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ABSTRACT

The non-hydrostatic version of the mountain flow theory presented in Part
I is detailed. In the near neutral case, the surface pressure decreases when
the flow crosses the mountain to balance an increase in surface friction along
the ground. This produces a form drag which can be predicted qualitatively.
When stratification increases, internal waves start to control the dynamics and
the drag is due to upward propagating mountain waves as in part I. The re-
flected waves nevertheless add complexity to the transition. First, when sta-
bility increases, upward propagating waves and reflected waves interact de-
structively and low drag states occur. When stability increases further, the
interaction becomes constructive and high drag state are reached. In very sta-
ble cases the reflected waves do not affect the drag much. Although the drag
gives a reasonable estimate of the Reynolds stress, its sign and vertical pro-
file are profoundly affected by stability. In the near neutral case the Reynolds
stress in the flow is positive, with maximum around the top of the inner layer,
decelerating the large-scale flow in the inner layer and accelerating it above.
In the more stable cases, on the contrary, the large-scale flow above the inner
layer is decelerated as expected for dissipated mountain waves. The struc-
ture of the flow around the mountain is also strongly affected by stability: it
is characterized by non separated sheltering in the near neutral cases, by up-
stream blocking in the very stable case, and at intermediate stability by the
presence of a strong but isolated wave crest immediately downstream of the
ridge.
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1. Introduction33

The impact of small to medium scale mountains on atmospheric dynamics is extremely sensitive34

to the stratification. In neutral flows, the atmospheric boundary layer stress changes the flow and35

hence the surface pressure on either sides of the mountain. This produces a form drag that will in36

turn drive an exchange of momentum between the atmosphere and the earth surface (Hunt et al.,37

1988). This pressure drop in the lee side is associated with an effect of downstream sheltering. For38

obstacle with small slope the sheltering is non-separated, but for obstacles with larger slopes, this39

sheltering is separated (Reinert et al., 2007) and can cause the formation of banner clouds (Voigt40

and Wirth, 2013). The dynamical regime in the stably stratified case is fundamentally different be-41

cause internal gravity waves create a drag even in the absence of boundary layer (Durran, 1990).42

For small mountains, the asymmetry in the fields near the surface is such that the flow decelerates43

upstream, and it accelerates downstream. This can cause a form of non-separated upstream block-44

ing with strong downslope winds (Lott et al. (2020), Part I in the following). For large mountains,45

the situation is different because the associated waves approach breaking, a dynamics that pro-46

duces separated upstream blocking and strong downslope winds (see recent examples in Pokharel47

et al. (2017)). To summarize and from a qualitative point of view, two radically different flow48

regimes occur above a mountain: on the one hand we assist to the development of strong upslope49

winds in neutral case and on the other hand we see strong downslope winds in the stratified case.50

Although the two type of dynamics in the neutral and stratified case are today quite well under-51

stood, it remains unclear what parameter characterizes the transition between the two regimes. For52

small mountains, the seminal paper of Belcher and Wood (1996) describes a transition from form53

drag to wave drag that occurs when the Froude number Fm = U(hm)/N(hm)/L ≈ 1 (with U the54

incident flow velocity, and N the Brunt-Vaisala frequency measured at a middle layer height hm;55

see henceforth). When the Froude number Fm < 1, the dynamics is neutral and the drag is a form56

drag, but when Fm > 1 this form drag is replaced by a wave drag. Belcher and Wood (1996) also57

shows that the wave drag is that predicted by inviscid theory, if we take for incident flow param-58

eters those at the middle layer height hm, an altitude where the disturbance dynamics is inviscid59

and largely controlled by the curvature of the background wind. Mathematically, for a mountain60

of characteristic horizontal scale L, hm satisfies,61

u0(hm)

u0zz(hm)
= L2, (1)

where u0 and u0zz are the background wind and wind curvature respectively. While Belcher and62

Wood (1996) do not describe the transition in terms of upstream/downstream separation (upstream63

separation indicating blocking), the theoretical analysis of Ambaum and Marshall (2005) shows64

that neutral flows separate on the lee side, and that this separation is largely inhibited in the stable65
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case, or, more precisely that it occurs much further in the lee beyond the first lee wave trough66

and upstream the mountain crest. This lee side separation and more generally the interaction67

between the boundary layer and mountain waves are central in the development of downstream68

rotors (Doyle and Durran, 2002; Sachsperger et al., 2016).69

Maybe because early theories on boundary layer flow over mountains demand quite involved70

asymptotic analysis (Belcher and Wood, 1996), subsequent theories on the interactions between71

boundary layer and mountain have often used simplified representation of the boundary layer72

to remain tractable (Smith et al., 2006; Lott, 2007). To a certain extent, these simplifications73

mirror the simplifications made in the literature on stable boundary layer over complex terrain.74

