1 |
|
|
module eq_regions_mod |
2 |
|
|
! |
3 |
|
|
! Purpose. |
4 |
|
|
! -------- |
5 |
|
|
! eq_regions_mod provides the code to perform a high level |
6 |
|
|
! partitioning of the surface of a sphere into regions of |
7 |
|
|
! equal area and small diameter. |
8 |
|
|
! the type. |
9 |
|
|
! |
10 |
|
|
! Background. |
11 |
|
|
! ----------- |
12 |
|
|
! This Fortran version of eq_regions is a much cut down version of the |
13 |
|
|
! "Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox" of the |
14 |
|
|
! same name developed by Paul Leopardi at the University of New South Wales. |
15 |
|
|
! This version has been coded specifically for the case of partitioning the |
16 |
|
|
! surface of a sphere or S^dim (where dim=2) as denoted in the original code. |
17 |
|
|
! Only a subset of the original eq_regions package has been coded to determine |
18 |
|
|
! the high level distribution of regions on a sphere, as the detailed |
19 |
|
|
! distribution of grid points to each region is left to IFS software. |
20 |
|
|
! This is required to take into account the spatial distribution of grid |
21 |
|
|
! points in an IFS gaussian grid and provide an optimal (i.e. exact) |
22 |
|
|
! distribution of grid points over regions. |
23 |
|
|
! |
24 |
|
|
! The following copyright notice for the eq_regions package is included from |
25 |
|
|
! the original MatLab release. |
26 |
|
|
! |
27 |
|
|
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
28 |
|
|
! + Release 1.10 2005-06-26 + |
29 |
|
|
! + + |
30 |
|
|
! + Copyright (c) 2004, 2005, University of New South Wales + |
31 |
|
|
! + + |
32 |
|
|
! + Permission is hereby granted, free of charge, to any person obtaining + |
33 |
|
|
! + a copy of this software and associated documentation files (the + |
34 |
|
|
! + "Software"), to deal in the Software without restriction, including + |
35 |
|
|
! + without limitation the rights to use, copy, modify, merge, publish, + |
36 |
|
|
! + distribute, sublicense, and/or sell copies of the Software, and to + |
37 |
|
|
! + permit persons to whom the Software is furnished to do so, subject to + |
38 |
|
|
! + the following conditions: + |
39 |
|
|
! + + |
40 |
|
|
! + The above copyright notice and this permission notice shall be included + |
41 |
|
|
! + in all copies or substantial portions of the Software. + |
42 |
|
|
! + + |
43 |
|
|
! + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + |
44 |
|
|
! + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + |
45 |
|
|
! + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + |
46 |
|
|
! + IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + |
47 |
|
|
! + CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + |
48 |
|
|
! + TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + |
49 |
|
|
! + SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + |
50 |
|
|
! + + |
51 |
|
|
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
52 |
|
|
! |
53 |
|
|
! Author. |
54 |
|
|
! ------- |
55 |
|
|
! George Mozdzynski *ECMWF* |
56 |
|
|
! |
57 |
|
|
! Modifications. |
58 |
|
|
