GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: phylmd/rrtm/eq_regions_mod.F90 Lines: 0 68 0.0 %
Date: 2023-06-30 12:56:34 Branches: 0 58 0.0 %

Line Branch Exec Source
1
module eq_regions_mod
2
!
3
!     Purpose.
4
!     --------
5
!           eq_regions_mod provides the code to perform a high level
6
!           partitioning of the surface of a sphere into regions of
7
!           equal area and small diameter.
8
!           the type.
9
!
10
!     Background.
11
!     -----------
12
!     This Fortran version of eq_regions is a much cut down version of the
13
!     "Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox" of the
14
!     same name developed by Paul Leopardi at the University of New South Wales.
15
!     This version has been coded specifically for the case of partitioning the
16
!     surface of a sphere or S^dim (where dim=2) as denoted in the original code.
17
!     Only a subset of the original eq_regions package has been coded to determine
18
!     the high level distribution of regions on a sphere, as the detailed
19
!     distribution of grid points to each region is left to IFS software.
20
!     This is required to take into account the spatial distribution of grid
21
!     points in an IFS gaussian grid and provide an optimal (i.e. exact)
22
!     distribution of grid points over regions.
23
!
24
!     The following copyright notice for the eq_regions package is included from
25
!     the original MatLab release.
26
!
27
!     +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
!     + Release 1.10 2005-06-26                                                 +
29
!     +                                                                         +
30
!     + Copyright (c) 2004, 2005, University of New South Wales                 +
31
!     +                                                                         +
32
!     + Permission is hereby granted, free of charge, to any person obtaining   +
33
!     + a copy of this software and associated documentation files (the         +
34
!     + "Software"), to deal in the Software without restriction, including     +
35
!     + without limitation the rights to use, copy, modify, merge, publish,     +
36
!     + distribute, sublicense, and/or sell copies of the Software, and to      +
37
!     + permit persons to whom the Software is furnished to do so, subject to   +
38
!     + the following conditions:                                               +
39
!     +                                                                         +
40
!     + The above copyright notice and this permission notice shall be included +
41
!     + in all copies or substantial portions of the Software.                  +
42
!     +                                                                         +
43
!     + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,         +
44
!     + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF      +
45
!     + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  +
46
!     + IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY    +
47
!     + CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,    +
48
!     + TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE       +
49
!     + SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                  +
50
!     +                                                                         +
51
!     +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
!
53
!     Author.
54
!     -------
55
!        George Mozdzynski *ECMWF*
56
!
57
!     Modifications.
58
!     --------------
59
!        Original : 2006-04-15
60
!
61
!--------------------------------------------------------------------------------
62
63
USE PARKIND1  ,ONLY : JPIM     ,JPRB
64
65
IMPLICIT NONE
66
67
SAVE
68
69
PRIVATE
70
71
PUBLIC eq_regions,l_regions_debug,n_regions_ns,n_regions_ew,n_regions,my_region_ns,my_region_ew
72
73
real(kind=jprb) pi
74
logical :: l_regions_debug=.false.
75
integer(kind=jpim) :: n_regions_ns
76
integer(kind=jpim) :: n_regions_ew
77
integer(kind=jpim) :: my_region_ns
78
integer(kind=jpim) :: my_region_ew
79
integer(kind=jpim),allocatable :: n_regions(:)
80
81
82
!$OMP THREADPRIVATE(l_regions_debug,my_region_ew,my_region_ns,n_regions_ew,n_regions_ns,pi,n_regions)
83
84
CONTAINS
85
86
subroutine eq_regions(N)
87
!
88
! eq_regions uses the zonal equal area sphere partitioning algorithm to partition
89
! the surface of a sphere into N regions of equal area and small diameter.
90
!
91
integer(kind=jpim),intent(in) :: N
92
integer(kind=jpim) :: n_collars,j
93
real(kind=jprb),allocatable :: r_regions(:)
94
real(kind=jprb) :: c_polar
95
96
pi=2.0_jprb*asin(1.0_jprb)
97
98
n_regions(:)=0
99
100
if( N == 1 )then
101
102
  !
103
  ! We have only one region, which must be the whole sphere.
104
  !
105
  n_regions(1)=1
106
  n_regions_ns=1
107
108
else
109
110
  !
111
  ! Given N, determine c_polar
112
  ! the colatitude of the North polar spherical cap.
113
  !
114
  c_polar = polar_colat(N)
115
  !
116
  ! Given N, determine the ideal angle for spherical collars.
117
  ! Based on N, this ideal angle, and c_polar,
118
  ! determine n_collars, the number of collars between the polar caps.
119
  !
120
  n_collars = num_collars(N,c_polar,ideal_collar_angle(N))
121
  n_regions_ns=n_collars+2
122
  !
123
  ! Given N, c_polar and n_collars, determine r_regions,
124
  ! a list of the ideal real number of regions in each collar,
125
  ! plus the polar caps.
126
  ! The number of elements is n_collars+2.
127
  ! r_regions[1] is 1.
128
  ! r_regions[n_collars+2] is 1.
129
  ! The sum of r_regions is N.
