i,j))*(fcs(i,j)/wm(i,j))^2+$ |
330 |
|
|
! (.608*Thetav_10(i,j))^2*b2*(xle(i,j)/wm(i,j))^2+$ |
331 |
|
|
! 2.*.608*thetav_10(i,j)*sqrt(b1*b2)*(xle(i,j)/wm(i,j))*(fcs(i,j)/wm(i,j)) |
332 |
|
|
! dqs=b2*(xle(i,j)/wm(i,j))^2 |
333 |
|
|
! theta_s(i,j)=thetav_10(i,j)+sqrt(dTetavs) |
334 |
|
|
! q_s(i,j)=q_10(i,j)+sqrt(dqs) |
335 |
|
|
! endif else begin |
336 |
|
|
! Theta_s(i,j)=thetav_10(i,j) |
337 |
|
|
! q_s(i,j)=q_10(i,j) |
338 |
|
|
! endelse |
339 |
|
|
! leur reference est le niveau a 10m, mais on prend 2m ici. |
340 |
|
|
! ====================================================================== |
341 |
|
|
! Premier calcul de l'exces tu thermique |
342 |
|
|
! ====================================================================== |
343 |
|
|
! HBTM therm(i) = heatv(i)*fak/wm(i) |
344 |
|
|
! forme Mathieu : |
345 |
|
|
q_star = max(0., kqfs(i)/wm(i)) |
346 |
|
|
t_star = max(0., khfs(i)/wm(i)) |
347 |
|
|
! Al1 Houston, we have a problem : il arrive en effet que heatv soit |
348 |
|
|
! positif (=thermique instable) mais pas t_star : avec evaporation |
349 |
|
|
! importante, il se peut qu'on refroidisse la 2m Que faire alors ? |
350 |
|
|
! Garder le seul terme en q_star^2 ? ou rendre negatif le t_star^2 ? |
351 |
|
|
therm(i) = sqrt(b1*(1.+2.*retv*qt_th(i))*t_star**2+(retv*th_th(i))**2*b2*q_star*q_star+2.*retv*th_th(i)*b212* & |
352 |
|
|
q_star*t_star) |
353 |
|
|
|
354 |
|
|
! Theta et qT du thermique (forme H&B) avec exces |
355 |
|
|
! (attention, on ajoute therm(i) qui est virtuelle ...) |
356 |
|
|
! pourquoi pas sqrt(b1)*t_star ? |
357 |
|
|
! dqs = b2sr*kqfs(i)/wm(i) |
358 |
|
|
qt_th(i) = qt_th(i) + b2sr*q_star |
359 |
|
|
rhino(i, 1) = 0.0 |
360 |
|
|
END IF |
361 |
|
|
END DO |
362 |
|
|
|
363 |
|
|
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
364 |
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
365 |
|
|
! ++ Improve pblh estimate for unstable conditions using the +++++++ |
366 |
|
|
! ++ convective temperature excess : +++++++ |
367 |
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
368 |
|
|
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
369 |
|
|
|
370 |
|
|
DO k = 2, isommet |
371 |
|
|
DO i = 1, knon |
372 |
|
|
IF (check(i)) THEN |
373 |
|
|
! test zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
374 |
|
|
zdu2 = u(i, k)**2 + v(i, k)**2 |
375 |
|
|
zdu2 = max(zdu2, 1.0E-20) |
376 |
|
|
! Theta_v environnement |
377 |
|
|
zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) |
378 |
|
|
|
379 |
|
|
! et therm Theta_v (avec hypothese de constance de H&B, |
380 |
|
|
