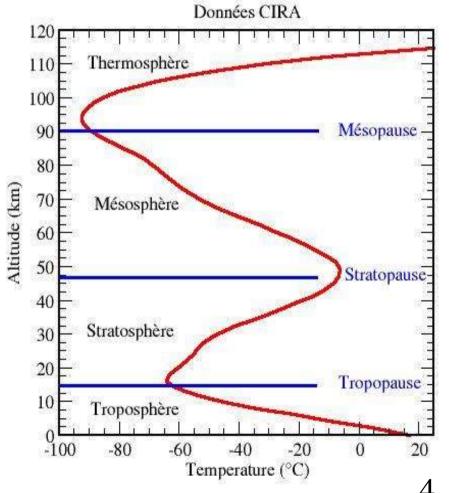
Dynamique de la moyenne atmosphère et des ondes atmosphériques

François Lott
Plan du Cours et Calendrier


1) Climatologies de la moyenne atmosphère et équations de bases		8 Janvier, 8h30-12h30
2) La circulation générale de la moyenne atmosphère (I)		12 Janvier, 13h30-17h30
3) La circulation générale de la moyenne atmosphère (II)		19 Janvier, 13h30-17h30
4) Les ondes de gravité		26 Janvier, 13h30-17h30
5) Les ondes de Rossby		2 Février, 13h30-17h30
6) Les marées atmosphériques et les ondes équatoriales		9 Février, 13h30-17h30
7) Les oscillations tropicales semi annuelle et quasi biannuelle		16 Février, 13h30-17h30
8) La variabilité aux moyennes latitudes et les réchauffements stratosphériques soudains		
		23 Février, 13h30-17h30
• Contrôle:	Date à choisir:	27 ou 28 Février, 1er Mars?

Dynamique de la moyenne atmosphère et des ondes atmosphériques

Cours 1: Climatologies de la moyenne atmosphère et équations de base

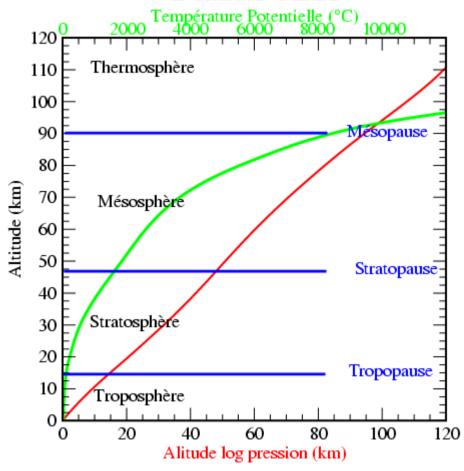
- A) Climatologies thermiques, chimiques et dynamiques de la Moyenne Atmosphère
- B) Equations de base utilisées dans le cours

Qu'est ce que la moyenne atmosphère? Température en fonction de l'altitude

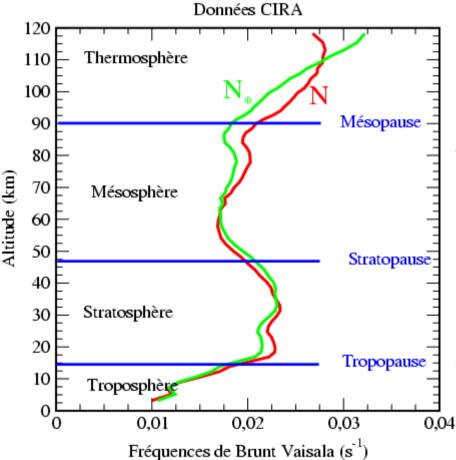
- Données CIRA (1988): Roquettes et radiosondages, satellites au dessus de 110km.
- Troposphère: T décroit avec z, chauffage par le sol tandis que H₂O et nuages refroidissent le haut (IR).
- La moyenne atmosphère:
 - contient 2 des 3 couches de l'atmosphère neutre: la stratosphère et la mésosphère
 - Les composants majoritaires y sont bien mélangés.
 - Max de T à 50km du à 1'03. Définie la stratopause séparant la mésosphère et la stratosphère.
- Au dessus, la thermosphère. C'est la couche la plus exposé au soleil et aux rayons X qui ionisent les particules: elle contient la ionosphère (80-500km) où se produisent les aurores boréales.
- Très peu dense, T y varie de 600K à 1800K en une journée.
- L'atmosphère n'est plus neutre et n'est plus bien mélangée: la composition varie du fait de la grande distance entre les atomes

