1 |
|
|
|
2 |
|
|
! $Header$ |
3 |
|
|
|
4 |
|
|
SUBROUTINE tlift(p, t, rr, rs, gz, plcl, icb, nk, tvp, tpk, clw, nd, nl, & |
5 |
|
|
dtvpdt1, dtvpdq1) |
6 |
|
|
IMPLICIT NONE |
7 |
|
|
! Argument NK ajoute (jyg) = Niveau de depart de la |
8 |
|
|
! convection |
9 |
|
|
INTEGER icb, nk, nd, nl |
10 |
|
|
INTEGER,PARAMETER :: na=60 |
11 |
|
|
REAL gz(nd), tpk(nd), clw(nd), plcl |
12 |
|
|
REAL t(nd), rr(nd), rs(nd), tvp(nd), p(nd) |
13 |
|
|
REAL dtvpdt1(nd), dtvpdq1(nd) ! Derivatives of parcel virtual |
14 |
|
|
! temperature wrt T1 and Q1 |
15 |
|
|
|
16 |
|
|
REAL clw_new(na), qi(na) |
17 |
|
|
REAL dtpdt1(na), dtpdq1(na) ! Derivatives of parcel temperature |
18 |
|
|
! wrt T1 and Q1 |
19 |
|
|
REAL gravity, cpd, cpv, cl, ci, cpvmcl, clmci, eps, alv0, alf0 |
20 |
|
|
REAL cpp, cpinv, ah0, alf, tg, s, ahg, tc, denom, alv, es, esi |
21 |
|
|
REAL qsat_new, snew |
22 |
|
|
INTEGER icbl, i, imin, j, icb1 |
23 |
|
|
|
24 |
|
|
LOGICAL ice_conv |
25 |
|
|
|
26 |
|
|
! *** ASSIGN VALUES OF THERMODYNAMIC CONSTANTS *** |
27 |
|
|
|
28 |
|
|
! sb CPD=1005.7 |
29 |
|
|
! sb CPV=1870.0 |
30 |
|
|
! sb CL=4190.0 |
31 |
|
|
! sb CPVMCL=2320.0 |
32 |
|
|
! sb RV=461.5 |
33 |
|
|
! sb RD=287.04 |
34 |
|
|
! sb EPS=RD/RV |
35 |
|
|
! sb ALV0=2.501E6 |
36 |
|
|
! cccccccccccccccccccccc |
37 |
|
|
! constantes coherentes avec le modele du Centre Europeen |
38 |
|
|
! sb RD = 1000.0 * 1.380658E-23 * 6.0221367E+23 / 28.9644 |
39 |
|
|
! sb RV = 1000.0 * 1.380658E-23 * 6.0221367E+23 / 18.0153 |
40 |
|
|
! sb CPD = 3.5 * RD |
41 |
|
|
! sb CPV = 4.0 * RV |
42 |
|
|
! sb CL = 4218.0 |
43 |
|
|
! sb CI=2090.0 |
44 |
|
|
! sb CPVMCL=CL-CPV |
45 |
|
|
! sb CLMCI=CL-CI |
46 |
|
|
! sb EPS=RD/RV |
47 |
|
|
! sb ALV0=2.5008E+06 |
48 |
|
|
! sb ALF0=3.34E+05 |
49 |
|
|
|
50 |
|
|
! ccccccccccc |
51 |
|
|
! on utilise les constantes thermo du Centre Europeen: (SB) |
52 |
|
|
|
53 |
|
|
include "YOMCST.h" |
54 |
|
|
gravity = rg !sb: Pr que gravite ne devienne pas humidite! |
55 |
|
|
|
56 |
|
|
cpd = rcpd |
57 |
|
|
cpv = rcpv |
58 |
|
|
cl = rcw |
59 |
|
|
ci = rcs |
60 |
|
|
cpvmcl = cl - cpv |
61 |
|
|
clmci = cl - ci |
62 |
|
|
eps = rd/rv |
63 |
|
|
alv0 = rlvtt |
64 |
|
|
alf0 = rlmlt ! (ALF0 = RLSTT-RLVTT) |
65 |
|
|
|
66 |
|
|
! ccccccccccccccccccccc |
67 |
|
|
|
68 |
|
|
! *** CALCULATE CERTAIN PARCEL QUANTITIES, INCLUDING STATIC ENERGY *** |
69 |
|
|
|
70 |
|
|
icb1 = max(icb, 2) |
71 |
|
|
icb1 = min(icb, nl) |
72 |
|
|
|
73 |
|
|
! jyg1 |
74 |
|
|
! C CPP=CPD*(1.-RR(1))+RR(1)*CPV |
75 |
|
|
cpp = cpd*(1.-rr(nk)) + rr(nk)*cpv |
76 |
|
|
! jyg2 |
77 |
|
|
cpinv = 1./cpp |
78 |
|
|
! jyg1 |