130
  allocate(r_regions(n_collars+2))
131
  call ideal_region_list(N,c_polar,n_collars,r_regions)
132
  !
133
  ! Given N and r_regions, determine n_regions, a list of the natural number
134
  ! of regions in each collar and the polar caps.
135
  ! This list is as close as possible to r_regions.
136
  ! The number of elements is n_collars+2.
137
  ! n_regions[1] is 1.
138
  ! n_regions[n_collars+2] is 1.
139
  ! The sum of n_regions is N.
140
  !
141
  call round_to_naturals(N,n_collars,r_regions)
142
  deallocate(r_regions)
143
  if( N /= sum(n_regions(:)) )then
144
    write(*,'("eq_regions: N=",I10," sum(n_regions(:))=",I10)')N,sum(n_regions(:))
145
    call abor1('eq_regions: N /= sum(n_regions)')
146
  endif
147
148
endif
149
150
if( l_regions_debug )then
151
  write(*,'("eq_regions: N=",I6," n_regions_ns=",I4)') N,n_regions_ns
152
  do j=1,n_regions_ns
153
    write(*,'("eq_regions: n_regions(",I4,")=",I4)') j,n_regions(j)
154
  enddo
155
endif
156
n_regions_ew=maxval(n_regions(:))
157
158
return
159
end subroutine eq_regions
160
161
function num_collars(N,c_polar,a_ideal) result(num_c)
162
!
163
!NUM_COLLARS The number of collars between the polar caps
164
!
165
! Given N, an ideal angle, and c_polar,
166
! determine n_collars, the number of collars between the polar caps.
167
!
168
integer(kind=jpim),intent(in) :: N
169
real(kind=jprb),intent(in) :: a_ideal,c_polar
170
integer(kind=jpim) :: num_c
171
logical enough
172
enough = (N > 2) .and. (a_ideal > 0)
173
if( enough )then
174
  num_c = max(1,nint((pi-2.*c_polar)/a_ideal))
175
else
176
  num_c = 0
177
endif
178
return
179
end function num_collars
180
181
subroutine ideal_region_list(N,c_polar,n_collars,r_regions)
182
!
183
!IDEAL_REGION_LIST The ideal real number of regions in each zone
184
!
185
! List the ideal real number of regions in each collar, plus the polar caps.
186
!
187
! Given N, c_polar and n_collars, determine r_regions, a list of the ideal real
188
! number of regions in each collar, plus the polar caps.
189
! The number of elements is n_collars+2.
190
! r_regions[1] is 1.
191
! r_regions[n_collars+2] is 1.
192
! The sum of r_regions is N.
193
!
194
integer(kind=jpim),intent(in) :: N,n_collars
195
real(kind=jprb),intent(in) :: c_polar
196
real(kind=jprb),intent(out) :: r_regions(n_collars+2)
197
integer(kind=jpim) :: collar_n
198
real(kind=jprb) :: ideal_region_area,ideal_collar_area
199
real(kind=jprb) :: a_fitting
200
r_regions(:)=0.0_jprb
201
r_regions(1) = 1.0_jprb
202
if( n_collars > 0 )then
203
  !
204
  ! Based on n_collars and c_polar, determine a_fitting,
205
  ! the collar angle such that n_collars collars fit between the polar caps.
206
  !
207
  a_fitting = (pi-2.0_jprb*c_polar)/float(n_collars)
208
  ideal_region_area = area_of_ideal_region(N)
209
  do collar_n=1,n_collars
210
    ideal_collar_area = area_of_collar(c_polar+(collar_n-1)*a_fitting, &
211
     & c_polar+collar_n*a_fitting)
212
    r_regions(1+collar_n) = ideal_collar_area / ideal_region_area
213
  enddo
214
endif
215
r_regions(2+n_collars) = 1.
216
return
217
end subroutine ideal_region_list
218
219
function ideal_collar_angle(N) result(ideal)
220
!
221
! IDEAL_COLLAR_ANGLE The ideal angle for spherical collars of an EQ partition
222
!
223
! IDEAL_COLLAR_ANGLE(N) sets ANGLE to the ideal angle for the
224
! spherical collars of an EQ partition of the unit sphere S^2 into N regions.
225
!
226
integer(kind=jpim),intent(in) :: N
227
real(kind=jprb) :: ideal
228
ideal = area_of_ideal_region(N)**(0.5_jprb)
229
return
230
end function ideal_collar_angle
231
232
subroutine round_to_naturals(N,n_collars,r_regions)
233
!
234
! ROUND_TO_NATURALS Round off a given list of numbers of regions
235
!
236
! Given N and r_regions, determine n_regions, a list of the natural number
237
! of regions in each collar and the polar caps.
238
! This list is as close as possible to r_regions, using rounding.
239
! The number of elements is n_collars+2.
240
! n_regions[1] is 1.
241
! n_regions[n_collars+2] is 1.
242
! The sum of n_regions is N.
243
!