! qui assimile qT a vapeur) |
381 |
|
|
zthvu = th_th(i)*(1.+retv*qt_th(i)) + therm(i) |
382 |
|
|
|
383 |
|
|
|
384 |
|
|
! Le Ri par Theta_v |
385 |
|
|
! AM Niveau de ref 2m |
386 |
|
|
rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5*(zthvd+zthvu)) |
387 |
|
|
|
388 |
|
|
! Niveau critique atteint |
389 |
|
|
IF (rhino(i,k)>=ricr) THEN |
390 |
|
|
pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))/(rhino(i,k-1)-rhino(i,k)) |
391 |
|
|
! test04 |
392 |
|
|
pblh(i) = pblh(i) + 100. |
393 |
|
|
! pblT(i) = t(i,k-1) + (t(i,k)-t(i,k-1)) * |
394 |
|
|
! . (pblh(i)-z(i,k-1))/(z(i,k)-z(i,k-1)) |
395 |
|
|
check(i) = .FALSE. |
396 |
|
|
END IF |
397 |
|
|
END IF |
398 |
|
|
END DO |
399 |
|
|
END DO |
400 |
|
|
|
401 |
|
|
! Set pbl height to maximum value where computation exceeds number of |
402 |
|
|
! layers allowed (H&B) |
403 |
|
|
|
404 |
|
|
DO i = 1, knon |
405 |
|
|
IF (check(i)) pblh(i) = z(i, isommet) |
406 |
|
|
END DO |
407 |
|
|
|
408 |
|
|
! PBL height must be greater than some minimum mechanical mixing depth |
409 |
|
|
! Several investigators have proposed minimum mechanical mixing depth |
410 |
|
|
! relationships as a function of the local friction velocity, u*. We |
411 |
|
|
! make use of a linear relationship of the form h = c u* where c=700. |
412 |
|
|
! The scaling arguments that give rise to this relationship most often |
413 |
|
|
! represent the coefficient c as some constant over the local coriolis |
414 |
|
|
! parameter. Here we make use of the experimental results of Koracin |
415 |
|
|
! and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f |
416 |
|
|
! where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid |
417 |
|
|
! latitude value for f so that c = 0.07/f = 700. (H&B) |
418 |
|
|
! Al1 calcul de pblT dans ce cas |
419 |
|
|
DO i = 1, knon |
420 |
|
|
pblmin = 700.0*ustar(i) |
421 |
|
|
IF (pblh(i)<pblmin) check(i) = .TRUE. |
422 |
|
|
END DO |
423 |
|
|
DO i = 1, knon |
424 |
|
|
IF (check(i)) THEN |
425 |
|
|
pblh(i) = 700.0*ustar(i) |
426 |
|
|
! et par exemple : |
427 |
|
|
! pblT(i) = t(i,2) + (t(i,3)-t(i,2)) * |
428 |
|
|
! . (pblh(i)-z(i,2))/(z(i,3)-z(i,2)) |
429 |
|
|
END IF |
430 |
|
|
END DO |
431 |
|
|
|
432 |
|
|
! ******************************************************************** |
433 |
|
|
! pblh is now available; do preparation for final calculations : |
434 |
|
|
! ******************************************************************** |
435 |
|
|
DO i = 1, knon |
436 |
|
|
check(i) = .TRUE. |
437 |
|
|
zsat(i) = .FALSE. |
438 |
|
|
zcin(i) = .FALSE. |
439 |
|
|