! -------------- |
59 |
|
|
! Original : 2006-04-15 |
60 |
|
|
! |
61 |
|
|
!-------------------------------------------------------------------------------- |
62 |
|
|
|
63 |
|
|
USE PARKIND1 ,ONLY : JPIM ,JPRB |
64 |
|
|
|
65 |
|
|
IMPLICIT NONE |
66 |
|
|
|
67 |
|
|
SAVE |
68 |
|
|
|
69 |
|
|
PRIVATE |
70 |
|
|
|
71 |
|
|
PUBLIC eq_regions,l_regions_debug,n_regions_ns,n_regions_ew,n_regions,my_region_ns,my_region_ew |
72 |
|
|
|
73 |
|
|
real(kind=jprb) pi |
74 |
|
|
logical :: l_regions_debug=.false. |
75 |
|
|
integer(kind=jpim) :: n_regions_ns |
76 |
|
|
integer(kind=jpim) :: n_regions_ew |
77 |
|
|
integer(kind=jpim) :: my_region_ns |
78 |
|
|
integer(kind=jpim) :: my_region_ew |
79 |
|
|
integer(kind=jpim),allocatable :: n_regions(:) |
80 |
|
|
|
81 |
|
|
|
82 |
|
|
!$OMP THREADPRIVATE(l_regions_debug,my_region_ew,my_region_ns,n_regions_ew,n_regions_ns,pi,n_regions) |
83 |
|
|
|
84 |
|
|
CONTAINS |
85 |
|
|
|
86 |
|
|
subroutine eq_regions(N) |
87 |
|
|
! |
88 |
|
|
! eq_regions uses the zonal equal area sphere partitioning algorithm to partition |
89 |
|
|
! the surface of a sphere into N regions of equal area and small diameter. |
90 |
|
|
! |
91 |
|
|
integer(kind=jpim),intent(in) :: N |
92 |
|
|
integer(kind=jpim) :: n_collars,j |
93 |
|
|
real(kind=jprb),allocatable :: r_regions(:) |
94 |
|
|
real(kind=jprb) :: c_polar |
95 |
|
|
|
96 |
|
|
pi=2.0_jprb*asin(1.0_jprb) |
97 |
|
|
|
98 |
|
|
n_regions(:)=0 |
99 |
|
|
|
100 |
|
|
if( N == 1 )then |
101 |
|
|
|
102 |
|
|
! |
103 |
|
|
! We have only one region, which must be the whole sphere. |
104 |
|
|
! |
105 |
|
|
n_regions(1)=1 |
106 |
|
|
n_regions_ns=1 |
107 |
|
|
|
108 |
|
|
else |
109 |
|
|
|
110 |
|
|
! |
111 |
|
|
! Given N, determine c_polar |
112 |
|
|
! the colatitude of the North polar spherical cap. |
113 |
|
|
! |
114 |
|
|
c_polar = polar_colat(N) |
115 |
|
|
! |
116 |
|
|
! Given N, determine the ideal angle for spherical collars. |
117 |
|
|
! Based on N, this ideal angle, and c_polar, |
118 |
|
|
! determine n_collars, the number of collars between the polar caps. |
119 |
|
|
! |
120 |
|
|
n_collars = num_collars(N,c_polar,ideal_collar_angle(N)) |
121 |
|
|
n_regions_ns=n_collars+2 |
122 |
|
|
! |
123 |
|
|
! Given N, c_polar and n_collars, determine r_regions, |
124 |
|
|
! a list of the ideal real number of regions in each collar, |
125 |
|
|
! plus the polar caps. |
126 |
|
|
! The number of elements is n_collars+2. |
127 |
|
|
! r_regions[1] is 1. |
128 |
|
|
! r_regions[n_collars+2] is 1. |
129 |
|
|
! The sum of r_regions is N. |
130 |
|
|
allocate(r_regions(n_collars+2)) |
131 |
|
|
call ideal_region_list(N,c_polar,n_collars,r_regions) |
132 |
|
|
! |
133 |
|
|
! Given N and r_regions, determine n_regions, a list of the natural number |
134 |
|
|
! of regions in each collar and the polar caps. |
135 |
|
|
! This list is as close as possible to r_regions. |
136 |
|
|
! The number of elements is n_collars+2. |
137 |
|
|
! n_regions[1] is 1. |
138 |
|
|
! n_regions[n_collars+2] is 1. |
139 |
|
|
! The sum of n_regions is N. |
140 |
|
|
! |
141 |
|
|