244
integer(kind=jpim),intent(in) :: N,n_collars
245
real(kind=jprb),intent(in) :: r_regions(n_collars+2)
246
integer(kind=jpim) :: zone_n
247
real(kind=jprb) :: discrepancy
248
n_regions(1:n_collars+2) = r_regions(:)
249
discrepancy = 0.0_jprb
250
do zone_n = 1,n_collars+2
251
    n_regions(zone_n) = nint(r_regions(zone_n)+discrepancy);
252
    discrepancy = discrepancy+r_regions(zone_n)-float(n_regions(zone_n));
253
enddo
254
return
255
end subroutine round_to_naturals
256
257
function polar_colat(N) result(polar_c)
258
!
259
! Given N, determine the colatitude of the North polar spherical cap.
260
!
261
integer(kind=jpim),intent(in) :: N
262
real(kind=jprb) :: area
263
real(kind=jprb) :: polar_c
264
if( N == 1 ) polar_c=pi
265
if( N == 2 ) polar_c=pi/2.0_jprb
266
if( N > 2 )then
267
  area=area_of_ideal_region(N)
268
  polar_c=sradius_of_cap(area)
269
endif
270
return
271
end function polar_colat
272
273
function area_of_ideal_region(N) result(area)
274
!
275
! AREA_OF_IDEAL_REGION(N) sets AREA to be the area of one of N equal
276
! area regions on S^2, that is 1/N times AREA_OF_SPHERE.
277
!
278
integer(kind=jpim),intent(in) :: N
279
real(kind=jprb) :: area_of_sphere
280
real(kind=jprb) :: area
281
area_of_sphere = (2.0_jprb*pi**1.5_jprb/gamma(1.5_jprb))
282
area = area_of_sphere/float(N)
283
return
284
end function area_of_ideal_region
285
286
function sradius_of_cap(area) result(sradius)
287
!
288
! SRADIUS_OF_CAP(AREA) returns the spherical radius of
289
! an S^2 spherical cap of area AREA.
290
!
291
real(kind=jprb),intent(in) :: area
292
real(kind=jprb) :: sradius
293
sradius = 2.0_jprb*asin(sqrt(area/pi)/2.0_jprb)
294
return
295
end function sradius_of_cap
296
297
function area_of_collar(a_top, a_bot) result(area)
298
!
299
! AREA_OF_COLLAR Area of spherical collar
300
!
301
! AREA_OF_COLLAR(A_TOP, A_BOT) sets AREA to be the area of an S^2 spherical
302
! collar specified by A_TOP, A_BOT, where A_TOP is top (smaller) spherical radius,
303
! A_BOT is bottom (larger) spherical radius.
304
!
305
real(kind=jprb),intent(in) :: a_top,a_bot
306
real(kind=jprb) area
307
area = area_of_cap(a_bot) - area_of_cap(a_top)
308
return
309
end function area_of_collar
310
311
function area_of_cap(s_cap) result(area)
312
!
313
! AREA_OF_CAP Area of spherical cap
314
!
315
! AREA_OF_CAP(S_CAP) sets AREA to be the area of an S^2 spherical
316
! cap of spherical radius S_CAP.
317
!
318
real(kind=jprb),intent(in) :: s_cap
319
real(kind=jprb) area
320
area = 4.0_jprb*pi * sin(s_cap/2.0_jprb)**2
321
return
322
end function area_of_cap
323
324
function gamma(x) result(gamma_res)
325
real(kind=jprb),intent(in) :: x
326
real(kind=jprb) :: gamma_res
327
real(kind=jprb) :: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13
328
real(kind=jprb) :: w,y
329
integer(kind=jpim) :: k,n
330
parameter (&
331
& p0 =   0.999999999999999990e+00_jprb,&
332
& p1 =  -0.422784335098466784e+00_jprb,&
333
& p2 =  -0.233093736421782878e+00_jprb,&
334
& p3 =   0.191091101387638410e+00_jprb,&
335
& p4 =  -0.024552490005641278e+00_jprb,&
336
& p5 =  -0.017645244547851414e+00_jprb,&
337
& p6 =   0.008023273027855346e+00_jprb)
338
parameter (&
339
& p7 =  -0.000804329819255744e+00_jprb,&
340
& p8 =  -0.000360837876648255e+00_jprb,&
341
& p9 =   0.000145596568617526e+00_jprb,&
342
& p10 = -0.000017545539395205e+00_jprb,&
343
& p11 = -0.000002591225267689e+00_jprb,&
344
& p12 =  0.000001337767384067e+00_jprb,&
345
& p13 = -0.000000199542863674e+00_jprb)
346
n = nint(x - 2)
347
w = x - (n + 2)
348
y = ((((((((((((p13 * w + p12) * w + p11) * w + p10) *&
349
&    w + p9) * w + p8) * w + p7) * w + p6) * w + p5) *&
350
&    w + p4) * w + p3) * w + p2) * w + p1) * w + p0
351
if (n .gt. 0) then
352
  w = x - 1
353
  do k = 2, n
354
    w = w * (x - k)
355
  end do
356
else
357
  w = 1
358
  do k = 0, -n - 1
359
    y = y * (x + k)
360
  end do
361
end if
362
gamma_res = w / y
363
return
364
end function gamma
365
366
end module eq_regions_mod