79 |
|
|
! ICB may be below condensation level |
80 |
|
|
! CC DO 100 I=1,ICB1-1 |
81 |
|
|
! CC TPK(I)=T(1)-GZ(I)*CPINV |
82 |
|
|
! CC TVP(I)=TPK(I)*(1.+RR(1)/EPS) |
83 |
|
|
DO i = 1, icb1 |
84 |
|
|
clw(i) = 0.0 |
85 |
|
|
END DO |
86 |
|
|
|
87 |
|
|
DO i = nk, icb1 |
88 |
|
|
tpk(i) = t(nk) - (gz(i)-gz(nk))*cpinv |
89 |
|
|
! jyg1 |
90 |
|
|
! CC TVP(I)=TPK(I)*(1.+RR(NK)/EPS) |
91 |
|
|
tvp(i) = tpk(i)*(1.+rr(nk)/eps-rr(nk)) |
92 |
|
|
! jyg2 |
93 |
|
|
dtvpdt1(i) = 1. + rr(nk)/eps - rr(nk) |
94 |
|
|
dtvpdq1(i) = tpk(i)*(1./eps-1.) |
95 |
|
|
|
96 |
|
|
! jyg2 |
97 |
|
|
|
98 |
|
|
END DO |
99 |
|
|
|
100 |
|
|
|
101 |
|
|
! *** FIND LIFTED PARCEL TEMPERATURE AND MIXING RATIO *** |
102 |
|
|
|
103 |
|
|
! jyg1 |
104 |
|
|
! C AH0=(CPD*(1.-RR(1))+CL*RR(1))*T(1) |
105 |
|
|
! C $ +RR(1)*(ALV0-CPVMCL*(T(1)-273.15)) |
106 |
|
|
ah0 = (cpd*(1.-rr(nk))+cl*rr(nk))*t(nk) + rr(nk)*(alv0-cpvmcl*(t(nk)-273.15 & |
107 |
|
|
)) + gz(nk) |
108 |
|
|
! jyg2 |
109 |
|
|
|
110 |
|
|
! jyg1 |
111 |
|
|
imin = icb1 |
112 |
|
|
! If ICB is below LCL, start loop at ICB+1 |
113 |
|
|
IF (plcl<p(icb1)) imin = min(imin+1, nl) |
114 |
|
|
|
115 |
|
|
! CC DO 300 I=ICB1,NL |
116 |
|
|
DO i = imin, nl |
117 |
|
|
! jyg2 |
118 |
|
|
alv = alv0 - cpvmcl*(t(i)-273.15) |
119 |
|
|
alf = alf0 + clmci*(t(i)-273.15) |
120 |
|
|
|
121 |
|
|
rg = rs(i) |
122 |
|
|
tg = t(i) |
123 |
|
|
! S=CPD+ALV*ALV*RG/(RV*T(I)*T(I)) |
124 |
|
|
! jyg1 |
125 |
|
|
! C S=CPD*(1.-RR(1))+CL*RR(1)+ALV*ALV*RG/(RV*T(I)*T(I)) |
126 |
|
|
s = cpd*(1.-rr(nk)) + cl*rr(nk) + alv*alv*rg/(rv*t(i)*t(i)) |
127 |
|
|
! jyg2 |
128 |
|
|
s = 1./s |
129 |
|
|
|
130 |
|
|
DO j = 1, 2 |
131 |
|
|
! jyg1 |
132 |
|
|
! C AHG=CPD*TG+(CL-CPD)*RR(1)*TG+ALV*RG+GZ(I) |
133 |
|
|
ahg = cpd*tg + (cl-cpd)*rr(nk)*tg + alv*rg + gz(i) |
134 |
|
|
! jyg2 |
135 |
|
|
tg = tg + s*(ah0-ahg) |
136 |
|
|
tc = tg - 273.15 |
137 |
|
|
denom = 243.5 + tc |
138 |
|
|
denom = max(denom, 1.0) |
139 |
|
|
|
140 |
|
|
! FORMULE DE BOLTON POUR PSAT |
141 |
|
|
|
142 |
|
|
es = 6.112*exp(17.67*tc/denom) |
143 |
|
|
rg = eps*es/(p(i)-es*(1.-eps)) |
144 |
|
|
|
145 |
|
|
|
146 |
|
|
END DO |
147 |
|
|
|
148 |
|
|
! jyg1 |
149 |
|
|
! C TPK(I)=(AH0-GZ(I)-ALV*RG)/(CPD+(CL-CPD)*RR(1)) |
150 |
|
|
tpk(i) = (ah0-gz(i)-alv*rg)/(cpd+(cl-cpd)*rr(nk)) |
151 |
|
|
! jyg2 |
152 |
|
|
! TPK(I)=(AH0-GZ(I)-ALV*RG-(CL-CPD)*T(I)*RR(1))/CPD |
153 |
|
|
|
154 |
|
|
! jyg1 |
155 |
|
|
! C CLW(I)=RR(1)-RG |
156 |
|
|
clw(i) = rr(nk) - rg |
157 |
|
|
! jyg2 |
158 |
|
|
clw(i) = max(0.0, clw(i)) |
159 |
|
|
! jyg1 |
160 |
|
|
! CC TVP(I)=TPK(I)*(1.+RG/EPS) |
161 |
|
|