Relations statiques: P, ρ , θ et Φ à partir de T(z*)

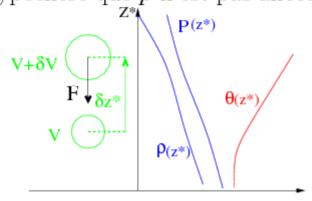
• Loi des gas parfaits +relation hydrostatique:


$$\frac{p}{\rho} = RT \text{ et } \frac{\partial p}{\partial z^*} = -\rho g$$

• Pression et Température: $p = p_s \exp\left(-\int_{z_s^*}^{z_s^*} \frac{g}{RT} dz^*\right)$


• Hauteur log-pression:
$$z = H \ln \left(\frac{p_s}{p} \right)$$

- Hauteur caractéristique: $H = \frac{RT_m}{g} = 7 \text{km}$
- $Tm\sim240K$, T° moyenne caractéristique: z=z* si T=Tm
- Température potentielle: $\theta = T \left(\frac{p}{p_s}\right)^{\kappa} = T \exp\left(\frac{\kappa z}{H}\right)^{\frac{2}{12}}$
- Géopotentiel: $\Phi = \int_{z_0^*}^{z^*} g dz^*$
- Relation hydrostatique: $\frac{\partial \Phi}{\partial z} = \frac{RT}{H}$


Données CIRA

Stabilité statique:

Méthode de la parcelle: On déplace une parcelle d'air, on fait l'hypothèse que p n'est pas affectée

Masse de la parcelle d'air: $m = \rho(z^*)V$

Volume d'air déplacé: $V_d \approx V \left(1 - \frac{1}{\gamma p} \frac{dp}{dz^*} \delta z^*\right)$ (on a appliqué pV^{γ} =cte)

Masse de l'air déplacé: $m_d = \rho(z^* + \delta z^*)V_d$

$$m_d \approx m \left(1 + \frac{1}{\rho(z^*)} \frac{d\rho}{dz^*} \delta z^* - \frac{1}{\gamma p(z^*)} \frac{dp}{dz^*} \delta z^* \right)$$

Poussée d'Archimède: $F = -g (m_d - m) = -m_{\theta}^g \frac{d\theta}{dz^*} \delta z^*$

Accélération verticale: $\frac{d^2 \delta z^*}{dt^2} = \frac{F}{m} = -\frac{g}{\theta} \frac{d\theta}{dz^*} \delta z^*$

On apelle fréquence de Brunt Vaisala:

$$N_*^2(z) = \frac{g}{\theta} \frac{d\theta}{dz^*}$$

Plus adapté en coordonnées log-pression:

$$N = N_* \left(T/T_m \right)$$

Constituants trace majoritaires (1): CO₂ et H₂O

- CO2: Uniforme très actif dans l'Infrarouge
- Vapeur d'eau: très faible quantité
- Bien qu'ayant un effet de serre, la faible teneur en H₂O caractérise plus la chimie de la stratosphère que son bilan radiatif
- Noter le minimum d'H₂O à la tropopause équatoriale

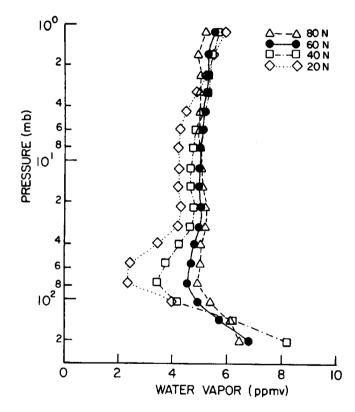


Fig. 1.5. Vertical profiles of water vapor mixing ratio at several latitudes measured by the LIMS instrument on the *Nimbus* 7 satellite for May 1-26, 1979. [From Remsberg *et al.* (1984b). American Meteorological Society.]