In such studies, the inviscid dynamics often boils down to that above the boundary layer all the75

mountain waves propagate upward within being reflected back (Belcher and Wood, 1996; Weng,76

1997; Athanassiadou, 2003). There is nevertheless a growing effort in the community to analyze77

the interaction between boundary layers and mountain waves (Tsiringakis et al., 2017; Lapworth78

and Osborne, 2019). These efforts are motivated by the fact that present day numerical weather79

prediction and climate models still make errors in the representation of subgrid-scale orography80

(SSO) and because these errors are at scales where neutral dynamics and stratified dynamics can no81

longer be treated separately (see discussion in Serafin et al. (2018) and in Part I). Also, a remaining82

issue in SSO parameterizations still concern the representation of the vertical distribution of the83

wave Reynolds stress (Tsiringakis et al., 2017; Lapworth and Osborne, 2019) and existing theories84

do not tell much about this.85

To better understand this vertical distribution, we argued in Part I that the theory in the simplest86

case with constant eddy viscosity ν needed to be developed beyond the historical papers (see Smith87

(1973) for the neutral case and Sykes (1978) for the stratified case). In fact, we showed in Part I88

that with constant viscosity, we were able to predict the wave field with uniform approximation89

over the entire domain. This permits to calculate altogether the mountain drag, the wave Reynolds90

stress vertical profile, and the non-separated structure of the flow within the boundary layer (in91

the form of upstream blocking and downslope winds). Using these solutions we showed that the92

wave pressure drag and stress can be deduced from mountain wave linear theory if we evaluate the93

background flow at the ”inner layer” scale,94

δ =

(
νL
u0z

) 1
3

, (2)

with u0z the background wind shear. We insist that this inner scale is distinct from a boundary95

layer height, the latter being infinite in the constant shear case. In Part I, we also showed that the96

wave Reynolds stress that radiates aloft the inner layer (which total depth is estimated around 5δ )97

is only a fraction of the surface pressure drag: internal waves are substantially dissipated when98
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they travel through the inner layer and part of the wave drag is deposited near the top of the inner99

layer. Last, we showed in Part I that for mountains with height H� δ , the wave stress is extracted100

from the boundary layer rather than from the surface as in the inviscid case. This means that the101

interaction between the boundary layer and the obstacle accelerates the large-scale flow near the102

surface as waves are emitted. Finally, for mountain with height H ≈ δ , we showed that upstream103

blocking and downslope winds occur within the boundary layer. Because we built our analysis on104

linear dynamics, these phenomena correspond to non-separated dynamics by construction. They105

actually mirror the non-separated intensified upslope winds and downstream sheltering that occurs106

in the neutral case.107

A first limit of Part I, is that we only considered upward propagating internal waves above the108

inner layer. This is a serious limitation, reflected waves potentially affecting the boundary layer109

when they return to the ground. A second limit is that we only studied constant shear within the110

hydrostatic approximation. In this situation the properties of the inviscid solution makes that we111

cannot study weakly stratified situations and analyze the transition from neutral to stratified flows.112

The purpose of the present paper is therefore to work with a non-hydrostatic model in order to113

analyze the case where all the harmonics are reflected. As we shall see in section 2, this happens114

with constant infinite shear in the non-hydrostatic Boussinesq approximation. In section 3, we115

describe a characteristic wave field and extend the mountain wave drag predictor proposed in Part I116

to the neutral case. We demonstrate that we need to substitute it by a form drag for small values of117

the Richardson number (J < 1) . We analyze the transition from neutral to stratified situation for118

small slopes in section 4 and show that reflected waves can interact destructively or constructively119

with the surface when J ≈ 1 yielding low drag and high drag states. We then analyze in section 5120

the action of the waves on the large-scale flow and show that this action differs between the neutral121

cases and the stratified cases. In section 6 we describe situations with slopes comparable to the122

inner layer scale. In this case neutral flows are characterized by strong upslope winds and non-123

separated sheltering in the lee-side, whereas in stable case we recover the strong downslope winds124

and upstream blocking found in Part. I. All our results have been validated with the full non-linear125

model used in Part I, the results of which are mentioned all along the paper. We conclude and126

present perspectives in section 6.127

2. Theory128

Many elements are reminiscent of Part I, so we recall in this section the general formulation and129

only emphasize the differences. As in Part I we consider a background flow with constant shear130

u0z and constant stratification ρ0z131

u0(z) = u0zz; ρ0(z) = ρr +ρ0zz, (3)
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incident on a Gaussian ridge of characteristic length L:132

h(x) = He−x2/(2L2). (4)

We then consider obstacles well embedded into the ”inner” layer and use linear equations that we133

normalize by introducing the ”outer” scaling:134

(x,z) = L(x,z),(u′,w′) = uozL(u,w),(p′,b′) =
(
ρru2

0zL
2 p,u2

0zLb
)

