1 |
|
|
|
2 |
|
|
! $Id: hines_gwd.F90 3102 2017-12-03 20:27:42Z oboucher $ |
3 |
|
|
|
4 |
|
|
SUBROUTINE hines_gwd(nlon, nlev, dtime, paphm1x, papm1x, rlat, tx, ux, vx, & |
5 |
|
|
zustrhi, zvstrhi, d_t_hin, d_u_hin, d_v_hin) |
6 |
|
|
|
7 |
|
|
! ######################################################################## |
8 |
|
|
! Parametrization of the momentum flux deposition due to a broad band |
9 |
|
|
! spectrum of gravity waves, following Hines (1997a,b), as coded by |
10 |
|
|
! McLANDRESS (1995). Modified by McFARLANE and MANZINI (1995-1997) |
11 |
|
|
! MAECHAM model stand alone version |
12 |
|
|
! ######################################################################## |
13 |
|
|
|
14 |
|
|
|
15 |
|
|
USE dimphy |
16 |
|
|
IMPLICIT NONE |
17 |
|
|
|
18 |
|
|
include "YOEGWD.h" |
19 |
|
|
include "YOMCST.h" |
20 |
|
|
|
21 |
|
|
INTEGER nazmth |
22 |
|
|
PARAMETER (nazmth=8) |
23 |
|
|
|
24 |
|
|
! INPUT ARGUMENTS. |
25 |
|
|
! ----- ---------- |
26 |
|
|
|
27 |
|
|
! - 2D |
28 |
|
|
! PAPHM1 : HALF LEVEL PRESSURE (T-DT) |
29 |
|
|
! PAPM1 : FULL LEVEL PRESSURE (T-DT) |
30 |
|
|
! PTM1 : TEMPERATURE (T-DT) |
31 |
|
|
! PUM1 : ZONAL WIND (T-DT) |
32 |
|
|
! PVM1 : MERIDIONAL WIND (T-DT) |
33 |
|
|
|
34 |
|
|
|
35 |
|
|
! REFERENCE. |
36 |
|
|
! ---------- |
37 |
|
|
! SEE MODEL DOCUMENTATION |
38 |
|
|
|
39 |
|
|
! AUTHOR. |
40 |
|
|
! ------- |
41 |
|
|
|
42 |
|
|
! N. MCFARLANE DKRZ-HAMBURG MAY 1995 |
43 |
|
|
! STAND ALONE E. MANZINI MPI-HAMBURG FEBRUARY 1997 |
44 |
|
|
|
45 |
|
|
! BASED ON A COMBINATION OF THE OROGRAPHIC SCHEME BY N.MCFARLANE 1987 |
46 |
|
|
! AND THE HINES SCHEME AS CODED BY C. MCLANDRESS 1995. |
47 |
|
|
|
48 |
|
|
|
49 |
|
|
|
50 |
|
|
! ym INTEGER KLEVM1 |
51 |
|
|
|
52 |
|
|
REAL paphm1(klon, klev+1), papm1(klon, klev) |
53 |
|
|
REAL ptm1(klon, klev), pum1(klon, klev), pvm1(klon, klev) |
54 |
|
|
REAL prflux(klon) |
55 |
|
|
! 1 |
56 |
|
|
! 1 |
57 |
|
|
! 1 |
58 |
|
|
REAL rlat(klon), coslat(klon) |
59 |
|
|
|
60 |
|
|
REAL th(klon, klev), utendgw(klon, klev), vtendgw(klon, klev), & |
61 |
|
|
pressg(klon), uhs(klon, klev), vhs(klon, klev), zpr(klon) |
62 |
|
|
|
63 |
|
|
! * VERTICAL POSITIONING ARRAYS. |
64 |
|
|
|
65 |
|
|
REAL sgj(klon, klev), shj(klon, klev), shxkj(klon, klev), dsgj(klon, klev) |
66 |
|
|
|
67 |
|
|
! * LOGICAL SWITCHES TO CONTROL ROOF DRAG, ENVELOP GW DRAG AND |
68 |
|
|
! * HINES' DOPPLER SPREADING EXTROWAVE GW DRAG. |
69 |
|
|
! * LOZPR IS TRUE FOR ZPR ENHANCEMENT |
70 |
|
|
|
71 |
|
|
|
72 |
|
|
! * WORK ARRAYS. |
73 |
|
|
|
74 |
|
|
REAL m_alpha(klon, klev, nazmth), v_alpha(klon, klev, nazmth), & |
75 |
|
|
sigma_alpha(klon, klev, nazmth), sigsqh_alpha(klon, klev, nazmth), & |
76 |
|
|
drag_u(klon, klev), drag_v(klon, klev), flux_u(klon, klev), & |
77 |
|
|
flux_v(klon, klev), heat(klon, klev), diffco(klon, klev), & |
78 |
|
|
bvfreq(klon, klev), density(klon, klev), sigma_t(klon, klev), & |
79 |
|
|
visc_mol(klon, klev), alt(klon, klev), sigsqmcw(klon, klev, nazmth), & |
80 |
|
|
sigmatm(klon, klev), ak_alpha(klon, nazmth), k_alpha(klon, nazmth), & |
81 |
|
|
mmin_alpha(klon, nazmth), i_alpha(klon, nazmth), rmswind(klon), & |
82 |
|
|
bvfbot(klon), densbot(klon) |
83 |
|
|
REAL smoothr1(klon, klev), smoothr2(klon, klev) |
84 |
|
|
REAL sigalpmc(klon, klev, nazmth) |
85 |
|
|
REAL f2mod(klon, klev) |
86 |
|
|
|
87 |
|
|
! * THES ARE THE INPUT PARAMETERS FOR HINES ROUTINE AND |
88 |
|
|
! * ARE SPECIFIED IN ROUTINE HINES_SETUP. SINCE THIS IS CALLED |
89 |
|
|
! * ONLY AT FIRST CALL TO THIS ROUTINE THESE VARIABLES MUST BE SAVED |
90 |
|
|
! * FOR USE AT SUBSEQUENT CALLS. THIS CAN BE AVOIDED BY CALLING |
91 |
|
|
! * HINES_SETUP IN MAIN PROGRAM AND PASSING THE PARAMETERS AS |
92 |
|
|
! * SUBROUTINE ARGUEMENTS. |
93 |
|
|
|
94 |
|
|
|
95 |
|
|
REAL rmscon |
96 |
|
|
INTEGER nmessg, iprint, ilrms |
97 |
|
|
INTEGER ifl |
98 |
|
|
|
99 |
|
|
INTEGER naz, icutoff, nsmax, iheatcal |
100 |
|
|
REAL slope, f1, f2, f3, f5, f6, kstar(klon), alt_cutoff, smco |
101 |
|
|
|
102 |
|
|
! PROVIDED AS INPUT |
103 |
|
|
|
104 |
|
|
INTEGER nlon, nlev |
105 |
|
|
|
106 |
|
|
REAL dtime |
107 |
|
|
REAL paphm1x(nlon, nlev+1), papm1x(nlon, nlev) |
108 |
|
|
REAL ux(nlon, nlev), vx(nlon, nlev), tx(nlon, nlev) |
109 |
|
|
|
110 |
|
|
! VARIABLES FOR OUTPUT |
111 |
|
|
|
112 |
|
|
|
113 |
|
|
REAL d_t_hin(nlon, nlev), d_u_hin(nlon, nlev), d_v_hin(nlon, nlev) |
114 |
|
|
REAL zustrhi(nlon), zvstrhi(nlon) |
115 |
|
|
|
116 |
|
|
|
117 |
|
|
! * LOGICAL SWITCHES TO CONTROL PRECIP ENHANCEMENT AND |
118 |
|
|
! * HINES' DOPPLER SPREADING EXTROWAVE GW DRAG. |
119 |
|
|
! * LOZPR IS TRUE FOR ZPR ENHANCEMENT |
120 |
|
|
|
121 |
|
|
LOGICAL lozpr, lorms(klon) |
122 |
|
|
|
123 |
|
|
! LOCAL PARAMETERS TO MAKE THINGS WORK (TEMPORARY VARIABLE) |
124 |
|
|
|
125 |
|
|
REAL rhoh2o, zpcons, rgocp, zlat, dttdsf, ratio, hscal |
126 |
|
|
INTEGER i, j, l, jl, jk, le, lref, lrefp, levbot |
127 |
|
|
|
128 |
|
|
! DATA PARAMETERS NEEDED, EXPLAINED LATER |
129 |
|
|
|
130 |
|
|
REAL v0, vmin, dmpscal, taufac, hmin, apibt, cpart, fcrit |
131 |
|
|
REAL pcrit, pcons |
132 |
|
|
INTEGER iplev, ierror |
133 |
|
|
|
134 |
|
|
|
135 |
|
|
|
136 |
|
|
! PRINT *,' IT IS STARTED HINES GOING ON...' |
137 |
|
|
|
138 |
|
|
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
! * COMPUTATIONAL CONSTANTS. |
142 |
|
|
! ------------- ---------- |
143 |
|
|
|
144 |
|
|
|
145 |
|
|
d_t_hin(:, :) = 0. |
146 |
|
|
|
147 |
|
|
rhoh2o = 1000. |
148 |
|
|
zpcons = (1000.*86400.)/rhoh2o |
149 |
|
|
! ym KLEVM1=KLEV-1 |
150 |
|
|
|
151 |
|
|
|
152 |
|
|
DO jl = kidia, kfdia |
153 |
|
|
paphm1(jl, 1) = paphm1x(jl, klev+1) |
154 |
|
|
DO jk = 1, klev |
155 |
|
|
le = klev + 1 - jk |
156 |
|
|
paphm1(jl, jk+1) = paphm1x(jl, le) |
157 |
|
|
papm1(jl, jk) = papm1x(jl, le) |
158 |
|
|
ptm1(jl, jk) = tx(jl, le) |
159 |
|
|
pum1(jl, jk) = ux(jl, le) |
160 |
|
|
pvm1(jl, jk) = vx(jl, le) |
161 |
|
|
END DO |
162 |
|
|
END DO |
163 |
|
|
|
164 |
|
|
! Define constants and arrays needed for the ccc/mam gwd scheme |
165 |
|
|
! *Constants: |
166 |
|
|
|
167 |
|
|
rgocp = rd/rcpd |
168 |
|
|
lrefp = klev - 1 |
169 |
|
|
lref = klev - 2 |
170 |
|
|
! 1 |
171 |
|
|
! 1 *Arrays |
172 |
|
|
! 1 |
173 |
|
|
DO jk = 1, klev |
174 |
|
|
DO jl = kidia, kfdia |
175 |
|
|
shj(jl, jk) = papm1(jl, jk)/paphm1(jl, klev+1) |
176 |
|
|
sgj(jl, jk) = papm1(jl, jk)/paphm1(jl, klev+1) |
177 |
|
|
dsgj(jl, jk) = (paphm1(jl,jk+1)-paphm1(jl,jk))/paphm1(jl, klev+1) |
178 |
|
|
shxkj(jl, jk) = (papm1(jl,jk)/paphm1(jl,klev+1))**rgocp |
179 |
|
|
th(jl, jk) = ptm1(jl, jk) |
180 |
|
|
END DO |
181 |
|
|
END DO |
182 |
|
|
|
183 |
|
|
! C |
184 |
|
|
DO jl = kidia, kfdia |
185 |
|
|
pressg(jl) = paphm1(jl, klev+1) |
186 |
|
|
END DO |
187 |
|
|
|
188 |
|
|
|
189 |
|
|
DO jl = kidia, kfdia |
190 |
|
|
prflux(jl) = 0.0 |
191 |
|
|
zpr(jl) = zpcons*prflux(jl) |
192 |
|
|
zlat = (rlat(jl)/180.)*rpi |
193 |
|
|
coslat(jl) = cos(zlat) |
194 |
|
|
END DO |
195 |
|
|
|
196 |
|
|
! /######################################################################### |
197 |
|
|
! / |
198 |
|
|
! / |
199 |
|
|
|
200 |
|
|
! * AUG. 14/95 - C. MCLANDRESS. |
201 |
|
|
! * SEP. 95 N. MCFARLANE. |
202 |
|
|
|
203 |
|
|
! * THIS ROUTINE CALCULATES THE HORIZONTAL WIND TENDENCIES |
204 |
|
|
! * DUE TO MCFARLANE'S OROGRAPHIC GW DRAG SCHEME, HINES' |
205 |
|
|
! * DOPPLER SPREAD SCHEME FOR "EXTROWAVES" AND ADDS ON |
206 |
|
|
! * ROOF DRAG. IT IS BASED ON THE ROUTINE GWDFLX8. |
207 |
|
|
|
208 |
|
|
! * LREFP IS THE INDEX OF THE MODEL LEVEL BELOW THE REFERENCE LEVEL |
209 |
|
|
! * I/O ARRAYS PASSED FROM MAIN. |
210 |
|
|
! * (PRESSG = SURFACE PRESSURE) |
211 |
|
|
|
212 |
|
|
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
! * CONSTANTS VALUES DEFINED IN DATA STATEMENT ARE : |
216 |
|
|
! * VMIN = MIMINUM WIND IN THE DIRECTION OF REFERENCE LEVEL |
217 |
|
|
! * WIND BEFORE WE CONSIDER BREAKING TO HAVE OCCURED. |
218 |
|
|
! * DMPSCAL = DAMPING TIME FOR GW DRAG IN SECONDS. |
219 |
|
|
! * TAUFAC = 1/(LENGTH SCALE). |
220 |
|
|
! * HMIN = MIMINUM ENVELOPE HEIGHT REQUIRED TO PRODUCE GW DRAG. |
221 |
|
|
! * V0 = VALUE OF WIND THAT APPROXIMATES ZERO. |
222 |
|
|
|
223 |
|
|
|
224 |
|
|
DATA vmin/5.0/, v0/1.E-10/, taufac/5.E-6/, hmin/40000./, dmpscal/6.5E+6/, & |
225 |
|
|
apibt/1.5708/, cpart/0.7/, fcrit/1./ |
226 |
|
|
|
227 |
|
|
! * HINES EXTROWAVE GWD CONSTANTS DEFINED IN DATA STATEMENT ARE: |
228 |
|
|
! * RMSCON = ROOT MEAN SQUARE GRAVITY WAVE WIND AT LOWEST LEVEL (M/S). |
229 |
|
|
! * NMESSG = UNIT NUMBER FOR PRINTED MESSAGES. |
230 |
|
|
! * IPRINT = 1 TO DO PRINT OUT SOME HINES ARRAYS. |
231 |
|
|
! * IFL = FIRST CALL FLAG TO HINES_SETUP ("SAVE" IT) |
232 |
|
|
! * PCRIT = CRITICAL VALUE OF ZPR (MM/D) |
233 |
|
|
! * IPLEV = LEVEL OF APPLICATION OF PRCIT |
234 |
|
|
! * PCONS = FACTOR OF ZPR ENHANCEMENT |
235 |
|
|
|
236 |
|
|
|
237 |
|
|
DATA pcrit/5./, pcons/4.75/ |
238 |
|
|
|
239 |
|
|
iplev = lrefp - 1 |
240 |
|
|
|
241 |
|
|
DATA rmscon/1.00/iprint/2/, nmessg/6/ |
242 |
|
|
DATA ifl/0/ |
243 |
|
|
|
244 |
|
|
lozpr = .FALSE. |
245 |
|
|
|
246 |
|
|
! ----------------------------------------------------------------------- |
247 |
|
|
|
248 |
|
|
|
249 |
|
|
|
250 |
|
|
! * SET ERROR FLAG |
251 |
|
|
|
252 |
|
|
ierror = 0 |
253 |
|
|
|
254 |
|
|
! * SPECIFY VARIOUS PARAMETERS FOR HINES ROUTINE AT VERY FIRST CALL. |
255 |
|
|
! * (NOTE THAT ARRAY K_ALPHA IS SPECIFIED SO MAKE SURE THAT |
256 |
|
|
! * IT IS NOT OVERWRITTEN LATER ON). |
257 |
|
|
|
258 |
|
|
CALL hines_setup(naz, slope, f1, f2, f3, f5, f6, kstar, icutoff, & |
259 |
|
|
alt_cutoff, smco, nsmax, iheatcal, k_alpha, ierror, nmessg, klon, nazmth, & |
260 |
|
|
coslat) |
261 |
|
|
IF (ierror/=0) GO TO 999 |
262 |
|
|
|
263 |
|
|
! * START GWD CALCULATIONS. |
264 |
|
|
|
265 |
|
|
lref = lrefp - 1 |
266 |
|
|
|
267 |
|
|
|
268 |
|
|
DO j = 1, nazmth |
269 |
|
|
DO l = 1, klev |
270 |
|
|
DO i = kidia, klon |
271 |
|
|
sigsqmcw(i, l, j) = 0. |
272 |
|
|
END DO |
273 |
|
|
END DO |
274 |
|
|
END DO |
275 |
|
|
|
276 |
|
|
|
277 |
|
|
|
278 |
|
|
! * INITIALIZE NECESSARY ARRAYS. |
279 |
|
|
|
280 |
|
|
DO l = 1, klev |