Constituants trace majoritaires (2): l'ozone O₃

- L'absorption des Uv-b par 03 est le moteur de la circulation dans l'atmosphère moyenne
- L'Ozone nous protège des UV-b
- Maximum à 30-40km, dans la stratosphère

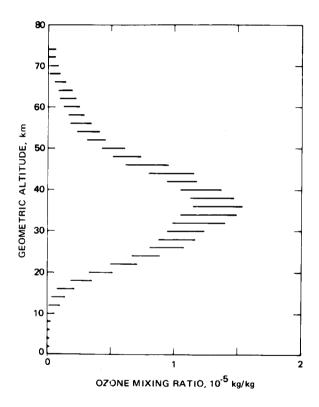
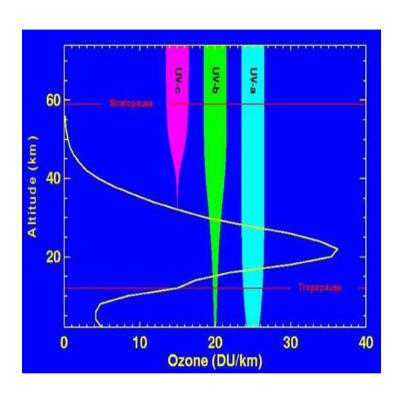



Fig. 1.7. The standard ozone profile of Fig. 1.6 plotted in terms of the mass mixing ratio. [From the U.S. Standard Atmosphere (1976).]

Chauffage par l'Ozone

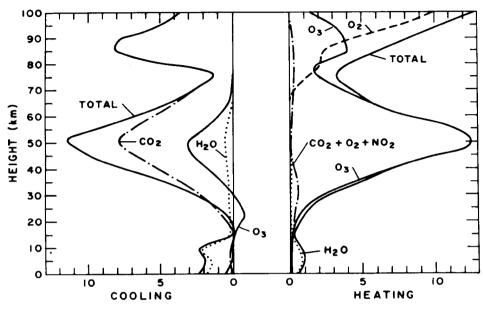
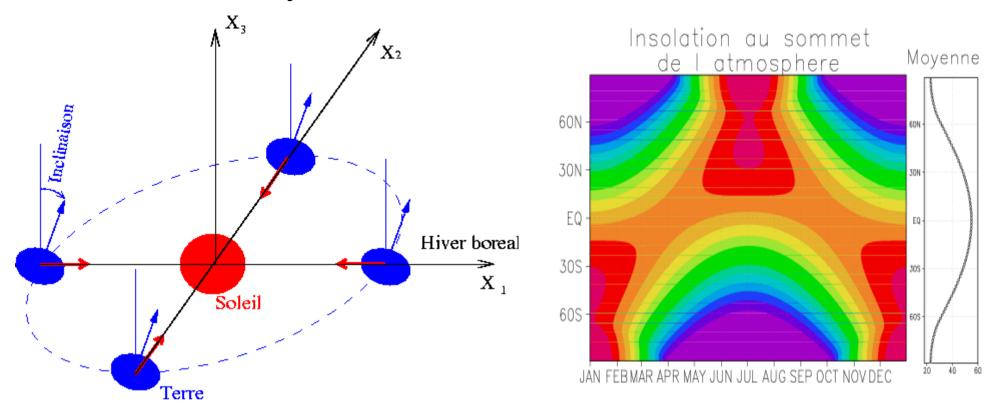
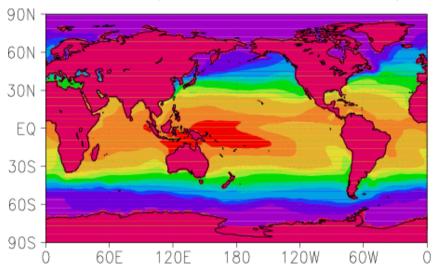
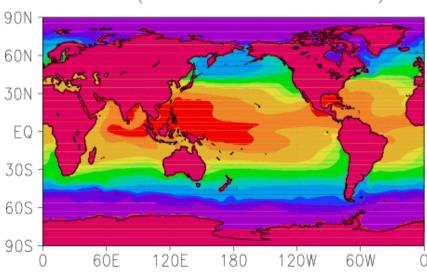



Fig. 2.1. Vertical distribution of heating due to absorption of solar radiation (right) and cooling due to emission of infrared radiation (left). [From London (1980), with permission.]