(5)

where the ”primes” are for disturbances and the overbar for dimensionless variables. All notations135

are standard: x, z, u′, and w′ have their conventional definitions, and b′ is the disturbance buoyancy.136

The relevant non-dimensional parameters are137

J =− gρ0z

ρru2
0z
, P =

ν

κ
, S =

H
L
, and ν =

ν

uozL2 (6)

with J a Richardson number, P a Prandtl number, S a slope parameter and ν an inverse Reynolds138

number respectively. Henceforth, we only work with non-dimensional variables and the stationary139

2D Boussinesq linear equations we use are as in part I except that the hydrostatic approximation140

(Eq. 5 in part I) is replaced by the equation for the vertical acceleration:141

z∂xw =−∂z p+b+ν∂
2
z w, (7)

At the topography, we use the three boundary conditions:142

h(x)+u(x,h) = w(x,h) = Jh(x)+b(x,h) = 0 at h = Se−x2/2. (8)

The Boussinesq equations satisfy a wave action budget that is slightly different than in the hy-143

drostatic case:144

∂

∂x

z
∂zu−∂xw

J
b︸ ︷︷ ︸

A

+
b

2

2J
+

u2−w2

2


︸ ︷︷ ︸

Fx

+
∂

∂ z
uw︸︷︷︸
Fz

=
ν

J
b∂

2
z (∂zu−∂xw)+P−1 ν

J
(∂zu−∂xw)∂

2
z b︸ ︷︷ ︸

Q

,

(9)
where A is the pseudo-momentum, Fx and Fz the horizontal and vertical components of the145

pseudo-momentum flux, and Q its production/destruction by dissipative processes.146

a. Outer solution147

We then search inflow solutions in term of Fourier transform, and for high Reynolds number148

(ν� 1), the dynamics is inviscid at leading order. In this case the Fourier transform of the vertical149

velocity, w(k,z), is solution of Bessels’s equation,150

wzz +

(
J
z2 − k

2
)

w = 0. (10)
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When the horizontal wavenumber k > 0, and J > 1
4 a bounded solution in z→ ∞ can be expressed151

in terms of the Hankel function,152

wI(k,z) = i

√
πkz
2

e−
µπ

2 H(1)
iµ (ikz)where µ =

√
|J− 1

4
|. (11)

A first major difference with the hydrostatic case is that we can now treat the weakly stratified153

situations when J < 1
4 simply by changing µ in iµ . Also, in (11) we introduce the notation wI , to154

indicate that we choose a particular inviscid solution that is scaled to behave like an exponentially155

decaying solution of ”unit” amplitude in the far-field (see 9.2.3 in Abramowitz and Stegun (1964)):156

wI(k,z) ≈
z→∞

e−kz. (12)

This also shows that all harmonics are trapped, which is another major difference compared to the157

hydrostatic case (in the latter case, all waves propagate upward without reflection). From this and158

the limiting form of the Hankel functions when z→ 0 (9.1.9 in Abramowitz and Stegun (1964))159

we write the asymptotic form of the inviscid solution near the surface as160

wI(k,z) ≈
z→0

wM(k,z) = a1(k)z1/2−iµ +a2(k)z1/2+iµ , (13)

with161

a1(k) =−
i
√

π

sinh(µπ) Γ(1− iµ)

(
k
2

)1/2−iµ

, a2(k) = a1(k)∗. (14)

b. Inner solutions162

To get the solutions in the inner layer, we introduce the scaling163

z = δ z̃,(u,w) = (ũ,δkw̃),(p,b) = (δ p̃, b̃) where δ =

(
ν

k

) 1
3

. (15)

At leading order and with this scaling, the inner layer Equations are as in Part I (Eq. 16) they can164

be reduced to a 6th order equation for w̃ (Part I Eq. 17). Among its six independent solutions, only165

the three with asymptotic form in z̃� 1,166

w̃12 ≈ ã1(k)z̃1/2−iµ + ã2(k)z̃1/2+iµ , w̃3 ≈ z̃−5/4e−
2
√

i
3 z̃3/2

, w̃4 ≈ z̃−9/4e−
2
√

iP
3 z̃3/2

. (16)

need to be considered. As in Part I they are evaluated numerically and the matching with the outer167

layer is simply done by taking,168

ã1(k) =
a1

k
δ
−1/2−iµ

, ã2(k) = ã1(k)∗. (17)