call round_to_naturals(N,n_collars,r_regions) |
142 |
|
|
deallocate(r_regions) |
143 |
|
|
if( N /= sum(n_regions(:)) )then |
144 |
|
|
write(*,'("eq_regions: N=",I10," sum(n_regions(:))=",I10)')N,sum(n_regions(:)) |
145 |
|
|
call abor1('eq_regions: N /= sum(n_regions)') |
146 |
|
|
endif |
147 |
|
|
|
148 |
|
|
endif |
149 |
|
|
|
150 |
|
|
if( l_regions_debug )then |
151 |
|
|
write(*,'("eq_regions: N=",I6," n_regions_ns=",I4)') N,n_regions_ns |
152 |
|
|
do j=1,n_regions_ns |
153 |
|
|
write(*,'("eq_regions: n_regions(",I4,")=",I4)') j,n_regions(j) |
154 |
|
|
enddo |
155 |
|
|
endif |
156 |
|
|
n_regions_ew=maxval(n_regions(:)) |
157 |
|
|
|
158 |
|
|
return |
159 |
|
|
end subroutine eq_regions |
160 |
|
|
|
161 |
|
|
function num_collars(N,c_polar,a_ideal) result(num_c) |
162 |
|
|
! |
163 |
|
|
!NUM_COLLARS The number of collars between the polar caps |
164 |
|
|
! |
165 |
|
|
! Given N, an ideal angle, and c_polar, |
166 |
|
|
! determine n_collars, the number of collars between the polar caps. |
167 |
|
|
! |
168 |
|
|
integer(kind=jpim),intent(in) :: N |
169 |
|
|
real(kind=jprb),intent(in) :: a_ideal,c_polar |
170 |
|
|
integer(kind=jpim) :: num_c |
171 |
|
|
logical enough |
172 |
|
|
enough = (N > 2) .and. (a_ideal > 0) |
173 |
|
|
if( enough )then |
174 |
|
|
num_c = max(1,nint((pi-2.*c_polar)/a_ideal)) |
175 |
|
|
else |
176 |
|
|
num_c = 0 |
177 |
|
|
endif |
178 |
|
|
return |
179 |
|
|
end function num_collars |
180 |
|
|
|
181 |
|
|
subroutine ideal_region_list(N,c_polar,n_collars,r_regions) |
182 |
|
|
! |
183 |
|
|
!IDEAL_REGION_LIST The ideal real number of regions in each zone |
184 |
|
|
! |
185 |
|
|
! List the ideal real number of regions in each collar, plus the polar caps. |
186 |
|
|
! |
187 |
|
|
! Given N, c_polar and n_collars, determine r_regions, a list of the ideal real |
188 |
|
|
! number of regions in each collar, plus the polar caps. |
189 |
|
|
! The number of elements is n_collars+2. |
190 |
|
|
! r_regions[1] is 1. |
191 |
|
|
! r_regions[n_collars+2] is 1. |
192 |
|
|
! The sum of r_regions is N. |
193 |
|
|
! |
194 |
|
|
integer(kind=jpim),intent(in) :: N,n_collars |
195 |
|
|
real(kind=jprb),intent(in) :: c_polar |
196 |
|
|
real(kind=jprb),intent(out) :: r_regions(n_collars+2) |
197 |
|
|
integer(kind=jpim) :: collar_n |
198 |
|
|
real(kind=jprb) :: ideal_region_area,ideal_collar_area |
199 |
|
|
real(kind=jprb) :: a_fitting |
200 |
|
|
r_regions(:)=0.0_jprb |
201 |
|
|
r_regions(1) = 1.0_jprb |
202 |
|
|
if( n_collars > 0 )then |
203 |
|
|
! |
204 |
|
|
! Based on n_collars and c_polar, determine a_fitting, |
205 |
|
|
! the collar angle such that n_collars collars fit between the polar caps. |
206 |
|
|
! |
207 |
|
|
a_fitting = (pi-2.0_jprb*c_polar)/float(n_collars) |
208 |
|
|
ideal_region_area = area_of_ideal_region(N) |
209 |
|
|
do collar_n=1,n_collars |
210 |
|
|
ideal_collar_area = area_of_collar(c_polar+(collar_n-1)*a_fitting, & |
211 |
|
|
& c_polar+collar_n*a_fitting) |
212 |
|
|
r_regions(1+collar_n) = ideal_collar_area / ideal_region_area |
213 |
|
|
enddo |
214 |
|
|