! omegafl utilise pour prolongement CAPE |
440 |
|
|
omegafl(i) = .FALSE. |
441 |
|
|
|
442 |
|
|
! Do additional preparation for unstable cases only, set temperature |
443 |
|
|
! and moisture perturbations depending on stability. |
444 |
|
|
! Rq: les formules sont prises dans leur forme Couche de Surface |
445 |
|
|
IF (unstbl(i)) THEN |
446 |
|
|
! Al pblh a change', on recalcule : |
447 |
|
|
zxt = (th_th(i)-zref*0.5*rg/rcpd/(1.+rvtmp2*qt_th(i)))*(1.+retv*qt_th(i)) |
448 |
|
|
phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
449 |
|
|
phihinv(i) = sqrt(1.-binh*pblh(i)/obklen(i)) |
450 |
|
|
wm(i) = ustar(i)*phiminv(i) |
451 |
|
|
END IF |
452 |
|
|
END DO |
453 |
|
|
|
454 |
|
|
|
455 |
|
|
! ======================================================= |
456 |
|
|
! last upward integration |
457 |
|
|
! For all unstable layers, compute integral info and CTEI |
458 |
|
|
! ======================================================= |
459 |
|
|
|
460 |
|
|
! 1/Recompute surface characteristics with the improved pblh |
461 |
|
|
! ---------------------------------------------------------- |
462 |
|
|
DO i = 1, knon |
463 |
|
|
IF (unstbl(i)) THEN |
464 |
|
|
diagok(i) = 1. |
465 |
|
|
! from missing_value to zero |
466 |
|
|
cape(i) = 0. |
467 |
|
|
cin(i) = 0. |
468 |
|
|
eauliq(i) = 0. |
469 |
|
|
ctei(i) = 0. |
470 |
|
|
d_qt(i) = 0. |
471 |
|
|
d_thv(i) = 0. |
472 |
|
|
dlt_2(i) = 0. |
473 |
|
|
xhis(i) = 0. |
474 |
|
|
posint(i) = 0. |
475 |
|
|
kin(i) = 0. |
476 |
|
|
omega(i) = 0. |
477 |
|
|
|
478 |
|
|
phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
479 |
|
|
wm(i) = ustar(i)*phiminv(i) |
480 |
|
|
q_star = max(0., kqfs(i)/wm(i)) |
481 |
|
|
t_star = max(0., khfs(i)/wm(i)) |
482 |
|
|
therm(i) = sqrt(b1*(1.+2.*retv*qt_th(i))*t_star**2+(retv*th_th(i))**2*b2*q_star*q_star+2.*retv*th_th(i)*b212* & |
483 |
|
|
q_star*t_star) |
484 |
|
|
! Al1diag |
485 |
|
|
! trmb1(i) = b1*(1.+2.*RETV*qT_th(i))*t_star**2 |
486 |
|
|
! trmb2(i) = (RETV*Th_th(i))**2*b2*q_star*q_star |
487 |
|
|
! trmb3(i) = 2.*RETV*Th_th(i)*b212*q_star*t_star |
488 |
|
|
|
489 |
|
|
! Th_th will now be the thermal-theta (including exces) |
490 |
|
|
! c Th_th(i) = Th_th(i)+sqrt(b1)*max(0.,khfs(i)/wm(i)) |
491 |
|
|
th_th(i) = th_th(i) + therm(i) |
492 |
|
|
! al1diag |
493 |
|
|
! trmb2(i) = wm(i) |
494 |
|
|
! trmb3(i) = phiminv(i) |
495 |
|
|
! and computes Theta_e for thermal |
496 |
|
|
the_th(i) = th_th(i) + rlvcp*qt_th(i) |
497 |
|
|
END IF ! unstbl |
498 |
|
|
! Al1 compute a first guess of Plcl with the Bolton/Emanuel formula |
499 |
|
|
t2 = th_th(i) |
500 |
|
|