This guaranties that w̃12 matches the inviscid solution wI according to (13) and (15).169
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Next, we assume that the mountain is well in the inner layer, and use the inner solution to satisfy170

the lower boundary conditions (8). The one on the vertical velocity writtes171

w(x,h)≈
∫ +∞

−∞

kδ (k)
(

f12(k)w̃12(k, h̃)+ f3(k)w̃3(h̃)+ f4(k)w̃4(h̃)
)

eikxdk = 0, (18)

where h̃(x,k) = h(x)/δ (k). Inversion of this integral equation together with the two integral equa-172

tions expressing the boundary conditions on u(h) and b(h) permits to evaluate f12(k), f3(k) and173

f4(k)).174

Since we are now in the presence of an exact inviscid solution connected to a viscous solution175

via the matching function wM(k,z) we can follow conventional techniques to build a uniform176

approximation. To do so we express the viscous solution in terms of the outer variables, e.g. by177

writing178

wV (k,z) = kδ (k)
[

f12(k)w̃12(k,z/δ (k))+ f3(k),z/δ (k))w̃3(k,z/δ (k))+ w̃4(k,z)w̃4(k,z/δ (k))
]

(19)
and use for w(k,z) the uniform approximation,179

w(k,z) = f12
[
wI(k,z)−wM(k,z)

]
+wV (k,z), (20)

again with similar expression for the horizontal wind and buoyancy.180

The solutions used in the following are then obtained via inverse Fourier transform of the uni-181

form approximations, and as in Part I, we validate these solutions with nonlinear simulations done182

with the MITgcm (Marshall et al., 1997). The configuration of this model is essentially the same183

as in Part I except that we run it in non-hydrostatic mode. All the 2D fields (winds, buoyancy,184

streamfunction) from this model are essentially the same as from the linear model so we will only185

plot 2D fields from the linear model.186

3. Transition from form drag to wave drag187

In Figure 1 we plot the flow response when the slope parameter S = 0.01, is much smaller than188

the inner layer scale δ (1) = 0.1 and the Richardson number J = 4. We also take a Prandtl number189

Pr = 0.5, that will stay unchanged in the remainder of the analysis. Henceforth, we will call this190

case the reference case. Note that these values are the same as in Part I to allow direct comparison191

between Fig 1 here and its hydrostatic counterpart (Fig.1 of Part I).192

The total wind at low level in Fig. 1a contours well the obstacle and is null at the surface as193

expected. We plot in Fig. 1b the vertical velocity field which highlights a system of gravity waves.194

In the upstream region x < 0, the phase lines tilt against the shear indicating upward propagation,195

directly above the hill the wave phase lines are more vertical, and downstream they become tilted196

in the direction of the shear indicating downward propagation. Such structure suggests that the197
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mountain produces upward propagating gravity waves, that these waves are entirely reflected in the198

far field (the waves phase lines tilt downstream is almost symmetric and opposite to their upstream199

tilt) and are almost entirely absorbed when they return to the surface (the wave amplitude rapidly200

decreases when horizontal distance increases). It is important to note that the amplitude of the201

vertical velocity is of the same order of magnitude as the amplitude predicted in Part I, which is202

the amplitude predicted by linear theory if we take for the incident wind at the ground the average203

of the incident wind over the inner layer scale (δ (1)/2). In Part I, we interpreted that by the fact204

that over a distance equal to the inner layer scale, the viscous dynamics produces a flow which205

streamlines have vertical displacements with amplitude near the mountain height (as we see here206

in Fig. 1c), as a consequence, the waves produced by the inner layer resemble to the inviscid waves207

produced by a lower boundary located at h(x)+δ .208

Finally, the wave action flux in Fig. 1d confirms that the waves are produced indirectly by the209

distortion of the inner layer rather than directly by the mountain (the wave action flux in the inner210

layer is oriented from one side of the mountain to the other). The orientation of the wave action211

flux aloft the inner layer also corroborates the fact that over the obstacle the waves propagate212

upward (the wave action flux points toward the surface), whereas the wave field downstream is213

dominated by downward propagating wave (the wave action flux is everywhere pointing upward,214

Fz > 0). The fact that Fz > 0 almost everywhere in the lee side is also consistent with the fact that215

there is almost no surface reflection on the ground. This contrasts with part I, where downward216

waves were excluded by construction, such that in the hydrostatic case, we had Fz < 0 almost217

everywhere above the inner layer (see Fig. 1d in Part I).218

In part I, we noticed that predicting the wave amplitude with linear inviscid theory was also219

useful to scale the mountain waves stress and drag,220

u w(z) =
∫ +∞

−∞

u(x,z)w(x,z)dx, Dr =−
∫ +∞

−∞

p(x,h)
∂h
∂x

dx, (21)

More precisely, we found that the predictor221

DrGWP =
√

J δ (1)S2/2 (22)

provides a good description of the drag for a large range of slopes S and for Richardson numbers222

J > 0.25. This scaling was however based on hydrostatic theory, such that we cannot use it for223

neutral cases (J� 1). In neutral cases, the mountain drag becomes a form drag due to dissipative224

loss of pressure when the air passes over the obstacle. To estimate this drag we next make the225

conventional hypothesis that in the inner layer the pressure varies little in the vertical direction and226

that the horizontal pressure gradient balances the divergence of the viscous stress,227