endif |
215 |
|
|
r_regions(2+n_collars) = 1. |
216 |
|
|
return |
217 |
|
|
end subroutine ideal_region_list |
218 |
|
|
|
219 |
|
|
function ideal_collar_angle(N) result(ideal) |
220 |
|
|
! |
221 |
|
|
! IDEAL_COLLAR_ANGLE The ideal angle for spherical collars of an EQ partition |
222 |
|
|
! |
223 |
|
|
! IDEAL_COLLAR_ANGLE(N) sets ANGLE to the ideal angle for the |
224 |
|
|
! spherical collars of an EQ partition of the unit sphere S^2 into N regions. |
225 |
|
|
! |
226 |
|
|
integer(kind=jpim),intent(in) :: N |
227 |
|
|
real(kind=jprb) :: ideal |
228 |
|
|
ideal = area_of_ideal_region(N)**(0.5_jprb) |
229 |
|
|
return |
230 |
|
|
end function ideal_collar_angle |
231 |
|
|
|
232 |
|
|
subroutine round_to_naturals(N,n_collars,r_regions) |
233 |
|
|
! |
234 |
|
|
! ROUND_TO_NATURALS Round off a given list of numbers of regions |
235 |
|
|
! |
236 |
|
|
! Given N and r_regions, determine n_regions, a list of the natural number |
237 |
|
|
! of regions in each collar and the polar caps. |
238 |
|
|
! This list is as close as possible to r_regions, using rounding. |
239 |
|
|
! The number of elements is n_collars+2. |
240 |
|
|
! n_regions[1] is 1. |
241 |
|
|
! n_regions[n_collars+2] is 1. |
242 |
|
|
! The sum of n_regions is N. |
243 |
|
|
! |
244 |
|
|
integer(kind=jpim),intent(in) :: N,n_collars |
245 |
|
|
real(kind=jprb),intent(in) :: r_regions(n_collars+2) |
246 |
|
|
integer(kind=jpim) :: zone_n |
247 |
|
|
real(kind=jprb) :: discrepancy |
248 |
|
|
n_regions(1:n_collars+2) = r_regions(:) |
249 |
|
|
discrepancy = 0.0_jprb |
250 |
|
|
do zone_n = 1,n_collars+2 |
251 |
|
|
n_regions(zone_n) = nint(r_regions(zone_n)+discrepancy); |
252 |
|
|
discrepancy = discrepancy+r_regions(zone_n)-float(n_regions(zone_n)); |
253 |
|
|
enddo |
254 |
|
|
return |
255 |
|
|
end subroutine round_to_naturals |
256 |
|
|
|
257 |
|
|
function polar_colat(N) result(polar_c) |
258 |
|
|
! |
259 |
|
|
! Given N, determine the colatitude of the North polar spherical cap. |
260 |
|
|
! |
261 |
|
|
integer(kind=jpim),intent(in) :: N |
262 |
|
|
real(kind=jprb) :: area |
263 |
|
|
real(kind=jprb) :: polar_c |
264 |
|
|
if( N == 1 ) polar_c=pi |
265 |
|
|
if( N == 2 ) polar_c=pi/2.0_jprb |
266 |
|
|
if( N > 2 )then |
267 |
|
|
area=area_of_ideal_region(N) |
268 |
|
|
polar_c=sradius_of_cap(area) |
269 |
|
|
endif |
270 |
|
|
return |
271 |
|
|
end function polar_colat |
272 |
|
|
|
273 |
|
|
function area_of_ideal_region(N) result(area) |
274 |
|
|
! |
275 |
|
|
! AREA_OF_IDEAL_REGION(N) sets AREA to be the area of one of N equal |
276 |
|
|
! area regions on S^2, that is 1/N times AREA_OF_SPHERE. |
277 |
|
|
! |
278 |
|
|
integer(kind=jpim),intent(in) :: N |
279 |
|
|
real(kind=jprb) :: area_of_sphere |
280 |
|
|
real(kind=jprb) :: area |
281 |
|
|
area_of_sphere = (2.0_jprb*pi**1.5_jprb/gamma(1.5_jprb)) |
282 |
|
|
area = area_of_sphere/float(N) |
283 |
|
|
return |
284 |
|
|
end function area_of_ideal_region |
285 |
|
|
|
286 |
|
|
function sradius_of_cap(area) result(sradius) |
287 |
|
|
! |
288 |
|
|
! SRADIUS_OF_CAP(AREA) returns the spherical radius of |