! thermodyn functions |
501 |
|
|
zdelta = max(0., sign(1.,rtt-t2)) |
502 |
|
|
qsat = r2es*foeew(t2, zdelta)/paprs(i, 1) |
503 |
|
|
qsat = min(0.5, qsat) |
504 |
|
|
zcor = 1./(1.-retv*qsat) |
505 |
|
|
qsat = qsat*zcor |
506 |
|
|
! relative humidity of thermal at 2m |
507 |
|
|
rh = qt_th(i)/qsat |
508 |
|
|
chi = t2/(1669.0-122.0*rh-t2) |
509 |
|
|
plcl(i) = paprs(i, 1)*(rh**chi) |
510 |
|
|
! al1diag |
511 |
|
|
! ctei(i) = Plcl(i) |
512 |
|
|
! cape(i) = T2 |
513 |
|
|
! trmb1(i)= Chi |
514 |
|
|
! select unstable columns (=thermals) |
515 |
|
|
check(i) = .FALSE. |
516 |
|
|
IF (heatv(i)>0.) check(i) = .TRUE. |
517 |
|
|
! diag |
518 |
|
|
! dTv21(i,1) = T2*(1+RETV*qT_th(i))-t(i,1)*(1+RETV*q(i,1)) |
519 |
|
|
END DO |
520 |
|
|
! ---------------------------------- |
521 |
|
|
! 2/ upward integration for thermals |
522 |
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ k loop |
523 |
|
|
DO k = 2, isommet |
524 |
|
|
DO i = 1, knon |
525 |
|
|
IF (check(i) .OR. omegafl(i)) THEN |
526 |
|
|
! CC if (pplay(i,k) .le. plcl(i)) then |
527 |
|
|
zm(i) = z(i, k-1) |
528 |
|
|
zp(i) = z(i, k) |
529 |
|
|
! Environnement : calcul de Tv1 a partir de t(:,:)== T liquide |
530 |
|
|
! ============== |
531 |
|
|
tl1 = t(i, k) |
532 |
|
|
t1 = tl1 |
533 |
|
|
zdelta = max(0., sign(1.,rtt-t1)) |
534 |
|
|
qsat = r2es*foeew(t1, zdelta)/pplay(i, k) |
535 |
|
|
qsat = min(0.5, qsat) |
536 |
|
|
zcor = 1./(1.-retv*qsat) |
537 |
|
|
qsat = qsat*zcor |
538 |
|
|
q1 = min(q(i,k), qsat) |
539 |
|
|
ql1 = max(0., q(i,k)-q1) |
540 |
|
|
! thermodyn function (Tl2Tql) |
541 |
|
|
dt = rlvcp*ql1 |
542 |
|
|
DO WHILE (abs(dt)>=dt0) |
543 |
|
|
t1 = t1 + dt |
544 |
|
|
zdelta = max(0., sign(1.,rtt-t1)) |
545 |
|
|
zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
546 |
|
|
qsat = r2es*foeew(t1, zdelta)/pplay(i, k) |
547 |
|
|
qsat = min(0.5, qsat) |
548 |
|
|
zcor = 1./(1.-retv*qsat) |
549 |
|
|
qsat = qsat*zcor |
550 |
|
|
dqsat_dt = foede(t1, zdelta, zcvm5, qsat, zcor) |
551 |
|
|
! correction lineaire pour conserver Tl env |
552 |
|
|
! << Tl = T1 + DT - RLvCp*(ql1 - dqsat/dT*DT >> |
553 |
|
|
denom = 1. + rlvcp*dqsat_dt |
554 |
|
|
q1 = min(q(i,k), qsat) |
555 |
|
|
ql1 = q(i, k) - q1 ! can be negative |
556 |
|
|
rnum = tl1 - t1 + rlvcp*ql1 |
557 |
|
|
dt = rnum/denom |
558 |
|
|
END DO |
559 |
|
|
ql1 = max(0., ql1) |
560 |
|
|
tv1 = t1*(1.+retv*q1-ql1) |
561 |
|
|
! Thermique : on atteint le seuil B/E de condensation |
562 |
|
|
! ============== |
563 |
|
|
|
564 |
|
|
IF (.NOT. zsat(i)) THEN |
565 |
|
|
! first guess from The_th(i) = Th_th(i) + RLvCp* [qv=qT_th(i)] |