∂x p≈ ν∂
2
z u. (23)
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If we then remark that in the inner layer the wind increases from 0 (at the surface) to h (at the228

top of the inner layer), then the surface wind shear should be on the order of h/δ (1). We can229

then estimate the form drag as a vertical integral of (23) over the inner layer. We get δ (1)∂x p ≈230

−νh/δ (1) =−δ (1)2h. We can thus estimate the form drag as231 ∫ +∞

−∞

h∂x pdx≈−
∫ +∞

−∞

δ (1)h2
=−
√

πδ (1)S2. (24)

Because this evaluation is qualitative and because the transition between stratified cases and near232

neutral cases is more likely occuring near J = 1 we simplify the form drag predictor in233

DrFDP = δ (1)S2/2. (25)

Then, following Belcher and Wood (1996) we take as predictor of the mountain drag and stress234

the maximum between (22) and (25):235

DrP = Max
(

1,
√

J
)

δ (1)S2/2. (26)

We plot in Fig. 2 the mountain drag normalized by this predictor for several values of J and S.236

We see that the predictor is quite accurate (the ratio is around 1) at least when the flow is stable237

(J > 3) or neutral (J < 0.1). But, there is a transition zone when J ≈ 1 which seems quite rich238

dynamically. This transition is characterized by a relative maximum of the drag near J = 1.6,239

and a relative minimum near J = 0.7 that were completely absent in the hydrostatic case (see240

the thin gray lines in Fig. 2 and remember again that in Part I, (i) the cases with J < 0.25 were241

not treated, and (ii) that the reflected waves were absent by construction). To understand the242

physics behind the minimum and maximum values of the drag for intermediate values of J, it is243

important to include the reflected waves in the discussion. We recall that the altitude of dominant244

turning point of the wave field, which is the turning point above which the dominant wavenumber245

k = 1 becomes evanescent is zT (1) =
√

J and so increases with J. As J diminishes, waves are246

reflected closer to the surface. The local minimum and maximum of the drag in Fig. 2 correspond247

to a situation where the reflections occur at altitudes close to the mountain horizontal scale (in248

dimensional units zT (1/L) =
√

JL). In these situations, the reflected waves interact destructively249

and constructively with the emitted waves to produce low drag and high drag states respectively.250

When the reflections occur higher, the reflected waves return to the surface further in the lee, so251

their effect on the surface pressure becomes small over the hill compared to that of the upward252

propagating waves.253

4. Low drag and high drag states254

To better appreciate what occurs when the flow is weakly or moderately stratified, we plot in255

Fig. 3 the vertical velocity and action flux in a weakly stratified case (J = 0.1), and in the two256
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moderately stratified cases (J = 0.7 and J = 1.7) where the drag is respectively lower and larger257

than the predictor. To ease comparison, we keep all the other parameters similar to those of258

the reference case (Fig. 1). In the weekly stratified case, the vertical velocity is positive on the259

upstream side of the ridge and negative on the downstream side. This pattern is similar to the260

neutral solutions in the inviscid case with no vertical tilt. We also see in Fig. 3b that the wave261

action flux stays confined inside the inner layer: there is almost no flux of action through the262

height z = 5δ (1), which measures the inner layer depth (see Part. I). We conclude that in the263

neutral case, the drag cannot have an inviscid wave origin.264

For J = 0.7 in Fig. 3c one sees that the vertical velocity field has still quite vertical phase lines265

but it extents significantly higher above the inner layer than in the case with J = 0.1. Above266

the inner layer, one sees in Fig. 3d that there is substantial pseudo-momentum fluxes, pointing267

upward on the windward side and downward on the leeward side. Although the local directions of268

pseudo-momentum fluxes do not quantify directions of propagation without ambiguity (in theory269

an action flux is proportional to action times group velocity after averaging over a wave phase),270

it is quite systematic that for mountain waves a negative vertical component of the wave action271

flux (Fz < 0) indicate upward propagation (although there are variations from one wave crest to272

the other, as seen in Fig. 1d of Part I). Accordingly, we state that regions above the inner layer273

where Fz > 0 correspond to downward propagating waves, as seen in Fig. 3d on the downwind274

side of the hill. Still in Fig. 3d, we notice that regions with Fz > 0 occupy about the same area275

as regions with Fz < 0, as if the downward propagating waves were balancing almost exactly the276

upward propagating waves in terms of vertical flux of momentum. This balance probably explains277

the minimum in pressure drag seen when J ≈ 0.7 in Fig. 2.278

The case with J = 1.7 in Fig. 3e) presents substantial phase line tilt, and a system of internal279

waves with two crest and through. Upstream and above the ridge, the pseudo-momentum flux is280

quite strong and points downward, as expected for upward propagating waves. There is also large281

pseudo momentum flux above the inner layer that points upward but this flux is located well on282

the downwind side, i.e. as if the reflected wave were returning to the surface further downstream283

than in the case with J = 0.7. This is of course consistent with the fact that the turning altitude284

increases with J. Interestingly, it seems that the downward waves in this case return to the surface285

near enough downstream the mountain to interfere with the surface boundary condition and to286

produces large pseudo momentum fluxes and drag.287

5. Waves Reynolds stress288

The predictors of the surface pressure drag may not be very useful if we take them as a measure289

of the effect of the mountain on the large-scale flow, as generally done in mountain meteorology290
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(see discussion in Part I). The reason is that, in a steady state, the wave pseudomomentum flux291

vector within the inner layer is oriented from the upstream side of the ridge toward the downstream292

side. This situation differs from the inviscid case where this flux goes through the surface produces293

an exchange of momentum between the fluid and the solid ground in the form of a pressure drag.294