281 |
|
|
DO i = kidia, kfdia |
282 |
|
|
utendgw(i, l) = 0. |
283 |
|
|
vtendgw(i, l) = 0. |
284 |
|
|
|
285 |
|
|
uhs(i, l) = 0. |
286 |
|
|
vhs(i, l) = 0. |
287 |
|
|
|
288 |
|
|
END DO |
289 |
|
|
END DO |
290 |
|
|
|
291 |
|
|
! * IF USING HINES SCHEME THEN CALCULATE B V FREQUENCY AT ALL POINTS |
292 |
|
|
! * AND SMOOTH BVFREQ. |
293 |
|
|
|
294 |
|
|
DO l = 2, klev |
295 |
|
|
DO i = kidia, kfdia |
296 |
|
|
dttdsf = (th(i,l)/shxkj(i,l)-th(i,l-1)/shxkj(i,l-1))/ & |
297 |
|
|
(shj(i,l)-shj(i,l-1)) |
298 |
|
|
dttdsf = min(dttdsf, -5./sgj(i,l)) |
299 |
|
|
bvfreq(i, l) = sqrt(-dttdsf*sgj(i,l)*(sgj(i,l)**rgocp)/rd)*rg/ptm1(i, l & |
300 |
|
|
) |
301 |
|
|
END DO |
302 |
|
|
END DO |
303 |
|
|
DO l = 1, klev |
304 |
|
|
DO i = kidia, kfdia |
305 |
|
|
IF (l==1) THEN |
306 |
|
|
bvfreq(i, l) = bvfreq(i, l+1) |
307 |
|
|
END IF |
308 |
|
|
IF (l>1) THEN |
309 |
|
|
ratio = 5.*log(sgj(i,l)/sgj(i,l-1)) |
310 |
|
|
bvfreq(i, l) = (bvfreq(i,l-1)+ratio*bvfreq(i,l))/(1.+ratio) |
311 |
|
|
END IF |
312 |
|
|
END DO |
313 |
|
|
END DO |
314 |
|
|
|
315 |
|
|
! * CALCULATE GW DRAG DUE TO HINES' EXTROWAVES |
316 |
|
|
! * SET MOLECULAR VISCOSITY TO A VERY SMALL VALUE. |
317 |
|
|
! * IF THE MODEL TOP IS GREATER THAN 100 KM THEN THE ACTUAL |
318 |
|
|
! * VISCOSITY COEFFICIENT COULD BE SPECIFIED HERE. |
319 |
|
|
|
320 |
|
|
DO l = 1, klev |
321 |
|
|
DO i = kidia, kfdia |
322 |
|
|
visc_mol(i, l) = 1.5E-5 |
323 |
|
|
drag_u(i, l) = 0. |
324 |
|
|
drag_v(i, l) = 0. |
325 |
|
|
flux_u(i, l) = 0. |
326 |
|
|
flux_v(i, l) = 0. |
327 |
|
|
heat(i, l) = 0. |
328 |
|
|
diffco(i, l) = 0. |
329 |
|
|
END DO |
330 |
|
|
END DO |
331 |
|
|
|
332 |
|
|
! * ALTITUDE AND DENSITY AT BOTTOM. |
333 |
|
|
|
334 |
|
|
DO i = kidia, kfdia |
335 |
|
|
hscal = rd*ptm1(i, klev)/rg |
336 |
|
|
density(i, klev) = sgj(i, klev)*pressg(i)/(rg*hscal) |
337 |
|
|
alt(i, klev) = 0. |
338 |
|
|
END DO |
339 |
|
|
|
340 |
|
|
! * ALTITUDE AND DENSITY AT REMAINING LEVELS. |
341 |
|
|
|
342 |
|
|
DO l = klev - 1, 1, -1 |
343 |
|
|
DO i = kidia, kfdia |
344 |
|
|
hscal = rd*ptm1(i, l)/rg |
345 |
|
|
alt(i, l) = alt(i, l+1) + hscal*dsgj(i, l)/sgj(i, l) |
346 |
|
|
density(i, l) = sgj(i, l)*pressg(i)/(rg*hscal) |
347 |
|
|
END DO |
348 |
|
|
END DO |
349 |
|
|
|
350 |
|
|
|
351 |
|
|
! * INITIALIZE SWITCHES FOR HINES GWD CALCULATION |
352 |
|
|
|
353 |
|
|
ilrms = 0 |
354 |
|
|
|
355 |
|
|
DO i = kidia, kfdia |
356 |
|
|
lorms(i) = .FALSE. |
357 |
|
|
END DO |
358 |
|
|
|
359 |
|
|
|
360 |
|
|
! * DEFILE BOTTOM LAUNCH LEVEL |
361 |
|
|
|
362 |
|
|
levbot = iplev |
363 |
|
|
|
364 |
|
|
! * BACKGROUND WIND MINUS VALUE AT BOTTOM LAUNCH LEVEL. |
365 |
|
|
|
366 |
|
|
DO l = 1, levbot |
367 |
|
|
DO i = kidia, kfdia |
368 |
|
|
uhs(i, l) = pum1(i, l) - pum1(i, levbot) |
369 |
|
|
vhs(i, l) = pvm1(i, l) - pvm1(i, levbot) |
370 |
|
|
END DO |
371 |
|
|
END DO |
372 |
|
|
|
373 |
|
|
! * SPECIFY ROOT MEAN SQUARE WIND AT BOTTOM LAUNCH LEVEL. |
374 |
|
|
|
375 |
|
|
DO i = kidia, kfdia |
376 |
|
|
rmswind(i) = rmscon |
377 |
|
|
END DO |
378 |
|
|
|
379 |
|
|
IF (lozpr) THEN |
380 |
|
|
DO i = kidia, kfdia |
381 |
|
|
IF (zpr(i)>pcrit) THEN |
382 |
|
|
rmswind(i) = rmscon + ((zpr(i)-pcrit)/zpr(i))*pcons |
383 |
|
|
END IF |
384 |
|
|
END DO |
385 |
|
|
END IF |
386 |
|
|
|
387 |
|
|
DO i = kidia, kfdia |
388 |
|
|
IF (rmswind(i)>0.0) THEN |
389 |
|
|
ilrms = ilrms + 1 |
390 |
|
|
lorms(i) = .TRUE. |
391 |
|
|
END IF |
392 |
|
|
END DO |
393 |
|
|
|
394 |
|
|
! * CALCULATE GWD (NOTE THAT DIFFUSION COEFFICIENT AND |
395 |
|
|
! * HEATING RATE ONLY CALCULATED IF IHEATCAL = 1). |
396 |
|
|
|
397 |
|
|
IF (ilrms>0) THEN |
398 |
|
|
|
399 |
|
|
CALL hines_extro0(drag_u, drag_v, heat, diffco, flux_u, flux_v, uhs, vhs, & |
400 |
|
|
bvfreq, density, visc_mol, alt, rmswind, k_alpha, m_alpha, v_alpha, & |
401 |
|
|
sigma_alpha, sigsqh_alpha, ak_alpha, mmin_alpha, i_alpha, sigma_t, & |
402 |
|
|
densbot, bvfbot, 1, iheatcal, icutoff, iprint, nsmax, smco, alt_cutoff, & |
403 |
|
|
kstar, slope, f1, f2, f3, f5, f6, naz, sigsqmcw, sigmatm, kidia, klon, & |
404 |
|
|
1, levbot, klon, klev, nazmth, lorms, smoothr1, smoothr2, sigalpmc, & |
405 |
|
|
f2mod) |
406 |
|
|
|
407 |
|
|
! * ADD ON HINES' GWD TENDENCIES TO OROGRAPHIC TENDENCIES AND |
408 |
|
|
! * APPLY HINES' GW DRAG ON (UROW,VROW) WORK ARRAYS. |
409 |
|
|
|
410 |
|
|
DO l = 1, klev |
411 |
|
|
DO i = kidia, kfdia |
412 |
|
|
utendgw(i, l) = utendgw(i, l) + drag_u(i, l) |
413 |
|
|
vtendgw(i, l) = vtendgw(i, l) + drag_v(i, l) |
414 |
|
|
END DO |
415 |
|
|
END DO |
416 |
|
|
|
417 |
|
|
|
418 |
|
|
! * END OF HINES CALCULATIONS. |
419 |
|
|
|
420 |
|
|
END IF |
421 |
|
|
|
422 |
|
|
! ----------------------------------------------------------------------- |
423 |
|
|
|
424 |
|
|
DO jl = kidia, kfdia |
425 |
|
|
zustrhi(jl) = flux_u(jl, 1) |
426 |
|
|
zvstrhi(jl) = flux_v(jl, 1) |
427 |
|
|
DO jk = 1, klev |
428 |
|
|
le = klev - jk + 1 |
429 |
|
|
d_u_hin(jl, jk) = utendgw(jl, le)*dtime |
430 |
|
|
d_v_hin(jl, jk) = vtendgw(jl, le)*dtime |
431 |
|
|
END DO |
432 |
|
|
END DO |
433 |
|
|
|
434 |
|
|
! PRINT *,'UTENDGW:',UTENDGW |
435 |
|
|
|
436 |
|
|
! PRINT *,' HINES HAS BEEN COMPLETED (LONG ISNT IT...)' |
437 |
|
|
|
438 |
|
|
RETURN |
439 |
|
|
999 CONTINUE |
440 |
|
|
|
441 |
|
|
! * IF ERROR DETECTED THEN ABORT. |
442 |
|
|
|
443 |
|
|
WRITE (nmessg, 6000) |
444 |
|
|
WRITE (nmessg, 6010) ierror |
445 |
|
|
6000 FORMAT (/' EXECUTION ABORTED IN GWDOREXV') |
446 |
|
|
6010 FORMAT (' ERROR FLAG =', I4) |
447 |
|
|
|
448 |
|
|
|
449 |
|
|
RETURN |
450 |
|
|
END SUBROUTINE hines_gwd |
451 |
|
|
! / |
452 |
|
|
! / |
453 |
|
|
|
454 |
|
|
|
455 |
|
|
SUBROUTINE hines_extro0(drag_u, drag_v, heat, diffco, flux_u, flux_v, vel_u, & |
456 |
|
|
vel_v, bvfreq, density, visc_mol, alt, rmswind, k_alpha, m_alpha, & |
457 |
|
|
v_alpha, sigma_alpha, sigsqh_alpha, ak_alpha, mmin_alpha, i_alpha, & |
458 |
|
|
sigma_t, densb, bvfb, iorder, iheatcal, icutoff, iprint, nsmax, smco, & |
459 |
|
|
alt_cutoff, kstar, slope, f1, f2, f3, f5, f6, naz, sigsqmcw, sigmatm, & |
460 |
|
|
il1, il2, lev1, lev2, nlons, nlevs, nazmth, lorms, smoothr1, smoothr2, & |
461 |
|
|
sigalpmc, f2mod) |
462 |
|
|
|
463 |
|
|
IMPLICIT NONE |
464 |
|
|
|
465 |
|
|
! Main routine for Hines' "extrowave" gravity wave parameterization based |
466 |
|
|
! on Hines' Doppler spread theory. This routine calculates zonal |
467 |
|
|
! and meridional components of gravity wave drag, heating rates |
468 |
|
|
! and diffusion coefficient on a longitude by altitude grid. |
469 |
|
|
! No "mythical" lower boundary region calculation is made so it |
470 |
|
|
! is assumed that lowest level winds are weak (i.e, approximately zero). |
471 |
|
|
|
472 |
|
|
! Aug. 13/95 - C. McLandress |
473 |
|
|
! SEPT. /95 - N.McFarlane |
474 |
|
|
|
475 |
|
|
! Modifications: |
476 |
|
|
|
477 |
|
|
! Output arguements: |
478 |
|
|
|
479 |
|
|
! * DRAG_U = zonal component of gravity wave drag (m/s^2). |
480 |
|
|
! * DRAG_V = meridional component of gravity wave drag (m/s^2). |
481 |
|
|
! * HEAT = gravity wave heating (K/sec). |
482 |
|
|
! * DIFFCO = diffusion coefficient (m^2/sec) |
483 |
|
|
! * FLUX_U = zonal component of vertical momentum flux (Pascals) |
484 |
|
|
! * FLUX_V = meridional component of vertical momentum flux (Pascals) |
485 |
|
|
|
486 |
|
|
! Input arguements: |
487 |
|
|
|
488 |
|
|
! * VEL_U = background zonal wind component (m/s). |
489 |
|
|
! * VEL_V = background meridional wind component (m/s). |
490 |
|
|
! * BVFREQ = background Brunt Vassala frequency (radians/sec). |
491 |
|
|
! * DENSITY = background density (kg/m^3) |
492 |
|
|
! * VISC_MOL = molecular viscosity (m^2/s) |
493 |
|
|
! * ALT = altitude of momentum, density, buoyancy levels (m) |
494 |
|
|
! * (NOTE: levels ordered so that ALT(I,1) > ALT(I,2), etc.) |
495 |
|
|
! * RMSWIND = root mean square gravity wave wind at lowest level (m/s). |
496 |
|
|
! * K_ALPHA = horizontal wavenumber of each azimuth (1/m). |
497 |
|
|
! * IORDER = 1 means vertical levels are indexed from top down |
498 |
|
|
! * (i.e., highest level indexed 1 and lowest level NLEVS); |
499 |
|
|
! * .NE. 1 highest level is index NLEVS. |
500 |
|
|
! * IHEATCAL = 1 to calculate heating rates and diffusion coefficient. |
501 |
|
|
! * IPRINT = 1 to print out various arrays. |
502 |
|
|
! * ICUTOFF = 1 to exponentially damp GWD, heating and diffusion |
503 |
|
|
! * arrays above ALT_CUTOFF; otherwise arrays not modified. |
504 |
|
|
! * ALT_CUTOFF = altitude in meters above which exponential decay applied. |
505 |
|
|
! * SMCO = smoothing factor used to smooth cutoff vertical |
506 |
|
|
! * wavenumbers and total rms winds in vertical direction |
507 |
|
|
! * before calculating drag or heating |
508 |
|
|
! * (SMCO >= 1 ==> 1:SMCO:1 stencil used). |
509 |
|
|
! * NSMAX = number of times smoother applied ( >= 1), |
510 |
|
|
! * = 0 means no smoothing performed. |
511 |
|
|
! * KSTAR = typical gravity wave horizontal wavenumber (1/m). |
512 |
|
|
! * SLOPE = slope of incident vertical wavenumber spectrum |
513 |
|
|
! * (SLOPE must equal 1., 1.5 or 2.). |
514 |
|
|
! * F1 to F6 = Hines's fudge factors (F4 not needed since used for |
515 |
|
|
! * vertical flux of vertical momentum). |
516 |
|
|
! * NAZ = actual number of horizontal azimuths used. |
517 |
|
|
! * IL1 = first longitudinal index to use (IL1 >= 1). |
518 |
|
|
! * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
519 |
|
|
! * LEV1 = index of first level for drag calculation. |
520 |
|
|
! * LEV2 = index of last level for drag calculation |
521 |
|
|
! * (i.e., LEV1 < LEV2 <= NLEVS). |
522 |
|
|
! * NLONS = number of longitudes. |
523 |
|
|
! * NLEVS = number of vertical levels. |
524 |
|
|
! * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
525 |
|
|
|
526 |
|
|
! Work arrays. |
527 |
|
|
|
528 |
|
|
! * M_ALPHA = cutoff vertical wavenumber (1/m). |
529 |
|
|
! * V_ALPHA = wind component at each azimuth (m/s) and if IHEATCAL=1 |
530 |
|
|
! * holds vertical derivative of cutoff wavenumber. |
531 |
|
|
! * SIGMA_ALPHA = total rms wind in each azimuth (m/s). |
532 |
|
|