566 |
|
|
t2 = s(i, k)*the_th(i) - rlvcp*qt_th(i) |
567 |
|
|
zdelta = max(0., sign(1.,rtt-t2)) |
568 |
|
|
qsat = r2es*foeew(t2, zdelta)/pplay(i, k) |
569 |
|
|
qsat = min(0.5, qsat) |
570 |
|
|
zcor = 1./(1.-retv*qsat) |
571 |
|
|
qsat = qsat*zcor |
572 |
|
|
q2 = min(qt_th(i), qsat) |
573 |
|
|
ql2 = max(0., qt_th(i)-q2) |
574 |
|
|
IF (ql2>0.0001) zsat(i) = .TRUE. |
575 |
|
|
tbef(i) = t2 |
576 |
|
|
! a PBLH non sature |
577 |
|
|
IF (zm(i)<pblh(i) .AND. zp(i)>=pblh(i)) THEN |
578 |
|
|
reduc = (pblh(i)-zm(i))/(zp(i)-zm(i)) |
579 |
|
|
spblh = s(i, k-1) + reduc*(s(i,k)-s(i,k-1)) |
580 |
|
|
! lmdz : qT1 et Thv1 |
581 |
|
|
t1 = (t(i,k-1)+reduc*(t(i,k)-t(i,k-1))) |
582 |
|
|
thv1 = t1*(1.+retv*q(i,k))/spblh |
583 |
|
|
! on calcule pour le cas sans nuage un ctei en Delta Thv |
584 |
|
|
thv2 = t2/spblh*(1.+retv*qt_th(i)) |
585 |
|
|
ctei(i) = thv1 - thv2 |
586 |
|
|
tv2 = t2*(1.+retv*q2-ql2) |
587 |
|
|
! diag |
588 |
|
|
! dTv21(i,k) = Tv2-Tv1 |
589 |
|
|
check(i) = .FALSE. |
590 |
|
|
omegafl(i) = .TRUE. |
591 |
|
|
END IF |
592 |
|
|
END IF |
593 |
|
|
|
594 |
|
|
IF (zsat(i)) THEN |
595 |
|
|
! thermodyn functions (Te2Tqsat) |
596 |
|
|
t2 = tbef(i) |
597 |
|
|
dt = 1. |
598 |
|
|
te2 = s(i, k)*the_th(i) |
599 |
|
|
DO WHILE (abs(dt)>=dt0) |
600 |
|
|
zdelta = max(0., sign(1.,rtt-t2)) |
601 |
|
|
zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
602 |
|
|
qsat = r2es*foeew(t2, zdelta)/pplay(i, k) |
603 |
|
|
qsat = min(0.5, qsat) |
604 |
|
|
zcor = 1./(1.-retv*qsat) |
605 |
|
|
qsat = qsat*zcor |
606 |
|
|
dqsat_dt = foede(t2, zdelta, zcvm5, qsat, zcor) |
607 |
|
|
! correction lineaire pour conserver Te_th |
608 |
|
|
! << Te = T2 + DT + RLvCp*(qsatbef + dq/dT*DT >> |
609 |
|
|
denom = 1. + rlvcp*dqsat_dt |
610 |
|
|
rnum = te2 - t2 - rlvcp*qsat |
611 |
|
|
dt = rnum/denom |
612 |
|
|
t2 = t2 + dt |
613 |
|
|
END DO |
614 |
|
|
q2 = min(qt_th(i), qsat) |
615 |
|
|
ql2 = max(0., qt_th(i)-q2) |
616 |
|
|
! jusqu'a PBLH y compris |
617 |
|
|
IF (zm(i)<pblh(i)) THEN |
618 |
|
|
|
619 |
|
|
! mais a PBLH, interpolation et complements |
620 |
|
|
IF (zp(i)>=pblh(i)) THEN |
621 |
|
|
reduc = (pblh(i)-zm(i))/(zp(i)-zm(i)) |
622 |
|
|
spblh = s(i, k-1) + reduc*(s(i,k)-s(i,k-1)) |
623 |
|
|
! CAPE et EauLiq a pblH |
624 |
|
|
cape(i) = kape(i) + reduc*(zp(i)-zm(i))*rg*.5/(tv2+tv1)*max(0., (tv2-tv1)) |
625 |
|
|
eauliq(i) = eauliq(i) + reduc*(paprs(i,k-1)-paprs(i,k))*ql2/rg |
626 |
|
|
! CTEI |
627 |
|
|
the2 = (t2+rlvcp*q2)/spblh |
628 |
|
|
! T1 est en realite la Tl env (on a donc strict The1) |
629 |
|
|