In the hydrostatic case, we concluded that the acceleration that balances the gravity wave drag is295

not communicated to the earth surface but rather to the flow below around the inner layer scale.296

As we shall see, this is even more problematic in the non-hydrostatic case because mountain drag297

does not necessarily lead to flow deceleration above the inner layer scale.298

To understand how mountains interact with the large-scale flow, we plot in Fig. 4 the vertical299

profile of the wave Reynolds stress (in black), the pressure stress (gray) and the viscous stress300

(dashed) acting along displaced streamlines. These are the three terms of the balance equation301

derived in Part I:302

u w =−p∂xη−ν
(
η ∂ 2

z u
)
, where z∂xη = w, (27)

and which can only be estimated above the mountain top S. We see in Fig. 4 that at low level, the303

Reynolds stress is small and there is a balance between pressure and viscous stress. In the inner304

layer, the magnitude of the Reynolds stress increases with height, reaches an extreme and vanishes305

when z→ ∞ (as expected because all harmonics are evanescent in z→ ∞). What is remarkable is306

that in the near neutral case J = 0.1 as well as in the low drag case J = 0.7, the Reynolds stress307

uw > 0 is positive in the inner layer such that it should produce a deceleration of the large-scale308

flow in the lower part of the inner layer (for instance around z ≈ δ (1)) and an acceleration of the309

large-scale flow in the upper part (for instance around z ≈ 3δ (1)). In the stratified case (J > 1),310

we recover the standard result that waves accelerate the large-scale flow in the lower part of the311

inner layer and decelerate the large-scale flow above, as expected for mountain gravity wave drag312

(Figs. 4c and 4d).313

It is clear from Fig. 4 that the interesting quantity is the extreme value of the wave Reynolds314

stress rather than the pressure drag itself. In fact, these extremes are always smaller in amplitude,315

and even of opposite sign to the pressure drag. We further explore the parameter space, and we plot316

in Fig. 5 these extremes normalized by the predictor of the pressure drag (26) for different values317

of the slope and stability. We conclude that our predictors overestimate by a factor 3 the extreme318

value of the Reynolds stress and more importantly that the sign of the Reynolds stress extreme319

changes around J = 1: there is flow acceleration above the inner layer scale δ when J < 1 and320

deceleration due to gravity wave drag when J > 1. These acceleration/deceleration are balanced321

by opposing deceleration/acceleration below δ (1), at least when S << δ (1), but these start to be322

partly transferred to the ground when S≈ δ (1), as in Part I (not shown).323
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6. Transition from downstream sheltering to upstream blocking when S≈ δ324

To analyze further what occurs in the more nonlinear situations we next consider cases where325

the slope parameter becomes comparable to the inner layer scale δ (1). We first consider the upper326

limit S = 0.185 beyond which our theoretical model often diverges when δ (1) = 0.1. We choose327

J = 0.01 to illustrate the neutral case and J = 9 to illustrate the stratified case. We plot in Fig. 6328

the stream function and the wind field for these two cases as well as in the intermediate case329

where the reflected waves impact strongly the surface conditions near the mountain (J = 1.7).330

In the near neutral case (Fig. 6a and 6b) the wind is intensified on the windward side and small331

downwind, which correspond to a form of non-separated sheltering. When stratification increases,332

this upslope/downslope asymmetry reduces, up to around J = 1: the low drag case with J ≈ 0.7333

for instance is almost symmetric between the upstream and the downstream side (not shown).334

In situations with high drag (J = 1.7) the upslope/downslope asymmetry is not much pro-335

nounced, at least on the streamlines in Fig. 6c near the surface. The most remarkable behavior336

is the pronounced ridge occurring downstream around x = 4, which corresponds to the strong pos-337

itive vertical wind anomaly already present in the case with small slop and around the same place338

(Fig. 3e). This pronounced oscillation cannot be attributed to trapped lee waves because these339

waves are not present in our configuration: trapped waves are always related to neutral modes of340

KH instability when the wind vanishes at the surface (Lott, 2016), and these modes do not ex-341

ist when the Richardson number is constant according the Miles-Howard theorem (Miles, 1961;342