! * SIGSQH_ALPHA = portion of wind variance from waves having wave |
533 |
|
|
! * normals in the alpha azimuth (m/s). |
534 |
|
|
! * SIGMA_T = total rms horizontal wind (m/s). |
535 |
|
|
! * AK_ALPHA = spectral amplitude factor at each azimuth |
536 |
|
|
! * (i.e.,{AjKj}) in m^4/s^2. |
537 |
|
|
! * I_ALPHA = Hines' integral. |
538 |
|
|
! * MMIN_ALPHA = minimum value of cutoff wavenumber. |
539 |
|
|
! * DENSB = background density at bottom level. |
540 |
|
|
! * BVFB = buoyancy frequency at bottom level and |
541 |
|
|
! * work array for ICUTOFF = 1. |
542 |
|
|
|
543 |
|
|
! * LORMS = .TRUE. for drag computation |
544 |
|
|
|
545 |
|
|
INTEGER naz, nlons, nlevs, nazmth, il1, il2, lev1, lev2 |
546 |
|
|
INTEGER icutoff, nsmax, iorder, iheatcal, iprint |
547 |
|
|
REAL kstar(nlons), f1, f2, f3, f5, f6, slope |
548 |
|
|
REAL alt_cutoff, smco |
549 |
|
|
REAL drag_u(nlons, nlevs), drag_v(nlons, nlevs) |
550 |
|
|
REAL heat(nlons, nlevs), diffco(nlons, nlevs) |
551 |
|
|
REAL flux_u(nlons, nlevs), flux_v(nlons, nlevs) |
552 |
|
|
REAL vel_u(nlons, nlevs), vel_v(nlons, nlevs) |
553 |
|
|
REAL bvfreq(nlons, nlevs), density(nlons, nlevs) |
554 |
|
|
REAL visc_mol(nlons, nlevs), alt(nlons, nlevs) |
555 |
|
|
REAL rmswind(nlons), bvfb(nlons), densb(nlons) |
556 |
|
|
REAL sigma_t(nlons, nlevs), sigsqmcw(nlons, nlevs, nazmth) |
557 |
|
|
REAL sigma_alpha(nlons, nlevs, nazmth), sigmatm(nlons, nlevs) |
558 |
|
|
REAL sigsqh_alpha(nlons, nlevs, nazmth) |
559 |
|
|
REAL m_alpha(nlons, nlevs, nazmth), v_alpha(nlons, nlevs, nazmth) |
560 |
|
|
REAL ak_alpha(nlons, nazmth), k_alpha(nlons, nazmth) |
561 |
|
|
REAL mmin_alpha(nlons, nazmth), i_alpha(nlons, nazmth) |
562 |
|
|
REAL smoothr1(nlons, nlevs), smoothr2(nlons, nlevs) |
563 |
|
|
REAL sigalpmc(nlons, nlevs, nazmth) |
564 |
|
|
REAL f2mod(nlons, nlevs) |
565 |
|
|
|
566 |
|
|
LOGICAL lorms(nlons) |
567 |
|
|
|
568 |
|
|
! Internal variables. |
569 |
|
|
|
570 |
|
|
INTEGER levbot, levtop, i, n, l, lev1p, lev2m |
571 |
|
|
INTEGER ilprt1, ilprt2 |
572 |
|
|
! ----------------------------------------------------------------------- |
573 |
|
|
|
574 |
|
|
! PRINT *,' IN HINES_EXTRO0' |
575 |
|
|
lev1p = lev1 + 1 |
576 |
|
|
lev2m = lev2 - 1 |
577 |
|
|
|
578 |
|
|
! Index of lowest altitude level (bottom of drag calculation). |
579 |
|
|
|
580 |
|
|
levbot = lev2 |
581 |
|
|
levtop = lev1 |
582 |
|
|
IF (iorder/=1) THEN |
583 |
|
|
WRITE (6, 1) |
584 |
|
|
1 FORMAT (2X, ' error: IORDER NOT ONE! ') |
585 |
|
|
END IF |
586 |
|
|
|
587 |
|
|
! Buoyancy and density at bottom level. |
588 |
|
|
|
589 |
|
|
DO i = il1, il2 |
590 |
|
|
bvfb(i) = bvfreq(i, levbot) |
591 |
|
|
densb(i) = density(i, levbot) |
592 |
|
|
END DO |
593 |
|
|
|
594 |
|
|
! initialize some variables |
595 |
|
|
|
596 |
|
|
DO n = 1, naz |
597 |
|
|
DO l = lev1, lev2 |
598 |
|
|
DO i = il1, il2 |
599 |
|
|
m_alpha(i, l, n) = 0.0 |
600 |
|
|
END DO |
601 |
|
|
END DO |
602 |
|
|
END DO |
603 |
|
|
DO l = lev1, lev2 |
604 |
|
|
DO i = il1, il2 |
605 |
|
|
sigma_t(i, l) = 0.0 |
606 |
|
|
END DO |
607 |
|
|
END DO |
608 |
|
|
DO n = 1, naz |
609 |
|
|
DO i = il1, il2 |
610 |
|
|
i_alpha(i, n) = 0.0 |
611 |
|
|
END DO |
612 |
|
|
END DO |
613 |
|
|
|
614 |
|
|
! Compute azimuthal wind components from zonal and meridional winds. |
615 |
|
|
|
616 |
|
|
CALL hines_wind(v_alpha, vel_u, vel_v, naz, il1, il2, lev1, lev2, nlons, & |
617 |
|
|
nlevs, nazmth) |
618 |
|
|
|
619 |
|
|
! Calculate cutoff vertical wavenumber and velocity variances. |
620 |
|
|
|
621 |
|
|
CALL hines_wavnum(m_alpha, sigma_alpha, sigsqh_alpha, sigma_t, ak_alpha, & |
622 |
|
|
v_alpha, visc_mol, density, densb, bvfreq, bvfb, rmswind, i_alpha, & |
623 |
|
|
mmin_alpha, kstar, slope, f1, f2, f3, naz, levbot, levtop, il1, il2, & |
624 |
|
|
nlons, nlevs, nazmth, sigsqmcw, sigmatm, lorms, sigalpmc, f2mod) |
625 |
|
|
! Smooth cutoff wavenumbers and total rms velocity in the vertical |
626 |
|
|
! direction NSMAX times, using FLUX_U as temporary work array. |
627 |
|
|
|
628 |
|
|
IF (nsmax>0) THEN |
629 |
|
|
DO n = 1, naz |
630 |
|
|
DO l = lev1, lev2 |
631 |
|
|
DO i = il1, il2 |
632 |
|
|
smoothr1(i, l) = m_alpha(i, l, n) |
633 |
|
|
END DO |
634 |
|
|
END DO |
635 |
|
|
CALL vert_smooth(smoothr1, smoothr2, smco, nsmax, il1, il2, lev1, lev2, & |
636 |
|
|
nlons, nlevs) |
637 |
|
|
DO l = lev1, lev2 |
638 |
|
|
DO i = il1, il2 |
639 |
|
|
m_alpha(i, l, n) = smoothr1(i, l) |
640 |
|
|
END DO |
641 |
|
|
END DO |
642 |
|
|
END DO |
643 |
|
|
CALL vert_smooth(sigma_t, smoothr2, smco, nsmax, il1, il2, lev1, lev2, & |
644 |
|
|
nlons, nlevs) |
645 |
|
|
END IF |
646 |
|
|
|
647 |
|
|
! Calculate zonal and meridional components of the |
648 |
|
|
! momentum flux and drag. |
649 |
|
|
|
650 |
|
|
CALL hines_flux(flux_u, flux_v, drag_u, drag_v, alt, density, densb, & |
651 |
|
|
m_alpha, ak_alpha, k_alpha, slope, naz, il1, il2, lev1, lev2, nlons, & |
652 |
|
|
nlevs, nazmth, lorms) |
653 |
|
|
|
654 |
|
|
! Cutoff drag above ALT_CUTOFF, using BVFB as temporary work array. |
655 |
|
|
|
656 |
|
|
IF (icutoff==1) THEN |
657 |
|
|
CALL hines_exp(drag_u, bvfb, alt, alt_cutoff, iorder, il1, il2, lev1, & |
658 |
|
|
lev2, nlons, nlevs) |
659 |
|
|
CALL hines_exp(drag_v, bvfb, alt, alt_cutoff, iorder, il1, il2, lev1, & |
660 |
|
|
lev2, nlons, nlevs) |
661 |
|
|
END IF |
662 |
|
|
|
663 |
|
|
! Print out various arrays for diagnostic purposes. |
664 |
|
|
|
665 |
|
|
IF (iprint==1) THEN |
666 |
|
|
ilprt1 = 15 |
667 |
|
|
ilprt2 = 16 |
668 |
|
|
CALL hines_print(flux_u, flux_v, drag_u, drag_v, alt, sigma_t, & |
669 |
|
|
sigma_alpha, v_alpha, m_alpha, 1, 1, 6, ilprt1, ilprt2, lev1, lev2, & |
670 |
|
|
naz, nlons, nlevs, nazmth) |
671 |
|
|
END IF |
672 |
|
|
|
673 |
|
|
! If not calculating heating rate and diffusion coefficient then finished. |
674 |
|
|
|
675 |
|
|
IF (iheatcal/=1) RETURN |
676 |
|
|
|
677 |
|
|
! Calculate vertical derivative of cutoff wavenumber (store |
678 |
|
|
! in array V_ALPHA) using centered differences at interior gridpoints |
679 |
|
|
! and one-sided differences at first and last levels. |
680 |
|
|
|
681 |
|
|
DO n = 1, naz |
682 |
|
|
DO l = lev1p, lev2m |
683 |
|
|
DO i = il1, il2 |
684 |
|
|
v_alpha(i, l, n) = (m_alpha(i,l+1,n)-m_alpha(i,l-1,n))/ & |
685 |
|
|
(alt(i,l+1)-alt(i,l-1)) |
686 |
|
|
END DO |
687 |
|
|
END DO |
688 |
|
|
DO i = il1, il2 |
689 |
|
|
v_alpha(i, lev1, n) = (m_alpha(i,lev1p,n)-m_alpha(i,lev1,n))/ & |
690 |
|
|
(alt(i,lev1p)-alt(i,lev1)) |
691 |
|
|
END DO |
692 |
|
|
DO i = il1, il2 |
693 |
|
|
v_alpha(i, lev2, n) = (m_alpha(i,lev2,n)-m_alpha(i,lev2m,n))/ & |
694 |
|
|
(alt(i,lev2)-alt(i,lev2m)) |
695 |
|
|
END DO |
696 |
|
|
END DO |
697 |
|
|
|
698 |
|
|
! Heating rate and diffusion coefficient. |
699 |
|
|
|
700 |
|
|
CALL hines_heat(heat, diffco, m_alpha, v_alpha, ak_alpha, k_alpha, bvfreq, & |
701 |
|
|
density, densb, sigma_t, visc_mol, kstar, slope, f2, f3, f5, f6, naz, & |
702 |
|
|
il1, il2, lev1, lev2, nlons, nlevs, nazmth) |
703 |
|
|
|
704 |
|
|
! Finished. |
705 |
|
|
|
706 |
|
|
RETURN |
707 |
|
|
! ----------------------------------------------------------------------- |
708 |
|
|
END SUBROUTINE hines_extro0 |
709 |
|
|
|
710 |
|
|
SUBROUTINE hines_wavnum(m_alpha, sigma_alpha, sigsqh_alpha, sigma_t, & |
711 |
|
|
ak_alpha, v_alpha, visc_mol, density, densb, bvfreq, bvfb, rms_wind, & |
712 |
|
|
i_alpha, mmin_alpha, kstar, slope, f1, f2, f3, naz, levbot, levtop, il1, & |
713 |
|
|
il2, nlons, nlevs, nazmth, sigsqmcw, sigmatm, lorms, sigalpmc, f2mod) |
714 |
|
|
IMPLICIT NONE |
715 |
|
|
! This routine calculates the cutoff vertical wavenumber and velocity |
716 |
|
|
! variances on a longitude by altitude grid for the Hines' Doppler |
717 |
|
|
! spread gravity wave drag parameterization scheme. |
718 |
|
|
! NOTE: (1) only values of four or eight can be used for # azimuths (NAZ). |
719 |
|
|
! (2) only values of 1.0, 1.5 or 2.0 can be used for slope (SLOPE). |
720 |
|
|
|
721 |
|
|
! Aug. 10/95 - C. McLandress |
722 |
|
|
|
723 |
|
|
! Output arguements: |
724 |
|
|
|
725 |
|
|
! * M_ALPHA = cutoff wavenumber at each azimuth (1/m). |
726 |
|
|
! * SIGMA_ALPHA = total rms wind in each azimuth (m/s). |
727 |
|
|
! * SIGSQH_ALPHA = portion of wind variance from waves having wave |
728 |
|
|
! * normals in the alpha azimuth (m/s). |
729 |
|
|
! * SIGMA_T = total rms horizontal wind (m/s). |
730 |
|
|
! * AK_ALPHA = spectral amplitude factor at each azimuth |
731 |
|
|
! * (i.e.,{AjKj}) in m^4/s^2. |
732 |
|
|
|
733 |
|
|
! Input arguements: |
734 |
|
|
|
735 |
|
|
! * V_ALPHA = wind component at each azimuth (m/s). |
736 |
|
|
! * VISC_MOL = molecular viscosity (m^2/s) |
737 |
|
|
! * DENSITY = background density (kg/m^3). |
738 |
|
|
! * DENSB = background density at model bottom (kg/m^3). |
739 |
|
|
! * BVFREQ = background Brunt Vassala frequency (radians/sec). |
740 |
|
|
! * BVFB = background Brunt Vassala frequency at model bottom. |
741 |
|
|
! * RMS_WIND = root mean square gravity wave wind at lowest level (m/s). |
742 |
|
|
! * KSTAR = typical gravity wave horizontal wavenumber (1/m). |
743 |
|
|
! * SLOPE = slope of incident vertical wavenumber spectrum |
744 |
|
|
! * (SLOPE = 1., 1.5 or 2.). |
745 |
|
|
! * F1,F2,F3 = Hines's fudge factors. |
746 |
|
|
! * NAZ = actual number of horizontal azimuths used (4 or 8). |
747 |
|
|
! * LEVBOT = index of lowest vertical level. |
748 |
|
|
! * LEVTOP = index of highest vertical level |
749 |
|
|
! * (NOTE: if LEVTOP < LEVBOT then level index |
750 |
|
|
! * increases from top down). |
751 |
|
|
! * IL1 = first longitudinal index to use (IL1 >= 1). |
752 |
|
|
! * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
753 |
|
|
! * NLONS = number of longitudes. |
754 |
|
|
! * NLEVS = number of vertical levels. |
755 |
|
|
! * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
756 |
|
|
|
757 |
|
|
! * LORMS = .TRUE. for drag computation |
758 |
|
|
|
759 |
|
|
! Input work arrays: |
760 |
|
|
|
761 |
|
|
! * I_ALPHA = Hines' integral at a single level. |
762 |
|
|
! * MMIN_ALPHA = minimum value of cutoff wavenumber. |
763 |
|
|
|
764 |