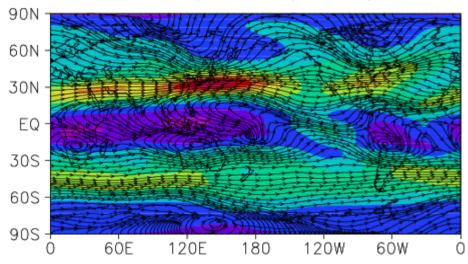
Profil d'Ozone aux moyennes latitude et Altitude de pénétration des UV-a, UV-b, UV-c Distribution verticale du chauffage du à l'absorption des rayons solaires et du refroidissement du au rayonnement infrarouge

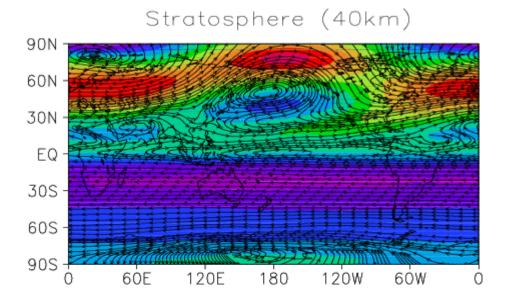

Cycle saisonnier de l'ensoleillement


- L'Ozone réemet quasi-instantanément, et sous forme de chaleur, le rayonnement UV qu'elle absorbe
- L'ensoleillement moyen journalier est maximum aux pôles en été en partie car la journée y dure presque 24h
- En moyenne et au cours du temps l'insolation reste maximale à l'équateur

L'Océan: un intégrateur temporel que la moyenne atmosphère ne voit pas

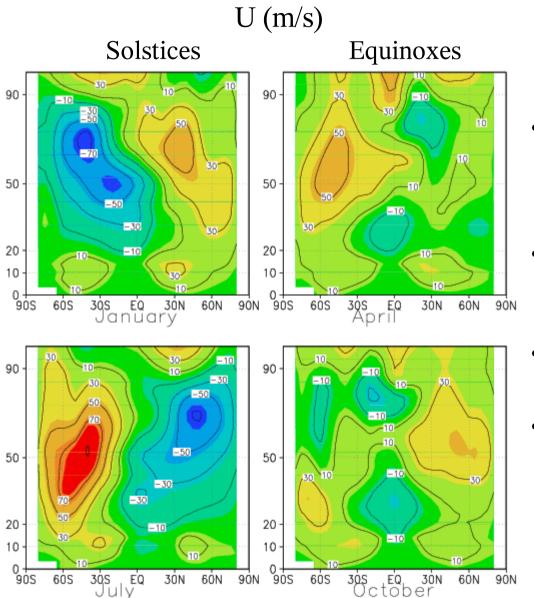
Temperature Surface de la mer Janvier (ECMWF 1993-1997)



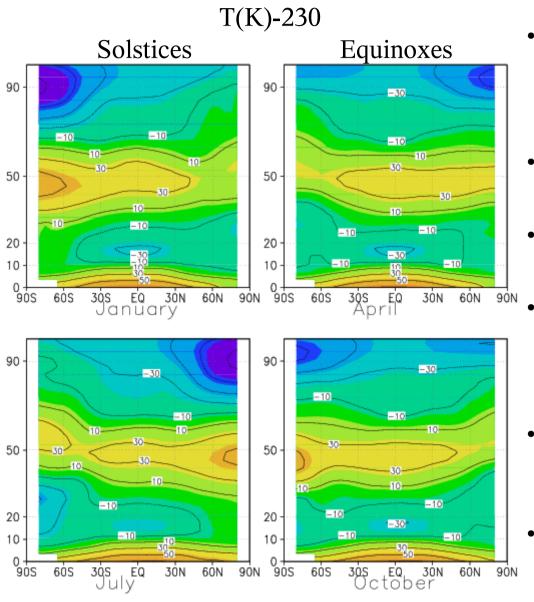


- La SST est toujours plus chaude dans la zone tropicale
- Elle maintient aussi un taux d'humidité important dans la troposphère équatoriale, et donc un effet de serre important
- La troposphère est en premier lieu forcée par le bas, et donc présentera un cycle annuel moins marqué que l'atmosphère moyenne

Un exemple flagrant de la différence entre les circulations générales dans la troposphère et la stratosphère



- En moyenne temporelle et en hiver:
- Les vents dans la troposphère sont vers l'Est dans les 2 hémisphères et aux moyennes latitudes
- Les vents dans la stratosphère sont vers l'Est dans l'hémisphère d'hiver, vers l'Ouest dans l'hémisphère d'été


Les moyennes zonales du vent zonal dans l'atmosphère moyenne (données CIRA)

- Dans la moyenne atmosphère (20-90km), on trouve bien des jets vers l'Est dans l'hémisphère d'hiver, vers l'Ouest dans l'hémisphère d'été.
- Au printemps et à l'Automne, les jets sont essentiellement vers l'Est dans toute la moyenne atmosphère.
- A toute saison, il y a 2 jets vers l'Est et aux moyennes latitudes dans la troposphère.
- Noter, en particulier aux solstices, que les jets ont tendances à être plus fort dans l'hémisphère sud.