Howard, 1961). The absence of trapped modes differs from the study of Keller (1994), who first343

solved the Bessel’s equation to analyze inviscid trapped waves in constant shear cases. In Keller344

(1994) nevertheless, the wind at the surface is non zero. Lott (2016) proposes that when the sur-345

face wind does not vanish, the surface wind shear is infinite and the surface Richardson number is346

null, so downward propagating stationary waves can be entirely reflected and neutral modes can347

exist.348

In situation with strong stratification, (J = 9, Figs. 6e and 6f), we recover the upstream blocking349

and downslope winds present in the hydrostatic case in Part I, although in this case all the waves350

are reflected toward the ground. We do not discuss the results from the MITgcm, but we have351

used this model in all the configurations with S = 0.15 and S = 0.185 presented in this paper and352

the solutions from the non-linear model are almost identical to those shown in Fig. 6 (see also the353

thorough comparison in part I, where the validation of the theory by the model was excellent).354

We propose one last index to characterize the downstream sheltering versus upstream blocking355

as a function of S and J. We define this index as the ratio between the wind amplitude along the356

13



downwind slope and the upwind slope of the ridge defined as357

Max︸︷︷︸
z< 2h

3 ,0<x<2

√
(z+u)2 +w2

/
Max︸︷︷︸

z< 2h
3 ,−2<x<0

√
(z+u)2 +w2 , (28)

and we plot this index for several values of J and S in Fig. 7. As in the hydrostatic case and for358

large values of J, this index can easily reach values around 4 or 5 for slopes near the inner layer359

depth and larger. This ratio is always around 1 when J ≈ 1, as in the hydrostatic case, except360

near the critical value J = 1.7 which corresponds to the high drag scenario. For J < 1, the ratio361

becomes smaller than 1, which corresponds to non-separated sheltering. The smallest values we362

obtain are around 0.5 for J = 0.01 and slopes S≈ 0.15.363

7. Conclusion364

One central question in this article is to understand how small scale mountains interact with the365

large-scale flow in the neutral and stratified cases. A motivation is that state of the art numerical366

weather prediction and climate models parameterize subgrid scale ororography in the neutral case367

using techniques derived from boundary layer parameterization schemes (Beljaars et al., 2004),368

and treat the stratified cases separately and using low level wave drag schemes (Lott and Miller,369

1997). The choice of one parameterization versus the other is enforced by adhoc criteria: for370

instance, subgrid-scale orography of horizontal scales below 5 km are often treated with boundary371

layer parameterizations, whereas orography with larger horizontal length scales are exclusively372

treated with low level wave drag schemes. The issue is that since the two types of schemes have373

profound impact on the performance of these models (Sandu et al., 2015; Pithan et al., 2016), it374

seems worthwhile revisiting the criteria for the transition between the two regimes. Moreover, the375

standard model resolution of atmospheric models is such that we are today in a grey zone between376

resolved and unresolved mesoscale orographic flows (Vosper et al., 2016).377

In this context, we demonstrated in this paper how to compute the drag in the neutral and in the378

stratified case. In the stratified case, we showed that the pressure drag is a wave drag to be com-379

puted at the inner layer scale, and in the neutral case, it must be replaced by a form drag, and we380

showed that the transition between the stratified and neutral case is well captured by the Richard-381

son number (see Eq. 26). This result is consistent with Belcher and Wood (1996), except that they382

captured the transition with a Froude number. Also, Belcher and Wood (1996) chose to evaluate383

the large-scale fields (to compute the drag) at a middle layer height hm whereas here we evaluate384

the large-scale fields at the inner layer scale δ . To apply Eq. 26 in a general circulation model, one385

should therefore evaluate the altitude at which disturbance dissipation equals advection for a given386

mountain length. For instance, if the boundary layer scheme uses first order closure with vertical387
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diffusion coefficients, the coefficients can be linearized around the large-scale resolved state. For388

a small perturbation of given horizontal scale L, the inner layer depth is that where advection by389

the resolved wind equals the disturbance in boundary layer tendency.390

So on the one hand, our results essentially extend the hydrostatic results in Part I by applying391

a correction for J < 1, on the other hand, the vertical distribution of the stress is clearly different392

in the hydrostatic and non-hydrostatic regime. This difference is in part due to the low level393

confinement of the waves in the non-hydrostatic equations such that there is no gravity wave drag394

in the far field by construction. As we see in Fig. 4c and Fig. 4d nevertheless, the wave drag395

is deposited in the upper part of the inner layer (roughly between 2δ (1) < z < 5δ (1), and its396

integrated value (the maximum of the stress) is well predicted by the hydrostatic theory. In terms397

of parameterization, we conclude that the vertically integrated effect of trapped waves is about that398

of freely propagating waves but should be distributed in the upper part of the inner layer. As we399

observed in Part I, a fraction of the drag is extracted from the lower part of the inner layer for very400

small mountains S� δ (1), (or from the ground for larger S≈ δ (1), see Part I).401