|
|
INTEGER naz, levbot, levtop, il1, il2, nlons, nlevs, nazmth |
765 |
|
|
REAL slope, kstar(nlons), f1, f2, f3, f2mfac |
766 |
|
|
REAL m_alpha(nlons, nlevs, nazmth) |
767 |
|
|
REAL sigma_alpha(nlons, nlevs, nazmth) |
768 |
|
|
REAL sigalpmc(nlons, nlevs, nazmth) |
769 |
|
|
REAL sigsqh_alpha(nlons, nlevs, nazmth) |
770 |
|
|
REAL sigsqmcw(nlons, nlevs, nazmth) |
771 |
|
|
REAL sigma_t(nlons, nlevs) |
772 |
|
|
REAL sigmatm(nlons, nlevs) |
773 |
|
|
REAL ak_alpha(nlons, nazmth) |
774 |
|
|
REAL v_alpha(nlons, nlevs, nazmth) |
775 |
|
|
REAL visc_mol(nlons, nlevs) |
776 |
|
|
REAL f2mod(nlons, nlevs) |
777 |
|
|
REAL density(nlons, nlevs), densb(nlons) |
778 |
|
|
REAL bvfreq(nlons, nlevs), bvfb(nlons), rms_wind(nlons) |
779 |
|
|
REAL i_alpha(nlons, nazmth), mmin_alpha(nlons, nazmth) |
780 |
|
|
|
781 |
|
|
LOGICAL lorms(nlons) |
782 |
|
|
|
783 |
|
|
! Internal variables. |
784 |
|
|
|
785 |
|
|
INTEGER i, l, n, lstart, lend, lincr, lbelow |
786 |
|
|
REAL m_sub_m_turb, m_sub_m_mol, m_trial |
787 |
|
|
REAL visc, visc_min, azfac, sp1 |
788 |
|
|
|
789 |
|
|
! c REAL N_OVER_M(1000), SIGFAC(1000) |
790 |
|
|
|
791 |
|
|
REAL n_over_m(nlons), sigfac(nlons) |
792 |
|
|
DATA visc_min/1.E-10/ |
793 |
|
|
! ----------------------------------------------------------------------- |
794 |
|
|
|
795 |
|
|
|
796 |
|
|
! PRINT *,'IN HINES_WAVNUM' |
797 |
|
|
sp1 = slope + 1. |
798 |
|
|
|
799 |
|
|
! Indices of levels to process. |
800 |
|
|
|
801 |
|
|
IF (levbot>levtop) THEN |
802 |
|
|
lstart = levbot - 1 |
803 |
|
|
lend = levtop |
804 |
|
|
lincr = -1 |
805 |
|
|
ELSE |
806 |
|
|
WRITE (6, 1) |
807 |
|
|
1 FORMAT (2X, ' error: IORDER NOT ONE! ') |
808 |
|
|
END IF |
809 |
|
|
|
810 |
|
|
! Use horizontal isotropy to calculate azimuthal variances at bottom level. |
811 |
|
|
|
812 |
|
|
azfac = 1./real(naz) |
813 |
|
|
DO n = 1, naz |
814 |
|
|
DO i = il1, il2 |
815 |
|
|
sigsqh_alpha(i, levbot, n) = azfac*rms_wind(i)**2 |
816 |
|
|
END DO |
817 |
|
|
END DO |
818 |
|
|
|
819 |
|
|
! Velocity variances at bottom level. |
820 |
|
|
|
821 |
|
|
CALL hines_sigma(sigma_t, sigma_alpha, sigsqh_alpha, naz, levbot, il1, il2, & |
822 |
|
|
nlons, nlevs, nazmth) |
823 |
|
|
|
824 |
|
|
CALL hines_sigma(sigmatm, sigalpmc, sigsqmcw, naz, levbot, il1, il2, nlons, & |
825 |
|
|
nlevs, nazmth) |
826 |
|
|
|
827 |
|
|
! Calculate cutoff wavenumber and spectral amplitude factor |
828 |
|
|
! at bottom level where it is assumed that background winds vanish |
829 |
|
|
! and also initialize minimum value of cutoff wavnumber. |
830 |
|
|
|
831 |
|
|
DO n = 1, naz |
832 |
|
|
DO i = il1, il2 |
833 |
|
|
IF (lorms(i)) THEN |
834 |
|
|
m_alpha(i, levbot, n) = bvfb(i)/(f1*sigma_alpha(i,levbot,n)+f2* & |
835 |
|
|
sigma_t(i,levbot)) |
836 |
|
|
ak_alpha(i, n) = sigsqh_alpha(i, levbot, n)/ & |
837 |
|
|
(m_alpha(i,levbot,n)**sp1/sp1) |
838 |
|
|
mmin_alpha(i, n) = m_alpha(i, levbot, n) |
839 |
|
|
END IF |
840 |
|
|
END DO |
841 |
|
|
END DO |
842 |
|
|
|
843 |
|
|
! Calculate quantities from the bottom upwards, |
844 |
|
|
! starting one level above bottom. |
845 |
|
|
|
846 |
|
|
DO l = lstart, lend, lincr |
847 |
|
|
|
848 |
|
|
! Level beneath present level. |
849 |
|
|
|
850 |
|
|
lbelow = l - lincr |
851 |
|
|
|
852 |
|
|
! Calculate N/m_M where m_M is maximum permissible value of the vertical |
853 |
|
|
! wavenumber (i.e., m > m_M are obliterated) and N is buoyancy frequency. |
854 |
|
|
! m_M is taken as the smaller of the instability-induced |
855 |
|
|
! wavenumber (M_SUB_M_TURB) and that imposed by molecular viscosity |
856 |
|
|
! (M_SUB_M_MOL). Since variance at this level is not yet known |
857 |
|
|
! use value at level below. |
858 |
|
|
|
859 |
|
|
DO i = il1, il2 |
860 |
|
|
IF (lorms(i)) THEN |
861 |
|
|
|
862 |
|
|
f2mfac = sigmatm(i, lbelow)**2 |
863 |
|
|
f2mod(i, lbelow) = 1. + 2.*f2mfac/(f2mfac+sigma_t(i,lbelow)**2) |
864 |
|
|
|
865 |
|
|
visc = amax1(visc_mol(i,l), visc_min) |
866 |
|
|
m_sub_m_turb = bvfreq(i, l)/(f2*f2mod(i,lbelow)*sigma_t(i,lbelow)) |
867 |
|
|
m_sub_m_mol = (bvfreq(i,l)*kstar(i)/visc)**0.33333333/f3 |
868 |
|
|
IF (m_sub_m_turb<m_sub_m_mol) THEN |
869 |
|
|
n_over_m(i) = f2*f2mod(i, lbelow)*sigma_t(i, lbelow) |
870 |
|
|
ELSE |
871 |
|
|
n_over_m(i) = bvfreq(i, l)/m_sub_m_mol |
872 |
|
|
END IF |
873 |
|
|
END IF |
874 |
|
|
END DO |
875 |
|
|
|
876 |
|
|
! Calculate cutoff wavenumber at this level. |
877 |
|
|
|
878 |
|
|
DO n = 1, naz |
879 |
|
|
DO i = il1, il2 |
880 |
|
|
IF (lorms(i)) THEN |
881 |
|
|
|
882 |
|
|
! Calculate trial value (since variance at this level is not yet |
883 |
|
|
! known |
884 |
|
|
! use value at level below). If trial value is negative or if it |
885 |
|
|
! exceeds |
886 |
|
|
! minimum value (not permitted) then set it to minimum value. |
887 |
|
|
|
888 |
|
|
m_trial = bvfb(i)/(f1*(sigma_alpha(i,lbelow,n)+sigalpmc(i,lbelow, & |
889 |
|
|
n))+n_over_m(i)+v_alpha(i,l,n)) |
890 |
|
|
IF (m_trial<=0. .OR. m_trial>mmin_alpha(i,n)) THEN |
891 |
|
|
m_trial = mmin_alpha(i, n) |
892 |
|
|
END IF |
893 |
|
|
m_alpha(i, l, n) = m_trial |
894 |
|
|
|
895 |
|
|
! Reset minimum value of cutoff wavenumber if necessary. |
896 |
|
|
|
897 |
|
|
IF (m_alpha(i,l,n)<mmin_alpha(i,n)) THEN |
898 |
|
|
mmin_alpha(i, n) = m_alpha(i, l, n) |
899 |
|
|
END IF |
900 |
|
|
|
901 |
|
|
END IF |
902 |
|
|
END DO |
903 |
|
|
END DO |
904 |
|
|
|
905 |
|
|
! Calculate the Hines integral at this level. |
906 |
|
|
|
907 |
|
|
CALL hines_intgrl(i_alpha, v_alpha, m_alpha, bvfb, slope, naz, l, il1, & |
908 |
|
|
il2, nlons, nlevs, nazmth, lorms) |
909 |
|
|
|
910 |
|
|
|
911 |
|
|
! Calculate the velocity variances at this level. |
912 |
|
|
|
913 |
|
|
DO i = il1, il2 |
914 |
|
|
sigfac(i) = densb(i)/density(i, l)*bvfreq(i, l)/bvfb(i) |
915 |
|
|
END DO |
916 |
|
|
DO n = 1, naz |
917 |
|
|
DO i = il1, il2 |
918 |
|
|
sigsqh_alpha(i, l, n) = sigfac(i)*ak_alpha(i, n)*i_alpha(i, n) |
919 |
|
|
END DO |
920 |
|
|
END DO |
921 |
|
|
CALL hines_sigma(sigma_t, sigma_alpha, sigsqh_alpha, naz, l, il1, il2, & |
922 |
|
|
nlons, nlevs, nazmth) |
923 |
|
|
|
924 |
|
|
CALL hines_sigma(sigmatm, sigalpmc, sigsqmcw, naz, l, il1, il2, nlons, & |
925 |
|
|
nlevs, nazmth) |
926 |
|
|
|
927 |
|
|
! End of level loop. |
928 |
|
|
|
929 |
|
|
END DO |
930 |
|
|
|
931 |
|
|
RETURN |
932 |
|
|
! ----------------------------------------------------------------------- |
933 |
|
|
END SUBROUTINE hines_wavnum |
934 |
|
|
|
935 |
|
|
SUBROUTINE hines_wind(v_alpha, vel_u, vel_v, naz, il1, il2, lev1, lev2, & |
936 |
|
|
nlons, nlevs, nazmth) |
937 |
|
|
IMPLICIT NONE |
938 |
|
|
! This routine calculates the azimuthal horizontal background wind |
939 |
|
|
! components |
940 |
|
|
! on a longitude by altitude grid for the case of 4 or 8 azimuths for |
941 |
|
|
! the Hines' Doppler spread GWD parameterization scheme. |
942 |
|
|
|
943 |
|
|
! Aug. 7/95 - C. McLandress |
944 |
|
|
|
945 |
|
|
! Output arguement: |
946 |
|
|
|
947 |
|
|
! * V_ALPHA = background wind component at each azimuth (m/s). |
948 |
|
|
! * (note: first azimuth is in eastward direction |
949 |
|
|
! * and rotate in counterclockwise direction.) |
950 |
|
|
|
951 |
|
|
! Input arguements: |
952 |
|
|
|
953 |
|
|
! * VEL_U = background zonal wind component (m/s). |
954 |
|
|
! * VEL_V = background meridional wind component (m/s). |
955 |
|
|
! * NAZ = actual number of horizontal azimuths used (must be 4 or 8). |
956 |
|
|
! * IL1 = first longitudinal index to use (IL1 >= 1). |
957 |
|
|
! * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
958 |
|
|
! * LEV1 = first altitude level to use (LEV1 >=1). |
959 |
|
|
! * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). |
960 |
|
|
! * NLONS = number of longitudes. |
961 |
|
|
! * NLEVS = number of vertical levels. |
962 |
|
|
! * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
963 |
|
|
|
964 |
|
|
! Constants in DATA statements. |
965 |
|
|
|
966 |
|
|
! * COS45 = cosine of 45 degrees. |
967 |
|
|
! * UMIN = minimum allowable value for zonal or meridional |
968 |
|
|
! * wind component (m/s). |
969 |
|
|
|
970 |
|
|
! Subroutine arguements. |
971 |
|
|
|
972 |
|
|
INTEGER naz, il1, il2, lev1, lev2 |
973 |
|
|
INTEGER nlons, nlevs, nazmth |
974 |
|
|
REAL v_alpha(nlons, nlevs, nazmth) |
975 |
|
|
REAL vel_u(nlons, nlevs), vel_v(nlons, nlevs) |
976 |
|
|
|
977 |
|
|
! Internal variables. |
978 |
|
|
|
979 |
|
|
INTEGER i, l |
980 |
|
|
REAL u, v, cos45, umin |
981 |
|
|
|
982 |
|
|
DATA cos45/0.7071068/ |
983 |
|
|
DATA umin/0.001/ |
984 |
|
|
! ----------------------------------------------------------------------- |
985 |
|
|
|
986 |
|
|
! Case with 4 azimuths. |
987 |
|
|
|
988 |
|
|
|
989 |
|
|
! PRINT *,'IN HINES_WIND' |
990 |
|
|
IF (naz==4) THEN |
991 |
|
|
DO l = lev1, lev2 |
992 |
|
|
DO i = il1, il2 |
993 |
|
|
u = vel_u(i, l) |
994 |
|
|
v = vel_v(i, l) |
995 |
|
|
IF (abs(u)<umin) u = umin |
996 |
|
|
IF (abs(v)<umin) v = umin |
997 |
|
|
v_alpha(i, l, 1) = u |
998 |
|
|
v_alpha(i, l, 2) = v |
999 |
|
|
v_alpha(i, l, 3) = -u |
1000 |
|
|
v_alpha(i, l, 4) = -v |
1001 |
|
|
END DO |
1002 |
|
|
END DO |
1003 |
|
|
END IF |
1004 |
|
|
|
1005 |
|
|
! Case with 8 azimuths. |
1006 |
|
|
|
1007 |
|
|
IF (naz==8) THEN |
1008 |
|
|
DO l = lev1, lev2 |
1009 |
|
|
DO i = il1, il2 |
1010 |
|
|
u = vel_u(i, l) |
1011 |
|
|
v = vel_v(i, l) |
1012 |
|
|
IF (abs(u)<umin) u = umin |
1013 |
|
|
IF (abs(v)<umin) v = umin |
1014 |
|
|
v_alpha(i, l, 1) = u |
1015 |
|
|
v_alpha(i, l, 2) = cos45*(v+u) |
1016 |
|
|
v_alpha(i, l, 3) = v |
1017 |
|
|
v_alpha(i, l, 4) = cos45*(v-u) |
1018 |
|
|
v_alpha(i, l, 5) = -u |
1019 |
|
|
v_alpha(i, l, 6) = -v_alpha(i, l, 2) |
1020 |
|
|
v_alpha(i, l, 7) = -v |
1021 |
|
|
v_alpha(i, l, 8) = -v_alpha(i, l, 4) |
1022 |
|
|
END DO |
1023 |
|
|
END DO |
1024 |
|
|
END IF |
1025 |
|
|
|
1026 |
|
|
RETURN |
1027 |
|
|
! ----------------------------------------------------------------------- |
1028 |
|
|
END SUBROUTINE hines_wind |
1029 |
|
|
|
1030 |
|
|
SUBROUTINE hines_flux(flux_u, flux_v, drag_u, drag_v, alt, density, densb, & |
1031 |
|
|
m_alpha, ak_alpha, k_alpha, slope, naz, il1, il2, lev1, lev2, nlons, & |