Les moyennes zonales de la température dans l'atmosphère moyenne (données CIRA)

14

- A la stratopause (50km) dans l'Hémisphère d'été on trouve bien un maximum de T: A une altitude donnée T décroit lorsqu'on va du pôle d'été au pôle d'hiver.
- Dans la stratosphère (20km<z<50km), T décroit du pôle d'été au pôle d'hiver.
- Dans la stratosphère, T est plus uniforme durant les équinoxes
- Il y a un minimum marqué de T à la tropopause (z~15km) équatoriale, et en toute saison (Rayonnement IR due a la vapeur d'eau).
- Aux équinoxes et dans la haute mésosphère, (70-90km) T croit du pôle d'hiver vers le pôle d'été!!!
- Aux sosltices et à la mésopause (90km) se trouve un minimum (~180K) de T près du pôle d'été. C'est la région la plus froide de l'atmosphère!!!!

Equations de base utilisées dans ce cours

Loi de Newton dans un référentiel tournant:

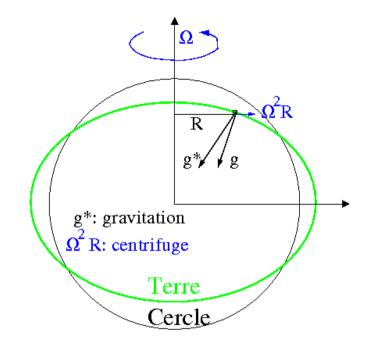
$$\frac{D\vec{U}}{Dt} + 2\vec{\Omega} \times \vec{U} = -\frac{1}{\rho} \vec{\nabla} p + \vec{g} + \vec{D}$$

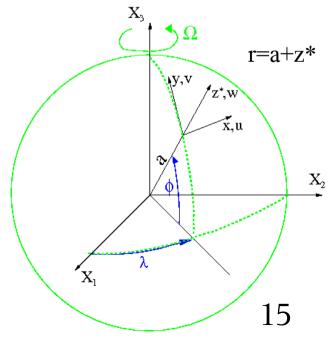
 \vec{D} : Forces de Friction

p: Pression

 \vec{g} : vecteur incluant la gravitation et la force centrifuge

Accélération en coordonnées sphériques:


$$\frac{D\vec{U}}{Dt} + 2\vec{\Omega} \times \vec{U} = \begin{cases} \frac{Du}{Dt} - \frac{uv \tan \phi}{r} + \frac{uW}{r} \\ -2\Omega \sin \phi v + 2\Omega \cos \phi w \\ \frac{Dv}{Dt} + \frac{u^2 \tan \phi}{r} + \frac{vW}{r} \\ +2\Omega \sin \phi u \\ \frac{Dw}{Dt} - \frac{u^2 + v^2}{r} - 2\Omega \cos \phi u \end{cases}$$


Avec:

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \frac{u}{r\cos\phi} \frac{\partial}{\partial \lambda} + \frac{v}{r} \frac{\partial}{\partial \phi} + w \frac{\partial}{\partial r}$$

et:

$$u = r \cos \phi \frac{D\lambda}{Dt}, \ v = r \frac{D\phi}{Dt}, \ w = \frac{Dr}{Dt}.$$

Equations de base utilisées dans ce cours

Approximation pour une atmosphère mince ($z^* << a$, w << u, v)

$$\frac{D\vec{U}}{Dt} + 2\vec{\Omega} \times \vec{U} \approx \begin{cases} \frac{Du}{Dt} - 2\Omega\sin\phi v - \frac{uv\tan\phi}{a} \\ \frac{Dv}{Dt} + 2\Omega\sin\phi u + \frac{uu\tan\phi}{a} \\ 0 \end{cases}$$

Avec:
$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \frac{u}{a\cos\phi}\frac{\partial}{\partial\lambda} + \frac{v}{a}\frac{\partial}{\partial\phi} + w\frac{\partial}{\partial z^*}$$

et: $u = a\cos\phi\frac{D\lambda}{Dt}$, $v = a\frac{D\phi}{Dt}$, $w = \frac{Dz^*}{Dt}$.