tvp(i) = tpk(i)*(1.+rg/eps-rr(nk)) |
162 |
|
|
! jyg2 |
163 |
|
|
|
164 |
|
|
! jyg1 Derivatives |
165 |
|
|
|
166 |
|
|
dtpdt1(i) = cpd*s |
167 |
|
|
dtpdq1(i) = alv*s |
168 |
|
|
|
169 |
|
|
dtvpdt1(i) = dtpdt1(i)*(1.+rg/eps-rr(nk)+alv*rg/(rd*tpk(i))) |
170 |
|
|
dtvpdq1(i) = dtpdq1(i)*(1.+rg/eps-rr(nk)+alv*rg/(rd*tpk(i))) - tpk(i) |
171 |
|
|
|
172 |
|
|
! jyg2 |
173 |
|
|
|
174 |
|
|
END DO |
175 |
|
|
|
176 |
|
|
ice_conv = .FALSE. |
177 |
|
|
|
178 |
|
|
IF (ice_conv) THEN |
179 |
|
|
|
180 |
|
|
! JAM |
181 |
|
|
! RAJOUT DE LA PROCEDURE ICEFRAC |
182 |
|
|
|
183 |
|
|
! sb CALL ICEFRAC(T,CLW,CLW_NEW,QI,ND,NL) |
184 |
|
|
|
185 |
|
|
DO i = icb1, nl |
186 |
|
|
IF (t(i)<263.15) THEN |
187 |
|
|
tg = tpk(i) |
188 |
|
|
tc = tpk(i) - 273.15 |
189 |
|
|
denom = 243.5 + tc |
190 |
|
|
es = 6.112*exp(17.67*tc/denom) |
191 |
|
|
alv = alv0 - cpvmcl*(t(i)-273.15) |
192 |
|
|
alf = alf0 + clmci*(t(i)-273.15) |
193 |
|
|
|
194 |
|
|
DO j = 1, 4 |
195 |
|
|
esi = exp(23.33086-(6111.72784/tpk(i))+0.15215*log(tpk(i))) |
196 |
|
|
qsat_new = eps*esi/(p(i)-esi*(1.-eps)) |
197 |
|
|
! CC SNEW= |
198 |
|
|
! CPD*(1.-RR(1))+CL*RR(1)+ALV*ALV*QSAT_NEW/(RV*TPK(I)*TPK(I)) |
199 |
|
|
snew = cpd*(1.-rr(nk)) + cl*rr(nk) + alv*alv*qsat_new/(rv*tpk(i)* & |
200 |
|
|
tpk(i)) |
201 |
|
|
|
202 |
|
|
snew = 1./snew |
203 |
|
|
tpk(i) = tg + (alf*qi(i)+alv*rg*(1.-(esi/es)))*snew |
204 |
|
|
! @$$ PRINT*,'################################' |
205 |
|
|
! @$$ PRINT*,TPK(I) |
206 |
|
|
! @$$ PRINT*,(ALF*QI(I)+ALV*RG*(1.-(ESI/ES)))*SNEW |
207 |
|
|
END DO |
208 |
|
|
! CC CLW(I)=RR(1)-QSAT_NEW |
209 |
|
|
clw(i) = rr(nk) - qsat_new |
210 |
|
|
clw(i) = max(0.0, clw(i)) |
211 |
|
|
! jyg1 |
212 |
|
|
! CC TVP(I)=TPK(I)*(1.+QSAT_NEW/EPS) |
213 |
|
|
tvp(i) = tpk(i)*(1.+qsat_new/eps-rr(nk)) |
214 |
|
|
! jyg2 |
215 |
|
|
ELSE |
216 |
|
|
CONTINUE |
217 |
|
|
END IF |
218 |
|
|
|
219 |
|
|
END DO |
220 |
|
|
|
221 |
|
|
END IF |
222 |
|
|
|
223 |
|
|
|
224 |
|
|
! ***************************************************** |
225 |
|
|
! * BK : RAJOUT DE LA TEMPERATURE DES ASCENDANCES |
226 |
|
|
! * NON DILUES AU NIVEAU KLEV = ND |
227 |
|
|
! * POSONS LE ENVIRON EGAL A CELUI DE KLEV-1 |
228 |
|
|
! ******************************************************* |
229 |
|
|
|
230 |
|
|
tpk(nl+1) = tpk(nl) |
231 |
|
|
|
232 |
|
|
! ****************************************************** |
233 |
|
|
|
234 |
|
|
rg = gravity ! RG redevient la gravite de YOMCST (sb) |
235 |
|
|
|
236 |
|
|
|
237 |
|
|
RETURN |
238 |
|
|
END SUBROUTINE tlift |
239 |
|
|
|
240 |
|
|
|
241 |
|
|
|
242 |
|
|
|
243 |
|
|
|
244 |
|
|
|
245 |
|
|
|
246 |
|
|
|