1032 |
|
|
nlevs, nazmth, lorms) |
1033 |
|
|
IMPLICIT NONE |
1034 |
|
|
! Calculate zonal and meridional components of the vertical flux |
1035 |
|
|
! of horizontal momentum and corresponding wave drag (force per unit mass) |
1036 |
|
|
! on a longitude by altitude grid for the Hines' Doppler spread |
1037 |
|
|
! GWD parameterization scheme. |
1038 |
|
|
! NOTE: only 4 or 8 azimuths can be used. |
1039 |
|
|
|
1040 |
|
|
! Aug. 6/95 - C. McLandress |
1041 |
|
|
|
1042 |
|
|
! Output arguements: |
1043 |
|
|
|
1044 |
|
|
! * FLUX_U = zonal component of vertical momentum flux (Pascals) |
1045 |
|
|
! * FLUX_V = meridional component of vertical momentum flux (Pascals) |
1046 |
|
|
! * DRAG_U = zonal component of drag (m/s^2). |
1047 |
|
|
! * DRAG_V = meridional component of drag (m/s^2). |
1048 |
|
|
|
1049 |
|
|
! Input arguements: |
1050 |
|
|
|
1051 |
|
|
! * ALT = altitudes (m). |
1052 |
|
|
! * DENSITY = background density (kg/m^3). |
1053 |
|
|
! * DENSB = background density at bottom level (kg/m^3). |
1054 |
|
|
! * M_ALPHA = cutoff vertical wavenumber (1/m). |
1055 |
|
|
! * AK_ALPHA = spectral amplitude factor (i.e., {AjKj} in m^4/s^2). |
1056 |
|
|
! * K_ALPHA = horizontal wavenumber (1/m). |
1057 |
|
|
! * SLOPE = slope of incident vertical wavenumber spectrum. |
1058 |
|
|
! * NAZ = actual number of horizontal azimuths used (must be 4 or 8). |
1059 |
|
|
! * IL1 = first longitudinal index to use (IL1 >= 1). |
1060 |
|
|
! * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
1061 |
|
|
! * LEV1 = first altitude level to use (LEV1 >=1). |
1062 |
|
|
! * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). |
1063 |
|
|
! * NLONS = number of longitudes. |
1064 |
|
|
! * NLEVS = number of vertical levels. |
1065 |
|
|
! * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
1066 |
|
|
|
1067 |
|
|
! * LORMS = .TRUE. for drag computation |
1068 |
|
|
|
1069 |
|
|
! Constant in DATA statement. |
1070 |
|
|
|
1071 |
|
|
! * COS45 = cosine of 45 degrees. |
1072 |
|
|
|
1073 |
|
|
! Subroutine arguements. |
1074 |
|
|
|
1075 |
|
|
INTEGER naz, il1, il2, lev1, lev2 |
1076 |
|
|
INTEGER nlons, nlevs, nazmth |
1077 |
|
|
REAL slope |
1078 |
|
|
REAL flux_u(nlons, nlevs), flux_v(nlons, nlevs) |
1079 |
|
|
REAL drag_u(nlons, nlevs), drag_v(nlons, nlevs) |
1080 |
|
|
REAL alt(nlons, nlevs), density(nlons, nlevs), densb(nlons) |
1081 |
|
|
REAL m_alpha(nlons, nlevs, nazmth) |
1082 |
|
|
REAL ak_alpha(nlons, nazmth), k_alpha(nlons, nazmth) |
1083 |
|
|
|
1084 |
|
|
LOGICAL lorms(nlons) |
1085 |
|
|
|
1086 |
|
|
! Internal variables. |
1087 |
|
|
|
1088 |
|
|
INTEGER i, l, lev1p, lev2m, lev2p |
1089 |
|
|
REAL cos45, prod2, prod4, prod6, prod8, dendz, dendz2 |
1090 |
|
|
DATA cos45/0.7071068/ |
1091 |
|
|
! ----------------------------------------------------------------------- |
1092 |
|
|
|
1093 |
|
|
lev1p = lev1 + 1 |
1094 |
|
|
lev2m = lev2 - 1 |
1095 |
|
|
lev2p = lev2 + 1 |
1096 |
|
|
|
1097 |
|
|
! Sum over azimuths for case where SLOPE = 1. |
1098 |
|
|
|
1099 |
|
|
IF (slope==1.) THEN |
1100 |
|
|
|
1101 |
|
|
! Case with 4 azimuths. |
1102 |
|
|
|
1103 |
|
|
IF (naz==4) THEN |
1104 |
|
|
DO l = lev1, lev2 |
1105 |
|
|
DO i = il1, il2 |
1106 |
|
|
flux_u(i, l) = ak_alpha(i, 1)*k_alpha(i, 1)*m_alpha(i, l, 1) - & |
1107 |
|
|
ak_alpha(i, 3)*k_alpha(i, 3)*m_alpha(i, l, 3) |
1108 |
|
|
flux_v(i, l) = ak_alpha(i, 2)*k_alpha(i, 2)*m_alpha(i, l, 2) - & |
1109 |
|
|
ak_alpha(i, 4)*k_alpha(i, 4)*m_alpha(i, l, 4) |
1110 |
|
|
END DO |
1111 |
|
|
END DO |
1112 |
|
|
END IF |
1113 |
|
|
|
1114 |
|
|
! Case with 8 azimuths. |
1115 |
|
|
|
1116 |
|
|
IF (naz==8) THEN |
1117 |
|
|
DO l = lev1, lev2 |
1118 |
|
|
DO i = il1, il2 |
1119 |
|
|
prod2 = ak_alpha(i, 2)*k_alpha(i, 2)*m_alpha(i, l, 2) |
1120 |
|
|
prod4 = ak_alpha(i, 4)*k_alpha(i, 4)*m_alpha(i, l, 4) |
1121 |
|
|
prod6 = ak_alpha(i, 6)*k_alpha(i, 6)*m_alpha(i, l, 6) |
1122 |
|
|
prod8 = ak_alpha(i, 8)*k_alpha(i, 8)*m_alpha(i, l, 8) |
1123 |
|
|
flux_u(i, l) = ak_alpha(i, 1)*k_alpha(i, 1)*m_alpha(i, l, 1) - & |
1124 |
|
|
ak_alpha(i, 5)*k_alpha(i, 5)*m_alpha(i, l, 5) + & |
1125 |
|
|
cos45*(prod2-prod4-prod6+prod8) |
1126 |
|
|
flux_v(i, l) = ak_alpha(i, 3)*k_alpha(i, 3)*m_alpha(i, l, 3) - & |
1127 |
|
|
ak_alpha(i, 7)*k_alpha(i, 7)*m_alpha(i, l, 7) + & |
1128 |
|
|
cos45*(prod2+prod4-prod6-prod8) |
1129 |
|
|
END DO |
1130 |
|
|
END DO |
1131 |
|
|
END IF |
1132 |
|
|
|
1133 |
|
|
END IF |
1134 |
|
|
|
1135 |
|
|
! Sum over azimuths for case where SLOPE not equal to 1. |
1136 |
|
|
|
1137 |
|
|
IF (slope/=1.) THEN |
1138 |
|
|
|
1139 |
|
|
! Case with 4 azimuths. |
1140 |
|
|
|
1141 |
|
|
IF (naz==4) THEN |
1142 |
|
|
DO l = lev1, lev2 |
1143 |
|
|
DO i = il1, il2 |
1144 |
|
|
flux_u(i, l) = ak_alpha(i, 1)*k_alpha(i, 1)* & |
1145 |
|
|
m_alpha(i, l, 1)**slope - ak_alpha(i, 3)*k_alpha(i, 3)*m_alpha(i, & |
1146 |
|
|
l, 3)**slope |
1147 |
|
|
flux_v(i, l) = ak_alpha(i, 2)*k_alpha(i, 2)* & |
1148 |
|
|
m_alpha(i, l, 2)**slope - ak_alpha(i, 4)*k_alpha(i, 4)*m_alpha(i, & |
1149 |
|
|
l, 4)**slope |
1150 |
|
|
END DO |
1151 |
|
|
END DO |
1152 |
|
|
END IF |
1153 |
|
|
|
1154 |
|
|
! Case with 8 azimuths. |
1155 |
|
|
|
1156 |
|
|
IF (naz==8) THEN |
1157 |
|
|
DO l = lev1, lev2 |
1158 |
|
|
DO i = il1, il2 |
1159 |
|
|
prod2 = ak_alpha(i, 2)*k_alpha(i, 2)*m_alpha(i, l, 2)**slope |
1160 |
|
|
prod4 = ak_alpha(i, 4)*k_alpha(i, 4)*m_alpha(i, l, 4)**slope |
1161 |
|
|
prod6 = ak_alpha(i, 6)*k_alpha(i, 6)*m_alpha(i, l, 6)**slope |
1162 |
|
|
prod8 = ak_alpha(i, 8)*k_alpha(i, 8)*m_alpha(i, l, 8)**slope |
1163 |
|
|
flux_u(i, l) = ak_alpha(i, 1)*k_alpha(i, 1)* & |
1164 |
|
|
m_alpha(i, l, 1)**slope - ak_alpha(i, 5)*k_alpha(i, 5)*m_alpha(i, & |
1165 |
|
|
l, 5)**slope + cos45*(prod2-prod4-prod6+prod8) |
1166 |
|
|
flux_v(i, l) = ak_alpha(i, 3)*k_alpha(i, 3)* & |
1167 |
|
|
m_alpha(i, l, 3)**slope - ak_alpha(i, 7)*k_alpha(i, 7)*m_alpha(i, & |
1168 |
|
|
l, 7)**slope + cos45*(prod2+prod4-prod6-prod8) |
1169 |
|
|
END DO |
1170 |
|
|
END DO |
1171 |
|
|
END IF |
1172 |
|
|
|
1173 |
|
|
END IF |
1174 |
|
|
|
1175 |
|
|
! Calculate flux from sum. |
1176 |
|
|
|
1177 |
|
|
DO l = lev1, lev2 |
1178 |
|
|
DO i = il1, il2 |
1179 |
|
|
flux_u(i, l) = flux_u(i, l)*densb(i)/slope |
1180 |
|
|
flux_v(i, l) = flux_v(i, l)*densb(i)/slope |
1181 |
|
|
END DO |
1182 |
|
|
END DO |
1183 |
|
|
|
1184 |
|
|
! Calculate drag at intermediate levels using centered differences |
1185 |
|
|
|
1186 |
|
|
DO l = lev1p, lev2m |
1187 |
|
|
DO i = il1, il2 |
1188 |
|
|
IF (lorms(i)) THEN |
1189 |
|
|
! cc DENDZ2 = DENSITY(I,L) * ( ALT(I,L+1) - ALT(I,L-1) ) |
1190 |
|
|
dendz2 = density(i, l)*(alt(i,l-1)-alt(i,l)) |
1191 |
|
|
! cc DRAG_U(I,L) = - ( FLUX_U(I,L+1) - FLUX_U(I,L-1) ) / DENDZ2 |
1192 |
|
|
drag_u(i, l) = -(flux_u(i,l-1)-flux_u(i,l))/dendz2 |
1193 |
|
|
! cc DRAG_V(I,L) = - ( FLUX_V(I,L+1) - FLUX_V(I,L-1) ) / DENDZ2 |
1194 |
|
|
drag_v(i, l) = -(flux_v(i,l-1)-flux_v(i,l))/dendz2 |
1195 |
|
|
|
1196 |
|
|
END IF |
1197 |
|
|
END DO |
1198 |
|
|
END DO |
1199 |
|
|
|
1200 |
|
|
! Drag at first and last levels using one-side differences. |
1201 |
|
|
|
1202 |
|
|
DO i = il1, il2 |
1203 |
|
|
IF (lorms(i)) THEN |
1204 |
|
|
dendz = density(i, lev1)*(alt(i,lev1)-alt(i,lev1p)) |
1205 |
|
|
drag_u(i, lev1) = flux_u(i, lev1)/dendz |
1206 |
|
|
drag_v(i, lev1) = flux_v(i, lev1)/dendz |
1207 |
|
|
END IF |
1208 |
|
|
END DO |
1209 |
|
|
DO i = il1, il2 |
1210 |
|
|
IF (lorms(i)) THEN |
1211 |
|
|
dendz = density(i, lev2)*(alt(i,lev2m)-alt(i,lev2)) |
1212 |
|
|
drag_u(i, lev2) = -(flux_u(i,lev2m)-flux_u(i,lev2))/dendz |
1213 |
|
|
drag_v(i, lev2) = -(flux_v(i,lev2m)-flux_v(i,lev2))/dendz |
1214 |
|
|
END IF |
1215 |
|
|
END DO |
1216 |
|
|
IF (nlevs>lev2) THEN |
1217 |
|
|
DO i = il1, il2 |
1218 |
|
|
IF (lorms(i)) THEN |
1219 |
|
|
dendz = density(i, lev2p)*(alt(i,lev2)-alt(i,lev2p)) |
1220 |
|
|
drag_u(i, lev2p) = -flux_u(i, lev2)/dendz |
1221 |
|
|
drag_v(i, lev2p) = -flux_v(i, lev2)/dendz |
1222 |
|
|
END IF |
1223 |
|
|
END DO |
1224 |
|
|
END IF |
1225 |
|
|
|
1226 |
|
|
RETURN |
1227 |
|
|
! ----------------------------------------------------------------------- |
1228 |
|
|
END SUBROUTINE hines_flux |
1229 |
|
|
|
1230 |
|
|
SUBROUTINE hines_heat(heat, diffco, m_alpha, dmdz_alpha, ak_alpha, k_alpha, & |
1231 |
|
|
bvfreq, density, densb, sigma_t, visc_mol, kstar, slope, f2, f3, f5, f6, & |
1232 |
|
|
naz, il1, il2, lev1, lev2, nlons, nlevs, nazmth) |
1233 |
|
|
IMPLICIT NONE |
1234 |
|
|
! This routine calculates the gravity wave induced heating and |
1235 |
|
|
! diffusion coefficient on a longitude by altitude grid for |
1236 |
|
|
! the Hines' Doppler spread gravity wave drag parameterization scheme. |
1237 |
|
|
|
1238 |
|
|
! Aug. 6/95 - C. McLandress |
1239 |
|
|
|
1240 |
|
|
! Output arguements: |
1241 |
|
|
|
1242 |
|
|
! * HEAT = gravity wave heating (K/sec). |
1243 |
|
|
! * DIFFCO = diffusion coefficient (m^2/sec) |
1244 |
|
|
|
1245 |
|
|
! Input arguements: |
1246 |
|
|
|
1247 |
|
|
! * M_ALPHA = cutoff vertical wavenumber (1/m). |
1248 |
|
|
! * DMDZ_ALPHA = vertical derivative of cutoff wavenumber. |
1249 |
|
|
! * AK_ALPHA = spectral amplitude factor of each azimuth |
1250 |
|
|
! (i.e., {AjKj} in m^4/s^2). |
1251 |
|
|
! * K_ALPHA = horizontal wavenumber of each azimuth (1/m). |
1252 |
|
|
! * BVFREQ = background Brunt Vassala frequency (rad/sec). |
1253 |
|
|
! * DENSITY = background density (kg/m^3). |
1254 |
|
|
! * DENSB = background density at bottom level (kg/m^3). |
1255 |
|
|
! * SIGMA_T = total rms horizontal wind (m/s). |
1256 |
|
|
! * VISC_MOL = molecular viscosity (m^2/s). |
1257 |
|
|
! * KSTAR = typical gravity wave horizontal wavenumber (1/m). |
1258 |
|
|
! * SLOPE = slope of incident vertical wavenumber spectrum. |
1259 |
|
|
! * F2,F3,F5,F6 = Hines's fudge factors. |
1260 |
|
|
! * NAZ = actual number of horizontal azimuths used. |
1261 |
|
|
! * IL1 = first longitudinal index to use (IL1 >= 1). |
1262 |
|
|
! * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
1263 |
|
|
! * LEV1 = first altitude level to use (LEV1 >=1). |
1264 |