t1 = (t(i,k-1)+reduc*(t(i,k)-t(i,k-1))) |
630 |
|
|
the1 = (t1+rlvcp*q(i,k))/spblh |
631 |
|
|
! Calcul de la Cloud Top Entrainement Instability |
632 |
|
|
! cf Mathieu Lahellec QJRMS (2005) Comments to DYCOMS-II |
633 |
|
|
! saut a l'inversion : |
634 |
|
|
delt_the = the1 - the2 ! negatif |
635 |
|
|
delt_qt = q(i, k) - qt_th(i) ! negatif |
636 |
|
|
d_qt(i) = -delt_qt |
637 |
|
|
dlt_2(i) = .63*delt_the - the2*delt_qt |
638 |
|
|
! init ctei(i) |
639 |
|
|
ctei(i) = dlt_2(i) |
640 |
|
|
IF (dlt_2(i)<-0.1) THEN |
641 |
|
|
! integrale de Peter : |
642 |
|
|
aa = delt_the - delt_qt*(rlvcp-retv*the2) |
643 |
|
|
bb = (rlvcp-(1.+retv)*the2)*ql2 |
644 |
|
|
d_thv(i) = aa - bb |
645 |
|
|
! approx de Xhi_s et de l'integrale Xint=ctei(i) |
646 |
|
|
xhis(i) = bb/(aa-dlt_2(i)) |
647 |
|
|
! trmb1(i) = xhis |
648 |
|
|
! trmb3(i) = dlt_2 |
649 |
|
|
xnull = bb/aa |
650 |
|
|
IF (xhis(i)>0.1) THEN |
651 |
|
|
ctei(i) = dlt_2(i)*xhis(i) + aa*(1.-xhis(i)) + bb*alog(xhis(i)) |
652 |
|
|
ELSE |
653 |
|
|
ctei(i) = .5*(dlt_2(i)+aa-bb) |
654 |
|
|
END IF |
655 |
|
|
IF (xnull>0.) THEN |
656 |
|
|
posint(i) = aa - bb + bb*alog(xnull) |
657 |
|
|
ELSE |
658 |
|
|
posint(i) = 0. |
659 |
|
|
END IF |
660 |
|
|
ELSE |
661 |
|
|
ctei(i) = 1. |
662 |
|
|
posint(i) = 1. |
663 |
|
|
END IF |
664 |
|
|
check(i) = .FALSE. |
665 |
|
|
omegafl(i) = .TRUE. |
666 |
|
|
END IF ! end a pblh |
667 |
|
|
IF (check(i)) eauliq(i) = eauliq(i) + (paprs(i,k)-paprs(i,k+1))*ql2/rg |
668 |
|
|
END IF |
669 |
|
|
|
670 |
|
|
END IF ! Zsat |
671 |
|
|
|
672 |
|
|
! KAPE : thermique / environnement |
673 |
|
|
tv2 = t2*(1.+retv*q2-ql2) |
674 |
|
|
! diag |
675 |
|
|
! dTv21(i,k) = Tv2-Tv1 |
676 |
|
|
! Kape courante |
677 |
|
|
kape(i) = kape(i) + (zp(i)-zm(i))*rg*.5/(tv2+tv1)*max(0., (tv2-tv1)) |
678 |
|
|
! Cin |
679 |
|
|
IF (zcin(i) .AND. tv2-tv1>0.) THEN |
680 |
|
|
zcin(i) = .FALSE. |
681 |
|
|
cin(i) = kin(i) |
682 |
|
|
END IF |
683 |
|
|
IF (.NOT. zcin(i) .AND. tv2-tv1<0.) THEN |
684 |
|
|
zcin(i) = .TRUE. |
685 |
|
|
kin(i) = kin(i) + (zp(i)-zm(i))*rg*.5/(tv2+tv1)*min(0., (tv2-tv1)) |
686 |
|
|
END IF |
687 |
|
|
IF (kape(i)+kin(i)<0.) THEN |
688 |
|
|
omega(i) = zm(i) |
689 |
|
|
! trmb3(i) = paprs(i,k) |
690 |
|
|
omegafl(i) = .FALSE. |
691 |
|
|
! diag |
692 |
|
|
! print*,'Tv2-Tv1 (k): ',i,(dTv21(i,j),j=1,k) |
693 |
|
|
END IF |
694 |
|
|
! CC EndIf !plcl |
695 |
|
|
END IF ! check(i) |
696 |
|
|
END DO |
697 |
|
|
END DO ! end of level loop |
698 |
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end k loop |
699 |
|
|
RETURN |
700 |
|
|
END SUBROUTINE hbtm2l |