Dans ce cadre la composante verticale de la loi de Newton se réduit à l'Approximation hydrostatique:

 $\frac{\partial p}{\partial z^*} = -\rho g$

(les forces de frictions doivent aussi être faibles dans cette direction)

Cela Permet d'utiliser l'altitude log-pression comme coordonnée verticale:

$$z = H \ln \left(\frac{p_s}{p} \right)$$

Peu de modifications sauf: $\frac{D}{Dt} = \frac{\partial}{\partial t} + \frac{u}{a\cos\phi} \frac{\partial}{\partial\lambda} + \frac{v}{a} \frac{\partial}{\partial\phi} + w \frac{\partial}{\partial z}$

avec
$$w = \frac{Dz}{Dt}$$
.

Equations de base utilisées dans ce cours

Force de pression en utilisant la coordonnée z:

$$\delta p \approx \left(\frac{\partial p}{\partial \lambda}\right)_{\phi,z^*} \delta \lambda + \left(\frac{\partial p}{\partial \phi}\right)_{z^*,\lambda} \delta \phi + \left(\frac{\partial p}{\partial z^*}\right)_{\lambda,\phi} \delta z^*$$

Pour une variation infinitésimale à λ =cte et sur une surface z=cte, $\delta p=0$

Pour une variation infinitésimale à
$$\lambda$$
=cte et sur une surface z=cte, $\delta p=0$

$$\left(\frac{\partial p}{\partial \phi}\right)_{z^*,\lambda} \delta \phi - \rho \delta \Phi \approx 0 \Rightarrow \left(\frac{\partial \Phi}{\partial \phi}\right)_{z,\lambda} = \lim_{\delta \phi \to 0} \frac{\delta \Phi}{\delta \phi} = \frac{1}{\rho} \left(\frac{\partial p}{\partial \phi}\right)_{z^*,\lambda} \Rightarrow -\frac{1}{\rho} \nabla_H p = -\left(\frac{1}{a \cos \phi} \left(\frac{\partial \Phi}{\partial \lambda}\right)_{\phi,z}\right) = \frac{1}{a} \left(\frac{\partial \Phi}{\partial \phi}\right)_{z,\lambda}$$

Conservation de la masse:

$$\begin{split} \delta M &= \rho \delta x \delta y \delta z^* = p \delta x \delta y \delta z \\ \frac{1}{\delta M} \frac{D \delta M}{D t} &= \frac{1}{p} \frac{D p}{D t} + \left(\frac{\delta u}{\delta x} + \frac{\delta v}{\delta y} + \frac{\delta w}{\delta z} \right) = 0 \\ \lim_{\delta M \to 0} \left(\frac{1}{\delta M} \frac{D \delta M}{D t} \right) &= -\frac{w}{H} + \vec{\nabla} \cdot \vec{u} = 0 \end{split} \rightarrow \vec{\nabla} \cdot \left(\rho_0 \vec{u} \right) = 0 \text{ avec} \rho_0 = \rho_s \exp\left(-z/H \right) \end{split}$$

Bilan de chaleur:

$$\frac{D\theta}{Dt} = Q$$

Equations de base utilisées dans ce cours Récapitulatif:

Loi de Newton:

$$\frac{D\mathbf{u}}{Dt} - \frac{\mathbf{u}\mathbf{v}\tan\phi}{a} - 2\Omega\sin\phi\mathbf{v} = -\frac{1}{a\cos\phi}\frac{\partial\Phi}{\partial\lambda} + X$$

$$\frac{D\mathbf{v}}{Dt} + \frac{\mathbf{u}^2\tan\phi}{a} + 2\Omega\sin\phi\mathbf{u} = -\frac{1}{a}\frac{\partial\Phi}{\partial\phi} + Y$$

$$\frac{\partial\Phi}{\partial z} = \frac{RT}{H}$$

(Approximation Hydrostatique)

Conservation de la masse:

$$\frac{\rho_0}{a\cos\phi} \left(\frac{\partial \mathbf{u}}{\partial \lambda} + \frac{\partial \mathbf{v}\cos\phi}{\partial \phi} \right) + \frac{\partial \rho_0 \mathbf{w}}{\partial \mathbf{z}} = 0 \quad \text{avec} : \rho_0 = \rho_s \exp\left(-\frac{\mathbf{z}}{H}\right)$$

Bilan de chaleur:

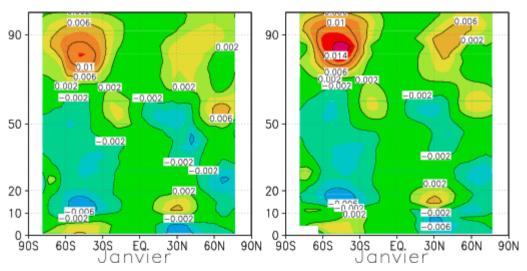
$$\frac{D\theta}{Dt} = Q$$
, souvent écrit : $\frac{DT}{Dt} + \frac{\kappa Tw}{H} = \frac{J}{C_p}$

Cinématique:

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \frac{\mathbf{u}}{a\cos\phi} \frac{\partial}{\partial \lambda} + \frac{\mathbf{v}}{a} \frac{\partial}{\partial \phi} + \mathbf{w} \frac{\partial}{\partial z}, \text{ avec } \mathbf{u} = \mathbf{a}\cos\phi \frac{D\lambda}{Dt}, \mathbf{v} = a\frac{D\phi}{Dt} \text{ et } \mathbf{w} = \frac{Dz}{Dt}.$$

Relation entre vent et T: la balance du vent thermique

Equilibre hydrostatique:


$$\frac{\partial \Phi}{\partial z} = \frac{RT}{H}$$

Equilibre géostrophique:

$$\underbrace{2\Omega\sin\phi}_{\widehat{f}}\ u = -\frac{1}{a}\frac{\partial\Phi}{\partial\phi}$$

Equilibre du vent thermique:

$$\frac{1}{a}\frac{\partial T}{\partial \phi} = -\frac{fH}{R}\frac{\partial u}{\partial z}$$

• Estimées par différences finies et à l'aides de données CIRA

- L'équilibre du vent thermique, traduit le lien fort entre thermodynamique et dynamique aux moyennes latitudes:
- En Janvier, le fait que T augmente avec la latitude dans l'hémisphère sud et dans la haute mésosphère (70-90km), permet au jet vers l'Ouest dans la moyenne atmosphère de l'hémisphère sud de se fermer à la mésopause.
- Inversement, si on accélère mécaniquement l'écoulement près de la mésopause, on obtient une fermeture de ce jet. Par équilibre du vent thermique, cette accélération doit être associée à une diminution de la Température. On parle de chauffage (éventuellement de refroidissement) mécanique.
- Comme ces processus mécaniques sont importants, l'atmosphère moyenne est loin de l'équilibre radiatif.

Qu'est-ce que serait la moyenne atmosphère à l'équilibre radiatif?

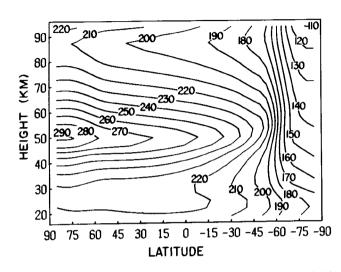


Fig. 2.34. Radiative equilibrium temperature distribution for northern (left) summer solstice. [From Wehrbein and Leovy (1982), with permission.]

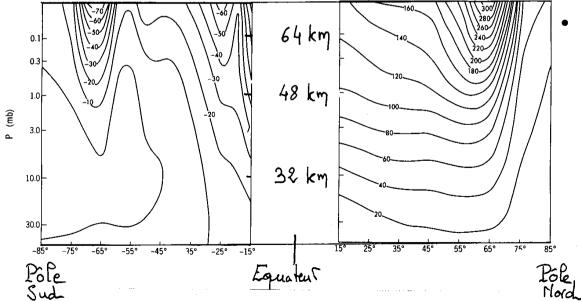


Fig. 7.1. Zonal gradient wind $u_{\rm gr}$ that is in thermal-wind balance with the temperature field $T_{\rm r}$ of Fig. 1.2 and equals the observed climatological zonal wind at 100 mb. (a) Northern Hemisphere (winter), (b) Southern Hemisphere (summer). (Courtesy of Dr. S. B. Fels.)

- Attention! Les latitudes sont inversées dans la première Figure.
- En Janvier, la T a une altitude donnée décroit bien du Pôle Sud au Pôle Nord
- Il en résulte bien des vents vers l'Ouest dans dans l'Hem. Sud et des vents vers l'Est dans l'Hem. Nord.
- Ces vents sont beaucoup trop fort à toutes les altitudes dans l'hemisphère Nord
- L'erreur est moins marquée dans l'hémisphère d'été