|
|
! * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). |
1265 |
|
|
! * NLONS = number of longitudes. |
1266 |
|
|
! * NLEVS = number of vertical levels. |
1267 |
|
|
! * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
1268 |
|
|
|
1269 |
|
|
INTEGER naz, il1, il2, lev1, lev2, nlons, nlevs, nazmth |
1270 |
|
|
REAL kstar(nlons), slope, f2, f3, f5, f6 |
1271 |
|
|
REAL heat(nlons, nlevs), diffco(nlons, nlevs) |
1272 |
|
|
REAL m_alpha(nlons, nlevs, nazmth), dmdz_alpha(nlons, nlevs, nazmth) |
1273 |
|
|
REAL ak_alpha(nlons, nazmth), k_alpha(nlons, nazmth) |
1274 |
|
|
REAL bvfreq(nlons, nlevs), density(nlons, nlevs), densb(nlons) |
1275 |
|
|
REAL sigma_t(nlons, nlevs), visc_mol(nlons, nlevs) |
1276 |
|
|
|
1277 |
|
|
! Internal variables. |
1278 |
|
|
|
1279 |
|
|
INTEGER i, l, n |
1280 |
|
|
REAL m_sub_m_turb, m_sub_m_mol, m_sub_m, heatng |
1281 |
|
|
REAL visc, visc_min, cpgas, sm1 |
1282 |
|
|
|
1283 |
|
|
! specific heat at constant pressure |
1284 |
|
|
|
1285 |
|
|
DATA cpgas/1004./ |
1286 |
|
|
|
1287 |
|
|
! minimum permissible viscosity |
1288 |
|
|
|
1289 |
|
|
DATA visc_min/1.E-10/ |
1290 |
|
|
! ----------------------------------------------------------------------- |
1291 |
|
|
|
1292 |
|
|
! Initialize heating array. |
1293 |
|
|
|
1294 |
|
|
DO l = 1, nlevs |
1295 |
|
|
DO i = 1, nlons |
1296 |
|
|
heat(i, l) = 0. |
1297 |
|
|
END DO |
1298 |
|
|
END DO |
1299 |
|
|
|
1300 |
|
|
! Perform sum over azimuths for case where SLOPE = 1. |
1301 |
|
|
|
1302 |
|
|
IF (slope==1.) THEN |
1303 |
|
|
DO n = 1, naz |
1304 |
|
|
DO l = lev1, lev2 |
1305 |
|
|
DO i = il1, il2 |
1306 |
|
|
heat(i, l) = heat(i, l) + ak_alpha(i, n)*k_alpha(i, n)*dmdz_alpha(i & |
1307 |
|
|
, l, n) |
1308 |
|
|
END DO |
1309 |
|
|
END DO |
1310 |
|
|
END DO |
1311 |
|
|
END IF |
1312 |
|
|
|
1313 |
|
|
! Perform sum over azimuths for case where SLOPE not 1. |
1314 |
|
|
|
1315 |
|
|
IF (slope/=1.) THEN |
1316 |
|
|
sm1 = slope - 1. |
1317 |
|
|
DO n = 1, naz |
1318 |
|
|
DO l = lev1, lev2 |
1319 |
|
|
DO i = il1, il2 |
1320 |
|
|
heat(i, l) = heat(i, l) + ak_alpha(i, n)*k_alpha(i, n)*m_alpha(i, l & |
1321 |
|
|
, n)**sm1*dmdz_alpha(i, l, n) |
1322 |
|
|
END DO |
1323 |
|
|
END DO |
1324 |
|
|
END DO |
1325 |
|
|
END IF |
1326 |
|
|
|
1327 |
|
|
! Heating and diffusion. |
1328 |
|
|
|
1329 |
|
|
DO l = lev1, lev2 |
1330 |
|
|
DO i = il1, il2 |
1331 |
|
|
|
1332 |
|
|
! Maximum permissible value of cutoff wavenumber is the smaller |
1333 |
|
|
! of the instability-induced wavenumber (M_SUB_M_TURB) and |
1334 |
|
|
! that imposed by molecular viscosity (M_SUB_M_MOL). |
1335 |
|
|
|
1336 |
|
|
visc = amax1(visc_mol(i,l), visc_min) |
1337 |
|
|
m_sub_m_turb = bvfreq(i, l)/(f2*sigma_t(i,l)) |
1338 |
|
|
m_sub_m_mol = (bvfreq(i,l)*kstar(i)/visc)**0.33333333/f3 |
1339 |
|
|
m_sub_m = amin1(m_sub_m_turb, m_sub_m_mol) |
1340 |
|
|
|
1341 |
|
|
heatng = -heat(i, l)*f5*bvfreq(i, l)/m_sub_m*densb(i)/density(i, l) |
1342 |
|
|
diffco(i, l) = f6*heatng**0.33333333/m_sub_m**1.33333333 |
1343 |
|
|
heat(i, l) = heatng/cpgas |
1344 |
|
|
|
1345 |
|
|
END DO |
1346 |
|
|
END DO |
1347 |
|
|
|
1348 |
|
|
RETURN |
1349 |
|
|
! ----------------------------------------------------------------------- |
1350 |
|
|
END SUBROUTINE hines_heat |
1351 |
|
|
|
1352 |
|
|
SUBROUTINE hines_sigma(sigma_t, sigma_alpha, sigsqh_alpha, naz, lev, il1, & |
1353 |
|
|
il2, nlons, nlevs, nazmth) |
1354 |
|
|
IMPLICIT NONE |
1355 |
|
|
! This routine calculates the total rms and azimuthal rms horizontal |
1356 |
|
|
! velocities at a given level on a longitude by altitude grid for |
1357 |
|
|
! the Hines' Doppler spread GWD parameterization scheme. |
1358 |
|
|
! NOTE: only four or eight azimuths can be used. |
1359 |
|
|
|
1360 |
|
|
! Aug. 7/95 - C. McLandress |
1361 |
|
|
|
1362 |
|
|
! Output arguements: |
1363 |
|
|
|
1364 |
|
|
! * SIGMA_T = total rms horizontal wind (m/s). |
1365 |
|
|
! * SIGMA_ALPHA = total rms wind in each azimuth (m/s). |
1366 |
|
|
|
1367 |
|
|
! Input arguements: |
1368 |
|
|
|
1369 |
|
|
! * SIGSQH_ALPHA = portion of wind variance from waves having wave |
1370 |
|
|
! * normals in the alpha azimuth (m/s). |
1371 |
|
|
! * NAZ = actual number of horizontal azimuths used (must be 4 or 8). |
1372 |
|
|
! * LEV = altitude level to process. |
1373 |
|
|
! * IL1 = first longitudinal index to use (IL1 >= 1). |
1374 |
|
|
! * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
1375 |
|
|
! * NLONS = number of longitudes. |
1376 |
|
|
! * NLEVS = number of vertical levels. |
1377 |
|
|
! * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
1378 |
|
|
|
1379 |
|
|
! Subroutine arguements. |
1380 |
|
|
|
1381 |
|
|
INTEGER lev, naz, il1, il2 |
1382 |
|
|
INTEGER nlons, nlevs, nazmth |
1383 |
|
|
REAL sigma_t(nlons, nlevs) |
1384 |
|
|
REAL sigma_alpha(nlons, nlevs, nazmth) |
1385 |
|
|
REAL sigsqh_alpha(nlons, nlevs, nazmth) |
1386 |
|
|
|
1387 |
|
|
! Internal variables. |
1388 |
|
|
|
1389 |
|
|
INTEGER i, n |
1390 |
|
|
REAL sum_even, sum_odd |
1391 |
|
|
! ----------------------------------------------------------------------- |
1392 |
|
|
|
1393 |
|
|
! Calculate azimuthal rms velocity for the 4 azimuth case. |
1394 |
|
|
|
1395 |
|
|
IF (naz==4) THEN |
1396 |
|
|
DO i = il1, il2 |
1397 |
|
|
sigma_alpha(i, lev, 1) = sqrt(sigsqh_alpha(i,lev,1)+sigsqh_alpha(i,lev, & |
1398 |
|
|
3)) |
1399 |
|
|
sigma_alpha(i, lev, 2) = sqrt(sigsqh_alpha(i,lev,2)+sigsqh_alpha(i,lev, & |
1400 |
|
|
4)) |
1401 |
|
|
sigma_alpha(i, lev, 3) = sigma_alpha(i, lev, 1) |
1402 |
|
|
sigma_alpha(i, lev, 4) = sigma_alpha(i, lev, 2) |
1403 |
|
|
END DO |
1404 |
|
|
END IF |
1405 |
|
|
|
1406 |
|
|
! Calculate azimuthal rms velocity for the 8 azimuth case. |
1407 |
|
|
|
1408 |
|
|
IF (naz==8) THEN |
1409 |
|
|
DO i = il1, il2 |
1410 |
|
|
sum_odd = (sigsqh_alpha(i,lev,1)+sigsqh_alpha(i,lev,3)+ & |
1411 |
|
|
sigsqh_alpha(i,lev,5)+sigsqh_alpha(i,lev,7))/2. |
1412 |
|
|
sum_even = (sigsqh_alpha(i,lev,2)+sigsqh_alpha(i,lev,4)+ & |
1413 |
|
|
sigsqh_alpha(i,lev,6)+sigsqh_alpha(i,lev,8))/2. |
1414 |
|
|
sigma_alpha(i, lev, 1) = sqrt(sigsqh_alpha(i,lev,1)+sigsqh_alpha(i,lev, & |
1415 |
|
|
5)+sum_even) |
1416 |
|
|
sigma_alpha(i, lev, 2) = sqrt(sigsqh_alpha(i,lev,2)+sigsqh_alpha(i,lev, & |
1417 |
|
|
6)+sum_odd) |
1418 |
|
|
sigma_alpha(i, lev, 3) = sqrt(sigsqh_alpha(i,lev,3)+sigsqh_alpha(i,lev, & |
1419 |
|
|
7)+sum_even) |
1420 |
|
|
sigma_alpha(i, lev, 4) = sqrt(sigsqh_alpha(i,lev,4)+sigsqh_alpha(i,lev, & |
1421 |
|
|
8)+sum_odd) |
1422 |
|
|
sigma_alpha(i, lev, 5) = sigma_alpha(i, lev, 1) |
1423 |
|
|
sigma_alpha(i, lev, 6) = sigma_alpha(i, lev, 2) |
1424 |
|
|
sigma_alpha(i, lev, 7) = sigma_alpha(i, lev, 3) |
1425 |
|
|
sigma_alpha(i, lev, 8) = sigma_alpha(i, lev, 4) |
1426 |
|
|
END DO |
1427 |
|
|
END IF |
1428 |
|
|
|
1429 |
|
|
! Calculate total rms velocity. |
1430 |
|
|
|
1431 |
|
|
DO i = il1, il2 |
1432 |
|
|
sigma_t(i, lev) = 0. |
1433 |
|
|
END DO |
1434 |
|
|
DO n = 1, naz |
1435 |
|
|
DO i = il1, il2 |
1436 |
|
|
sigma_t(i, lev) = sigma_t(i, lev) + sigsqh_alpha(i, lev, n) |
1437 |
|
|
END DO |
1438 |
|
|
END DO |
1439 |
|
|
DO i = il1, il2 |
1440 |
|
|
sigma_t(i, lev) = sqrt(sigma_t(i,lev)) |
1441 |
|
|
END DO |
1442 |
|
|
|
1443 |
|
|
RETURN |
1444 |
|
|
! ----------------------------------------------------------------------- |
1445 |
|
|
END SUBROUTINE hines_sigma |
1446 |
|
|
|
1447 |
|
|
SUBROUTINE hines_intgrl(i_alpha, v_alpha, m_alpha, bvfb, slope, naz, lev, & |
1448 |
|
|
il1, il2, nlons, nlevs, nazmth, lorms) |
1449 |
|
|
IMPLICIT NONE |
1450 |
|
|
! This routine calculates the vertical wavenumber integral |
1451 |
|
|
! for a single vertical level at each azimuth on a longitude grid |
1452 |
|
|
! for the Hines' Doppler spread GWD parameterization scheme. |
1453 |
|
|
! NOTE: (1) only spectral slopes of 1, 1.5 or 2 are permitted. |
1454 |
|
|
! (2) the integral is written in terms of the product QM |
1455 |
|
|
! which by construction is always less than 1. Series |
1456 |
|
|
! solutions are used for small |QM| and analytical solutions |
1457 |
|
|
! for remaining values. |
1458 |
|
|
|
1459 |
|
|
! Aug. 8/95 - C. McLandress |
1460 |
|
|
|
1461 |
|
|
! Output arguement: |
1462 |
|
|
|
1463 |
|
|
! * I_ALPHA = Hines' integral. |
1464 |
|
|
|
1465 |
|
|
! Input arguements: |
1466 |
|
|
|
1467 |
|
|
! * V_ALPHA = azimuthal wind component (m/s). |
1468 |
|
|
! * M_ALPHA = azimuthal cutoff vertical wavenumber (1/m). |
1469 |
|
|
! * BVFB = background Brunt Vassala frequency at model bottom. |
1470 |
|
|
! * SLOPE = slope of initial vertical wavenumber spectrum |
1471 |
|
|
! * (must use SLOPE = 1., 1.5 or 2.) |
1472 |
|
|
! * NAZ = actual number of horizontal azimuths used. |
1473 |
|
|
! * LEV = altitude level to process. |
1474 |
|
|
! * IL1 = first longitudinal index to use (IL1 >= 1). |
1475 |
|
|
! * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
1476 |
|
|
! * NLONS = number of longitudes. |
1477 |
|
|
! * NLEVS = number of vertical levels. |
1478 |
|
|
! * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
1479 |
|
|
|
1480 |
|
|
! * LORMS = .TRUE. for drag computation |
1481 |
|
|
|
1482 |
|
|
! Constants in DATA statements: |
1483 |
|
|
|
1484 |
|
|
! * QMIN = minimum value of Q_ALPHA (avoids indeterminant form of integral) |
1485 |
|
|
! * QM_MIN = minimum value of Q_ALPHA * M_ALPHA (used to avoid numerical |
1486 |
|
|
! * problems). |
1487 |
|
|
|
1488 |
|
|
INTEGER lev, naz, il1, il2, nlons, nlevs, nazmth |
1489 |
|
|
REAL i_alpha(nlons, nazmth) |
1490 |
|
|
REAL v_alpha(nlons, nlevs, nazmth) |
1491 |
|
|
REAL m_alpha(nlons, nlevs, nazmth) |
1492 |
|
|
REAL bvfb(nlons), slope |
1493 |
|
|
|
1494 |
|
|
LOGICAL lorms(nlons) |
1495 |
|
|
|
1496 |
|
|
! Internal variables. |
1497 |
|
|
|
1498 |
|
|
INTEGER i, n |
1499 |
|
|
REAL q_alpha, qm, sqrtqm, q_min, qm_min |
1500 |
|
|
|
1501 |
|
|
DATA q_min/1.0/, qm_min/0.01/ |
1502 |
|
|
! ----------------------------------------------------------------------- |
1503 |
|
|
|
1504 |
|
|
! For integer value SLOPE = 1. |
1505 |
|
|
|
1506 |
|
|
IF (slope==1.) THEN |
1507 |
|
|
|
1508 |
|
|