A first surprizing result occurs in the stratified case (J > 1) since we show that with trapped402

waves the drag is deposited in the inner layer rather than below turning altitudes. This is to be403

contrasted with papers where trapped waves are not dissipated (basically in the absence of surface404

critical levels here), and where the wave Reynolds stress decay with altitude up to the turning405

heights, and to balance a downstream horizontal flux of pseudo-momentum Georgelin and Lott406

(2001). An important difference with Georgelin and Lott (2001) is that our solutions do not include407

pure trapped waves (see discussion in section 6). As we shall see in part III, when such modes408

are present, the depth of the inner layer will still be that over which the wave drag is redistributed409

once the waves are all dissipated which question the way low level drag due to trapped lee waves410

should be parameterized in models (Teixeira et al., 2013).411

A second surprising result is that when the flow is weakly stratified (J < 1), the Reynolds stress is412

positive in the inner layer and so accelerates the large-scale flow in the upper part of the inner layer,413

and decelerates the flow in the lower part of the inner layer without exchanging momentum with414

the surface. It seems that the the effect of mountains is more to force a large-scale contouring of415

small-scale obstacles than a deceleration. This is strongly reminiscent of the concept of envelope416

orography introduced by Wallace et al. (1983), where subgrid-scale orography is not necessarily417

represented by pure drag forces but rather by forces that higher up the lower bound of the model418

without necessarily decelerating the large-scale flow (Lott, 1999). This low-level deceleration and419

high-level acceleration is the opposite of what occurs in stable cases where the stress is due to420

gravity waves.421
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Finally we also found that in intermediate cases, when the characteristic turning height of the422

background flow is sufficiently close to the surface, zT =
√

J ≈ 1, the reflected waves deeply affect423

the surface condition producing low drag state and high drag states, here at J ≈ 0.7 and J ≈ 1.4.424

Our results also indicate that mountain waves modify the boundary layer when the mountain425

height is comparable to the inner layer scale (s ≈ δ (1)). At small J � 1, the obstacle produces426

a region of calm flow in the inner layer on the lee side, while the flow is accelerated along the427

upstream side, that corresponds to a form of non-separated sheltering. At large J� 1, we observe428

the opposite situation: the inner layer flow on the upstream side is blocked, whereas the downslope429

winds are substantial in the inner layer on the lee side. The high drag state is characterized by a430

strong and unique wave crest downstream near the top of the inner layer, illustrating without431

ambiguity that strong lee waves signal near the surface do not necessarily call the presence of432

trapped modes.433

A clear limit of our results is that they assume linear fields above the surface and small slopes,434

so it could be argued that they can not be applied in the context of parameterization of real moun-435

tains. To moderate such critics, we can recall that we have have tried to extent our calculation up436

to the limit where the mountain height and the inner layer height compare. We can also recall that437

parameterizations are always based on linear theories, and are then adapted to nonlinear config-438

urations by comparing the vertical scales of disturbances and the height of the obstacles (criteria439

that always involve the parameters J and S that we use here). In all these parameterizations, the440

linear values are always upper bounds of the drag. Interestingly, linear theories are also used to441

predict these bounds, essentially via their prediction of the separation points (Smith, 1989; Lott442

and Miller, 1997; Ambaum and Marshall, 2005). In this context, the present article enforces the443

point that linear theories can be used to predict nonlinear fields, since here a linear theory with444

nonlinear boundary condition accurately reproduce the sheltering and the blocking occurring in445

the more nonlinear cases. Finally, and this is maybe a significant point, it is worth recalling that446

with increasing horizontal resolution, the height of subgrid scale mountains decreases so they are447

more and more located within the boundary layer, maybe rendering our linear dissipative formal-448

ism more and more adapted.449
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FIG. 1. Physical fields predicted by the viscous theory when J = 4, S = 0.01, δ = 0.1. a) Total wind vector

(z+u,w); b) vertical wind w; c) total streamfunction ψ defined by ∂zψ = z+u; d) Vertical flux of action Fz and

action flux vector (Fx,Fz). In Figs. 1b and 1d the negative values are dashed.
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FIG. 2. Surface pressure drag normalized by the predictor DrP in (26). The hydrostatic pressure drag normal-

ized by DrGWP from Part I is also shown for comparison (thin grey lines). The grey dots are from the MITgcm

with S = 0.15.
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FIG. 3. Vertical velocity (left panels) and action flux (vertical component Fz and vector (Fx,Fz) for S = 0.01.

Contour interval for w in a), c) and e) is as in Fig. 1b). Contour interval for vertical component of the wave

action flux is as in Fig. 1d).
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FIG. 6. Stream function defined by ∂ψ

∂ z = u+ z and total wind when S = 0.185 and δ = 0.1. a) and b) J=0.01;

c) and d) J=1.70; e) and f) J=9.
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