289 |
|
|
! an S^2 spherical cap of area AREA. |
290 |
|
|
! |
291 |
|
|
real(kind=jprb),intent(in) :: area |
292 |
|
|
real(kind=jprb) :: sradius |
293 |
|
|
sradius = 2.0_jprb*asin(sqrt(area/pi)/2.0_jprb) |
294 |
|
|
return |
295 |
|
|
end function sradius_of_cap |
296 |
|
|
|
297 |
|
|
function area_of_collar(a_top, a_bot) result(area) |
298 |
|
|
! |
299 |
|
|
! AREA_OF_COLLAR Area of spherical collar |
300 |
|
|
! |
301 |
|
|
! AREA_OF_COLLAR(A_TOP, A_BOT) sets AREA to be the area of an S^2 spherical |
302 |
|
|
! collar specified by A_TOP, A_BOT, where A_TOP is top (smaller) spherical radius, |
303 |
|
|
! A_BOT is bottom (larger) spherical radius. |
304 |
|
|
! |
305 |
|
|
real(kind=jprb),intent(in) :: a_top,a_bot |
306 |
|
|
real(kind=jprb) area |
307 |
|
|
area = area_of_cap(a_bot) - area_of_cap(a_top) |
308 |
|
|
return |
309 |
|
|
end function area_of_collar |
310 |
|
|
|
311 |
|
|
function area_of_cap(s_cap) result(area) |
312 |
|
|
! |
313 |
|
|
! AREA_OF_CAP Area of spherical cap |
314 |
|
|
! |
315 |
|
|
! AREA_OF_CAP(S_CAP) sets AREA to be the area of an S^2 spherical |
316 |
|
|
! cap of spherical radius S_CAP. |
317 |
|
|
! |
318 |
|
|
real(kind=jprb),intent(in) :: s_cap |
319 |
|
|
real(kind=jprb) area |
320 |
|
|
area = 4.0_jprb*pi * sin(s_cap/2.0_jprb)**2 |
321 |
|
|
return |
322 |
|
|
end function area_of_cap |
323 |
|
|
|
324 |
|
|
function gamma(x) result(gamma_res) |
325 |
|
|
real(kind=jprb),intent(in) :: x |
326 |
|
|
real(kind=jprb) :: gamma_res |
327 |
|
|
real(kind=jprb) :: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13 |
328 |
|
|
real(kind=jprb) :: w,y |
329 |
|
|
integer(kind=jpim) :: k,n |
330 |
|
|
parameter (& |
331 |
|
|
& p0 = 0.999999999999999990e+00_jprb,& |
332 |
|
|
& p1 = -0.422784335098466784e+00_jprb,& |
333 |
|
|
& p2 = -0.233093736421782878e+00_jprb,& |
334 |
|
|
& p3 = 0.191091101387638410e+00_jprb,& |
335 |
|
|
& p4 = -0.024552490005641278e+00_jprb,& |
336 |
|
|
& p5 = -0.017645244547851414e+00_jprb,& |
337 |
|
|
& p6 = 0.008023273027855346e+00_jprb) |
338 |
|
|
parameter (& |
339 |
|
|
& p7 = -0.000804329819255744e+00_jprb,& |
340 |
|
|
& p8 = -0.000360837876648255e+00_jprb,& |
341 |
|
|
& p9 = 0.000145596568617526e+00_jprb,& |
342 |
|
|
& p10 = -0.000017545539395205e+00_jprb,& |
343 |
|
|
& p11 = -0.000002591225267689e+00_jprb,& |
344 |
|
|
& p12 = 0.000001337767384067e+00_jprb,& |
345 |
|
|
& p13 = -0.000000199542863674e+00_jprb) |
346 |
|
|
n = nint(x - 2) |
347 |
|
|
w = x - (n + 2) |
348 |
|
|
y = ((((((((((((p13 * w + p12) * w + p11) * w + p10) *& |
349 |
|
|
& w + p9) * w + p8) * w + p7) * w + p6) * w + p5) *& |
350 |
|
|
& w + p4) * w + p3) * w + p2) * w + p1) * w + p0 |
351 |
|
|
if (n .gt. 0) then |
352 |
|
|
w = x - 1 |
353 |
|
|
do k = 2, n |
354 |
|
|
w = w * (x - k) |
355 |
|
|
end do |
356 |
|
|
else |
357 |
|
|
w = 1 |
358 |
|
|
do k = 0, -n - 1 |
359 |
|
|
y = y * (x + k) |
360 |
|
|
end do |
361 |
|
|
end if |
362 |
|
|
gamma_res = w / y |
363 |
|
|
return |
364 |
|
|
end function gamma |
365 |
|
|
|
366 |
|
|
end module eq_regions_mod |