DO n = 1, naz |
1509 |
|
|
DO i = il1, il2 |
1510 |
|
|
IF (lorms(i)) THEN |
1511 |
|
|
|
1512 |
|
|
q_alpha = v_alpha(i, lev, n)/bvfb(i) |
1513 |
|
|
qm = q_alpha*m_alpha(i, lev, n) |
1514 |
|
|
|
1515 |
|
|
! If |QM| is small then use first 4 terms series of Taylor series |
1516 |
|
|
! expansion of integral in order to avoid indeterminate form of |
1517 |
|
|
! integral, |
1518 |
|
|
! otherwise use analytical form of integral. |
1519 |
|
|
|
1520 |
|
|
IF (abs(q_alpha)<q_min .OR. abs(qm)<qm_min) THEN |
1521 |
|
|
IF (q_alpha==0.) THEN |
1522 |
|
|
i_alpha(i, n) = m_alpha(i, lev, n)**2/2. |
1523 |
|
|
ELSE |
1524 |
|
|
i_alpha(i, n) = (qm**2/2.+qm**3/3.+qm**4/4.+qm**5/5.)/ & |
1525 |
|
|
q_alpha**2 |
1526 |
|
|
END IF |
1527 |
|
|
ELSE |
1528 |
|
|
i_alpha(i, n) = -(alog(1.-qm)+qm)/q_alpha**2 |
1529 |
|
|
END IF |
1530 |
|
|
|
1531 |
|
|
END IF |
1532 |
|
|
END DO |
1533 |
|
|
END DO |
1534 |
|
|
|
1535 |
|
|
END IF |
1536 |
|
|
|
1537 |
|
|
! For integer value SLOPE = 2. |
1538 |
|
|
|
1539 |
|
|
IF (slope==2.) THEN |
1540 |
|
|
|
1541 |
|
|
DO n = 1, naz |
1542 |
|
|
DO i = il1, il2 |
1543 |
|
|
IF (lorms(i)) THEN |
1544 |
|
|
|
1545 |
|
|
q_alpha = v_alpha(i, lev, n)/bvfb(i) |
1546 |
|
|
qm = q_alpha*m_alpha(i, lev, n) |
1547 |
|
|
|
1548 |
|
|
! If |QM| is small then use first 4 terms series of Taylor series |
1549 |
|
|
! expansion of integral in order to avoid indeterminate form of |
1550 |
|
|
! integral, |
1551 |
|
|
! otherwise use analytical form of integral. |
1552 |
|
|
|
1553 |
|
|
IF (abs(q_alpha)<q_min .OR. abs(qm)<qm_min) THEN |
1554 |
|
|
IF (q_alpha==0.) THEN |
1555 |
|
|
i_alpha(i, n) = m_alpha(i, lev, n)**3/3. |
1556 |
|
|
ELSE |
1557 |
|
|
i_alpha(i, n) = (qm**3/3.+qm**4/4.+qm**5/5.+qm**6/6.)/ & |
1558 |
|
|
q_alpha**3 |
1559 |
|
|
END IF |
1560 |
|
|
ELSE |
1561 |
|
|
i_alpha(i, n) = -(alog(1.-qm)+qm+qm**2/2.)/q_alpha**3 |
1562 |
|
|
END IF |
1563 |
|
|
|
1564 |
|
|
END IF |
1565 |
|
|
END DO |
1566 |
|
|
END DO |
1567 |
|
|
|
1568 |
|
|
END IF |
1569 |
|
|
|
1570 |
|
|
! For real value SLOPE = 1.5 |
1571 |
|
|
|
1572 |
|
|
IF (slope==1.5) THEN |
1573 |
|
|
|
1574 |
|
|
DO n = 1, naz |
1575 |
|
|
DO i = il1, il2 |
1576 |
|
|
IF (lorms(i)) THEN |
1577 |
|
|
|
1578 |
|
|
q_alpha = v_alpha(i, lev, n)/bvfb(i) |
1579 |
|
|
qm = q_alpha*m_alpha(i, lev, n) |
1580 |
|
|
|
1581 |
|
|
! If |QM| is small then use first 4 terms series of Taylor series |
1582 |
|
|
! expansion of integral in order to avoid indeterminate form of |
1583 |
|
|
! integral, |
1584 |
|
|
! otherwise use analytical form of integral. |
1585 |
|
|
|
1586 |
|
|
IF (abs(q_alpha)<q_min .OR. abs(qm)<qm_min) THEN |
1587 |
|
|
IF (q_alpha==0.) THEN |
1588 |
|
|
i_alpha(i, n) = m_alpha(i, lev, n)**2.5/2.5 |
1589 |
|
|
ELSE |
1590 |
|
|
i_alpha(i, n) = (qm/2.5+qm**2/3.5+qm**3/4.5+qm**4/5.5)* & |
1591 |
|
|
m_alpha(i, lev, n)**1.5/q_alpha |
1592 |
|
|
END IF |
1593 |
|
|
ELSE |
1594 |
|
|
qm = abs(qm) |
1595 |
|
|
sqrtqm = sqrt(qm) |
1596 |
|
|
IF (q_alpha>=0.) THEN |
1597 |
|
|
i_alpha(i, n) = (alog((1.+sqrtqm)/(1.-sqrtqm))-2.*sqrtqm*(1.+qm & |
1598 |
|
|
/3.))/q_alpha**2.5 |
1599 |
|
|
ELSE |
1600 |
|
|
i_alpha(i, n) = 2.*(atan(sqrtqm)+sqrtqm*(qm/3.-1.))/ & |
1601 |
|
|
abs(q_alpha)**2.5 |
1602 |
|
|
END IF |
1603 |
|
|
END IF |
1604 |
|
|
|
1605 |
|
|
END IF |
1606 |
|
|
END DO |
1607 |
|
|
END DO |
1608 |
|
|
|
1609 |
|
|
END IF |
1610 |
|
|
|
1611 |
|
|
! If integral is negative (which in principal should not happen) then |
1612 |
|
|
! print a message and some info since execution will abort when calculating |
1613 |
|
|
! the variances. |
1614 |
|
|
|
1615 |
|
|
! DO 80 N = 1,NAZ |
1616 |
|
|
! DO 70 I = IL1,IL2 |
1617 |
|
|
! IF (I_ALPHA(I,N).LT.0.) THEN |
1618 |
|
|
! WRITE (6,*) |
1619 |
|
|
! WRITE (6,*) '******************************' |
1620 |
|
|
! WRITE (6,*) 'Hines integral I_ALPHA < 0 ' |
1621 |
|
|
! WRITE (6,*) ' longitude I=',I |
1622 |
|
|
! WRITE (6,*) ' azimuth N=',N |
1623 |
|
|
! WRITE (6,*) ' level LEV=',LEV |
1624 |
|
|
! WRITE (6,*) ' I_ALPHA =',I_ALPHA(I,N) |
1625 |
|
|
! WRITE (6,*) ' V_ALPHA =',V_ALPHA(I,LEV,N) |
1626 |
|
|
! WRITE (6,*) ' M_ALPHA =',M_ALPHA(I,LEV,N) |
1627 |
|
|
! WRITE (6,*) ' Q_ALPHA =',V_ALPHA(I,LEV,N) / BVFB(I) |
1628 |
|
|
! WRITE (6,*) ' QM =',V_ALPHA(I,LEV,N) / BVFB(I) |
1629 |
|
|
! ^ * M_ALPHA(I,LEV,N) |
1630 |
|
|
! WRITE (6,*) '******************************' |
1631 |
|
|
! END IF |
1632 |
|
|
! 70 CONTINUE |
1633 |
|
|
! 80 CONTINUE |
1634 |
|
|
|
1635 |
|
|
RETURN |
1636 |
|
|
! ----------------------------------------------------------------------- |
1637 |
|
|
END SUBROUTINE hines_intgrl |
1638 |
|
|
|
1639 |
|
|
SUBROUTINE hines_setup(naz, slope, f1, f2, f3, f5, f6, kstar, icutoff, & |
1640 |
|
|
alt_cutoff, smco, nsmax, iheatcal, k_alpha, ierror, nmessg, nlons, & |
1641 |
|
|
nazmth, coslat) |
1642 |
|
|
IMPLICIT NONE |
1643 |
|
|
! This routine specifies various parameters needed for the |
1644 |
|
|
! the Hines' Doppler spread gravity wave drag parameterization scheme. |
1645 |
|
|
|
1646 |
|
|
! Aug. 8/95 - C. McLandress |
1647 |
|
|
|
1648 |
|
|
! Output arguements: |
1649 |
|
|
|
1650 |
|
|
! * NAZ = actual number of horizontal azimuths used |
1651 |
|
|
! * (code set up presently for only NAZ = 4 or 8). |
1652 |
|
|
! * SLOPE = slope of incident vertical wavenumber spectrum |
1653 |
|
|
! * (code set up presently for SLOPE 1., 1.5 or 2.). |
1654 |
|
|
! * F1 = "fudge factor" used in calculation of trial value of |
1655 |
|
|
! * azimuthal cutoff wavenumber M_ALPHA (1.2 <= F1 <= 1.9). |
1656 |
|
|
! * F2 = "fudge factor" used in calculation of maximum |
1657 |
|
|
! * permissible instabiliy-induced cutoff wavenumber |
1658 |
|
|
! * M_SUB_M_TURB (0.1 <= F2 <= 1.4). |
1659 |
|
|
! * F3 = "fudge factor" used in calculation of maximum |
1660 |
|
|
! * permissible molecular viscosity-induced cutoff wavenumber |
1661 |
|
|
! * M_SUB_M_MOL (0.1 <= F2 <= 1.4). |
1662 |
|
|
! * F5 = "fudge factor" used in calculation of heating rate |
1663 |
|
|
! * (1 <= F5 <= 3). |
1664 |
|
|
! * F6 = "fudge factor" used in calculation of turbulent |
1665 |
|
|
! * diffusivity coefficient. |
1666 |
|
|
! * KSTAR = typical gravity wave horizontal wavenumber (1/m) |
1667 |
|
|
! * used in calculation of M_SUB_M_TURB. |
1668 |
|
|
! * ICUTOFF = 1 to exponentially damp off GWD, heating and diffusion |
1669 |
|
|
! * arrays above ALT_CUTOFF; otherwise arrays not modified. |
1670 |
|
|
! * ALT_CUTOFF = altitude in meters above which exponential decay applied. |
1671 |
|
|
! * SMCO = smoother used to smooth cutoff vertical wavenumbers |
1672 |
|
|
! * and total rms winds before calculating drag or heating. |
1673 |
|
|
! * (==> a 1:SMCO:1 stencil used; SMCO >= 1.). |
1674 |
|
|
! * NSMAX = number of times smoother applied ( >= 1), |
1675 |
|
|
! * = 0 means no smoothing performed. |
1676 |
|
|
! * IHEATCAL = 1 to calculate heating rates and diffusion coefficient. |
1677 |
|
|
! * = 0 means only drag and flux calculated. |
1678 |
|
|
! * K_ALPHA = horizontal wavenumber of each azimuth (1/m) which |
1679 |
|
|
! * is set here to KSTAR. |
1680 |
|
|
! * IERROR = error flag. |
1681 |
|
|
! * = 0 no errors. |
1682 |
|
|
! * = 10 ==> NAZ > NAZMTH |
1683 |
|
|
! * = 20 ==> invalid number of azimuths (NAZ must be 4 or 8). |
1684 |
|
|
! * = 30 ==> invalid slope (SLOPE must be 1., 1.5 or 2.). |
1685 |
|
|
! * = 40 ==> invalid smoother (SMCO must be >= 1.) |
1686 |
|
|
|
1687 |
|
|
! Input arguements: |
1688 |
|
|
|
1689 |
|
|
! * NMESSG = output unit number where messages to be printed. |
1690 |
|
|
! * NLONS = number of longitudes. |
1691 |
|
|
! * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
1692 |
|
|
|
1693 |
|
|
INTEGER naz, nlons, nazmth, iheatcal, icutoff |
1694 |
|
|
INTEGER nmessg, nsmax, ierror |
1695 |
|
|
REAL kstar(nlons), slope, f1, f2, f3, f5, f6, alt_cutoff, smco |
1696 |
|
|
REAL k_alpha(nlons, nazmth), coslat(nlons) |
1697 |
|
|
REAL ksmin, ksmax |
1698 |
|
|
|
1699 |
|
|
! Internal variables. |
1700 |
|
|
|
1701 |
|
|
INTEGER i, n |
1702 |
|
|
! ----------------------------------------------------------------------- |
1703 |
|
|
|
1704 |
|
|
! Specify constants. |
1705 |
|
|
|
1706 |
|
|
naz = 8 |
1707 |
|
|
slope = 1. |
1708 |
|
|
f1 = 1.5 |
1709 |
|
|
f2 = 0.3 |
1710 |
|
|
f3 = 1.0 |
1711 |
|
|
f5 = 3.0 |
1712 |
|
|
f6 = 1.0 |
1713 |
|
|
ksmin = 1.E-5 |
1714 |
|
|
ksmax = 1.E-4 |
1715 |
|
|
DO i = 1, nlons |
1716 |
|
|
kstar(i) = ksmin/(coslat(i)+(ksmin/ksmax)) |
1717 |
|
|
END DO |
1718 |
|
|
icutoff = 1 |
1719 |
|
|
alt_cutoff = 105.E3 |
1720 |
|
|
smco = 2.0 |
1721 |
|
|
! SMCO = 1.0 |
1722 |
|
|
nsmax = 5 |
1723 |
|
|
! NSMAX = 2 |
1724 |
|
|
iheatcal = 0 |
1725 |
|
|
|
1726 |
|
|
! Print information to output file. |
1727 |
|
|
|
1728 |
|
|
! WRITE (NMESSG,6000) |
1729 |
|
|
! 6000 FORMAT (/' Subroutine HINES_SETUP:') |
1730 |
|
|
! WRITE (NMESSG,*) ' SLOPE = ', SLOPE |
1731 |
|
|
! WRITE (NMESSG,*) ' NAZ = ', NAZ |
1732 |
|
|
! WRITE (NMESSG,*) ' F1,F2,F3 = ', F1, F2, F3 |
1733 |
|
|
! WRITE (NMESSG,*) ' F5,F6 = ', F5, F6 |
1734 |
|
|
! WRITE (NMESSG,*) ' KSTAR = ', KSTAR |
1735 |
|
|
! > ,' COSLAT = ', COSLAT |
1736 |
|
|
! IF (ICUTOFF .EQ. 1) THEN |
1737 |
|
|
! WRITE (NMESSG,*) ' Drag exponentially damped above ', |
1738 |
|
|
! & ALT_CUTOFF/1.E3 |
1739 |
|
|
! END IF |
1740 |
|
|
! IF (NSMAX.LT.1 ) THEN |
1741 |
|
|
! WRITE (NMESSG,*) ' No smoothing of cutoff wavenumbers, etc' |
1742 |
|
|
! ELSE |
1743 |
|
|
! WRITE (NMESSG,*) ' Cutoff wavenumbers and sig_t smoothed:' |
1744 |
|
|
! WRITE (NMESSG,*) ' SMCO =', SMCO |
1745 |
|
|
! WRITE (NMESSG,*) ' NSMAX =', NSMAX |
1746 |
|
|
! END IF |
1747 |
|
|
|
1748 |
|
|
! Check that things are setup correctly and log error if not |
1749 |
|
|
|
1750 |
|
|
ierror = 0 |
1751 |
|
|
IF (naz>nazmth) ierror = 10 |
1752 |
|
|
IF (naz/=4 .AND. naz/=8) ierror = 20 |
1753 |
|
|
IF (slope/=1. .AND. slope/=1.5 .AND. slope/=2.) ierror = 30 |
1754 |
|
|
IF (smco<1.) ierror = 40 |
1755 |
|
|
|
1756 |
|
|
! Use single value for azimuthal-dependent horizontal wavenumber. |
1757 |
|
|
|
1758 |
|
|
DO n = 1, naz |
1759 |
|
|
DO i = 1, nlons |
1760 |
|
|
k_alpha(i, n) = kstar(i) |
1761 |
|
|
END DO |
1762 |
|
|
END DO |
1763 |
|
|
|
1764 |
|
|
RETURN |
1765 |
|
|
! ----------------------------------------------------------------------- |
1766 |
|
|
END SUBROUTINE hines_setup |
1767 |
|
|
|
1768 |
|
|
SUBROUTINE hines_print(flux_u, flux_v, drag_u, drag_v, alt, sigma_t, & |
1769 |
|
|
sigma_alpha, v_alpha, m_alpha, iu_print, iv_print, nmessg, ilprt1, & |
1770 |
|
|
ilprt2, levprt1, levprt2, naz, nlons, nlevs, nazmth) |
1771 |
|
|
IMPLICIT NONE |
1772 |
|
|
! Print out altitude profiles of various quantities from |
1773 |
|
|
! Hines' Doppler spread gravity wave drag parameterization scheme. |
1774 |
|
|
! (NOTE: only for NAZ = 4 or 8). |
1775 |
|
|
|
1776 |
|
|
! Aug. 8/95 - C. McLandress |
1777 |
|
|
|
1778 |
|
|
! Input arguements: |
1779 |
|
|
|
1780 |
|
|
! * IU_PRINT = 1 to print out values in east-west direction. |
1781 |
|
|
! * IV_PRINT = 1 to print out values in north-south direction. |
1782 |
|
|
! * NMESSG = unit number for printed output. |
1783 |
|
|
! * ILPRT1 = first longitudinal index to print. |
1784 |
|
|
! * ILPRT2 = last longitudinal index to print. |
1785 |
|
|
! * LEVPRT1 = first altitude level to print. |
1786 |
|
|
! * LEVPRT2 = last altitude level to print. |
1787 |
|
|
|
1788 |
|
|
INTEGER naz, ilprt1, ilprt2, levprt1, levprt2 |
1789 |
|
|
INTEGER nlons, nlevs, nazmth |
1790 |
|
|
INTEGER iu_print, iv_print, nmessg |
1791 |
|
|
REAL flux_u(nlons, nlevs), flux_v(nlons, nlevs) |
1792 |
|
|
REAL drag_u(nlons, nlevs), drag_v(nlons, nlevs) |
1793 |
|
|
REAL alt(nlons, nlevs), sigma_t(nlons, nlevs) |
1794 |
|
|
REAL sigma_alpha(nlons, nlevs, nazmth) |
1795 |
|
|
REAL v_alpha(nlons, nlevs, nazmth), m_alpha(nlons, nlevs, nazmth) |
1796 |
|
|
|
1797 |
|
|
! Internal variables. |
1798 |
|
|
|
1799 |
|
|
INTEGER n_east, n_west, n_north, n_south |
1800 |
|
|
INTEGER i, l |
1801 |
|
|
! ----------------------------------------------------------------------- |
1802 |
|
|
|
1803 |
|
|
! Azimuthal indices of cardinal directions. |
1804 |
|
|
|
1805 |
|
|
n_east = 1 |
1806 |
|
|
IF (naz==4) THEN |
1807 |
|
|
n_west = 3 |
1808 |
|
|
n_north = 2 |
1809 |
|
|
n_south = 4 |
1810 |
|
|
ELSE IF (naz==8) THEN |
1811 |
|
|
n_west = 5 |
1812 |
|
|
n_north = 3 |
1813 |
|
|
n_south = 7 |
1814 |
|
|
END IF |
1815 |
|
|
|
1816 |
|
|
! Print out values for range of longitudes. |
1817 |
|
|
|
1818 |
|
|
DO i = ilprt1, ilprt2 |
1819 |
|
|
|
1820 |
|
|
! Print east-west wind, sigmas, cutoff wavenumbers, flux and drag. |
1821 |
|
|
|
1822 |
|
|
IF (iu_print==1) THEN |
1823 |
|
|
WRITE (nmessg, *) |
1824 |
|
|
WRITE (nmessg, 6001) i |
1825 |
|
|
WRITE (nmessg, 6005) |
1826 |
|
|
6001 FORMAT ('Hines GW (east-west) at longitude I =', I3) |
1827 |
|
|
6005 FORMAT (15X, ' U ', 2X, 'sig_E', 2X, 'sig_T', 3X, 'm_E', 4X, 'm_W', 4X, & |
1828 |
|
|
'fluxU', 5X, 'gwdU') |
1829 |
|
|
DO l = levprt1, levprt2 |
1830 |
|
|
WRITE (nmessg, 6701) alt(i, l)/1.E3, v_alpha(i, l, n_east), & |
1831 |
|
|
sigma_alpha(i, l, n_east), sigma_t(i, l), & |
1832 |
|
|
m_alpha(i, l, n_east)*1.E3, m_alpha(i, l, n_west)*1.E3, & |
1833 |
|
|
flux_u(i, l)*1.E5, drag_u(i, l)*24.*3600. |
1834 |
|
|
END DO |
1835 |
|
|
6701 FORMAT (' z=', F7.2, 1X, 3F7.1, 2F7.3, F9.4, F9.3) |
1836 |
|
|
END IF |
1837 |
|
|
|
1838 |
|
|
! Print north-south winds, sigmas, cutoff wavenumbers, flux and drag. |
1839 |
|
|
|
1840 |
|
|
IF (iv_print==1) THEN |
1841 |
|
|
WRITE (nmessg, *) |
1842 |
|
|
WRITE (nmessg, 6002) i |
1843 |
|
|
6002 FORMAT ('Hines GW (north-south) at longitude I =', I3) |
1844 |
|
|
WRITE (nmessg, 6006) |
1845 |
|
|
6006 FORMAT (15X, ' V ', 2X, 'sig_N', 2X, 'sig_T', 3X, 'm_N', 4X, 'm_S', 4X, & |
1846 |
|
|
'fluxV', 5X, 'gwdV') |
1847 |
|
|
DO l = levprt1, levprt2 |
1848 |
|
|
WRITE (nmessg, 6701) alt(i, l)/1.E3, v_alpha(i, l, n_north), & |
1849 |
|
|
sigma_alpha(i, l, n_north), sigma_t(i, l), & |
1850 |
|
|
m_alpha(i, l, n_north)*1.E3, m_alpha(i, l, n_south)*1.E3, & |
1851 |
|
|
flux_v(i, l)*1.E5, drag_v(i, l)*24.*3600. |
1852 |
|
|
END DO |
1853 |
|
|
END IF |
1854 |
|
|
|
1855 |
|
|
END DO |
1856 |
|
|
|
1857 |
|
|
RETURN |
1858 |
|
|
! ----------------------------------------------------------------------- |
1859 |
|
|
END SUBROUTINE hines_print |
1860 |
|
|
|
1861 |
|
|
SUBROUTINE hines_exp(data, data_zmax, alt, alt_exp, iorder, il1, il2, lev1, & |
1862 |
|
|
lev2, nlons, nlevs) |
1863 |
|
|
IMPLICIT NONE |
1864 |
|
|
! This routine exponentially damps a longitude by altitude array |
1865 |
|
|
! of data above a specified altitude. |
1866 |
|
|
|
1867 |
|
|
! Aug. 13/95 - C. McLandress |
1868 |
|
|
|
1869 |
|
|
! Output arguements: |
1870 |
|
|
|
1871 |
|
|
! * DATA = modified data array. |
1872 |
|
|
|
1873 |
|
|
! Input arguements: |
1874 |
|
|
|
1875 |
|
|
! * DATA = original data array. |
1876 |
|
|
! * ALT = altitudes. |
1877 |
|
|
! * ALT_EXP = altitude above which exponential decay applied. |
1878 |
|
|
! * IORDER = 1 means vertical levels are indexed from top down |
1879 |
|
|
! * (i.e., highest level indexed 1 and lowest level NLEVS); |
1880 |
|
|
! * .NE. 1 highest level is index NLEVS. |
1881 |
|
|
! * IL1 = first longitudinal index to use (IL1 >= 1). |
1882 |
|
|
! * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
1883 |
|
|
! * LEV1 = first altitude level to use (LEV1 >=1). |
1884 |
|
|
! * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). |
1885 |
|
|
! * NLONS = number of longitudes. |
1886 |
|
|
! * NLEVS = number of vertical |
1887 |
|
|
|
1888 |
|
|
! Input work arrays: |
1889 |
|
|
|
1890 |
|
|
! * DATA_ZMAX = data values just above altitude ALT_EXP. |
1891 |
|
|
|
1892 |
|
|
INTEGER iorder, il1, il2, lev1, lev2, nlons, nlevs |
1893 |
|
|
REAL alt_exp |
1894 |
|
|
REAL data(nlons, nlevs), data_zmax(nlons), alt(nlons, nlevs) |
1895 |
|
|
|
1896 |
|
|
! Internal variables. |
1897 |
|
|
|
1898 |
|
|
INTEGER levbot, levtop, lincr, i, l |
1899 |
|
|
REAL hscale |
1900 |
|
|
DATA hscale/5.E3/ |
1901 |
|
|
! ----------------------------------------------------------------------- |
1902 |
|
|
|
1903 |
|
|
! Index of lowest altitude level (bottom of drag calculation). |
1904 |
|
|
|
1905 |
|
|
levbot = lev2 |
1906 |
|
|
levtop = lev1 |
1907 |
|
|
lincr = 1 |
1908 |
|
|
IF (iorder/=1) THEN |
1909 |
|
|
levbot = lev1 |
1910 |
|
|
levtop = lev2 |
1911 |
|
|
lincr = -1 |
1912 |
|
|
END IF |
1913 |
|
|
|
1914 |
|
|
! Data values at first level above ALT_EXP. |
1915 |
|
|
|
1916 |
|
|
DO i = il1, il2 |
1917 |
|
|
DO l = levtop, levbot, lincr |
1918 |
|
|
IF (alt(i,l)>=alt_exp) THEN |
1919 |
|
|
data_zmax(i) = data(i, l) |
1920 |
|
|
END IF |
1921 |
|
|
END DO |
1922 |
|
|
END DO |
1923 |
|
|
|
1924 |
|
|
! Exponentially damp field above ALT_EXP to model top at L=1. |
1925 |
|
|
|
1926 |
|
|
DO l = 1, lev2 |
1927 |
|
|
DO i = il1, il2 |
1928 |
|
|
IF (alt(i,l)>=alt_exp) THEN |
1929 |
|
|
data(i, l) = data_zmax(i)*exp((alt_exp-alt(i,l))/hscale) |
1930 |
|
|
END IF |
1931 |
|
|
END DO |
1932 |
|
|
END DO |
1933 |
|
|
|
1934 |
|
|
RETURN |
1935 |
|
|
! ----------------------------------------------------------------------- |
1936 |
|
|
END SUBROUTINE hines_exp |
1937 |
|
|
|
1938 |
|
|
SUBROUTINE vert_smooth(data, work, coeff, nsmooth, il1, il2, lev1, lev2, & |
1939 |
|
|
nlons, nlevs) |
1940 |
|
|
IMPLICIT NONE |
1941 |
|
|
! Smooth a longitude by altitude array in the vertical over a |
1942 |
|
|
! specified number of levels using a three point smoother. |
1943 |
|
|
|
1944 |
|
|
! NOTE: input array DATA is modified on output! |
1945 |
|
|
|
1946 |
|
|
! Aug. 3/95 - C. McLandress |
1947 |
|
|
|
1948 |
|
|
! Output arguement: |
1949 |
|
|
|
1950 |
|
|
! * DATA = smoothed array (on output). |
1951 |
|
|
|
1952 |
|
|
! Input arguements: |
1953 |
|
|
|
1954 |
|
|
! * DATA = unsmoothed array of data (on input). |
1955 |
|
|
! * WORK = work array of same dimension as DATA. |
1956 |
|
|
! * COEFF = smoothing coefficient for a 1:COEFF:1 stencil. |
1957 |
|
|
! * (e.g., COEFF = 2 will result in a smoother which |
1958 |
|
|
! * weights the level L gridpoint by two and the two |
1959 |
|
|
! * adjecent levels (L+1 and L-1) by one). |
1960 |
|
|
! * NSMOOTH = number of times to smooth in vertical. |
1961 |
|
|
! * (e.g., NSMOOTH=1 means smoothed only once, |
1962 |
|
|
! * NSMOOTH=2 means smoothing repeated twice, etc.) |
1963 |
|
|
! * IL1 = first longitudinal index to use (IL1 >= 1). |
1964 |
|
|
! * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
1965 |
|
|
! * LEV1 = first altitude level to use (LEV1 >=1). |
1966 |
|
|
! * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). |
1967 |
|
|
! * NLONS = number of longitudes. |
1968 |
|
|
! * NLEVS = number of vertical levels. |
1969 |
|
|
|
1970 |
|
|
! Subroutine arguements. |
1971 |
|
|
|
1972 |
|
|
INTEGER nsmooth, il1, il2, lev1, lev2, nlons, nlevs |
1973 |
|
|
REAL coeff |
1974 |
|
|
REAL data(nlons, nlevs), work(nlons, nlevs) |
1975 |
|
|
|
1976 |
|
|
! Internal variables. |
1977 |
|
|
|
1978 |
|
|
INTEGER i, l, ns, lev1p, lev2m |
1979 |
|
|
REAL sum_wts |
1980 |
|
|
! ----------------------------------------------------------------------- |
1981 |
|
|
|
1982 |
|
|
! Calculate sum of weights. |
1983 |
|
|
|
1984 |
|
|
sum_wts = coeff + 2. |
1985 |
|
|
|
1986 |
|
|
lev1p = lev1 + 1 |
1987 |
|
|
lev2m = lev2 - 1 |
1988 |
|
|
|
1989 |
|
|
! Smooth NSMOOTH times |
1990 |
|
|
|
1991 |
|
|
DO ns = 1, nsmooth |
1992 |
|
|
|
1993 |
|
|
! Copy data into work array. |
1994 |
|
|
|
1995 |
|
|
DO l = lev1, lev2 |
1996 |
|
|
DO i = il1, il2 |
1997 |
|
|
work(i, l) = data(i, l) |
1998 |
|
|
END DO |
1999 |
|
|
END DO |
2000 |
|
|
|
2001 |
|
|
! Smooth array WORK in vertical direction and put into DATA. |
2002 |
|
|
|
2003 |
|
|
DO l = lev1p, lev2m |
2004 |
|
|
DO i = il1, il2 |
2005 |
|
|
data(i, l) = (work(i,l+1)+coeff*work(i,l)+work(i,l-1))/sum_wts |
2006 |
|
|
END DO |
2007 |
|
|
END DO |
2008 |
|
|
|
2009 |
|
|
END DO |
2010 |
|
|
|
2011 |
|
|
RETURN |
2012 |
|
|
! ----------------------------------------------------------------------- |
2013 |
|
|
END SUBROUTINE vert_smooth |
2014 |
|
|
|
2015 |
|
|
|
2016 |
|
|
|
2017 |
|
|
|
2018 |
|
|
|
2019 |
|
|
|