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A theory for flow over gentle hills using a mixing length
turbulence closure is developed to describe the transition
from turbulent orographic form drag to gravity wave drag.
It confirms that the first is associatedwith downstream shel-
tering, the secondwith upstreamblocking and strong downs-
lope winds. It shows that the altitude at which the incident
flow needs to be taken to calculate the drag is the inner
layer scale at which dissipation equilibrates disturbance ad-
vection. It also shows that the parameter that controls the
transition, here a Richardson number, compares the moun-
tain length to the altitude of the turning points abovewhich
the upward propagating gravity waves become evanescent.

Our solutions are also used to show that the downs-
lope winds penetrate well into the inner layer and that a
good fraction of the drag is deposited in the inner layer: all
of it in the neutral case, a large fraction in the intermediate
cases when there are trapped lee waves, and even in stable
situations without trapping part of the gravity wave drag is
eroded in the inner layer. Some discussion on how to com-
bine neutral and stratified effects in the parameterization
of subgrid scale orography in large-scale models is given.
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1 | INTRODUCTION1

Topographies with small horizontal scale L are assumed to produce disturbances with amplitude exponentially decay-2

ing in the free atmosphere (evanescent waves), hence essentially affecting the boundary layer. The modification of3

turbulent dissipation (and induced stress) results in mountain drag forces that can substantially increase the turbulent4

drag (Hunt et al., 1988a). In this case the drag is related to downstream "non-separated" sheltering with the pressure5

loss across the hill being caused by frictional retardation of the flow near the surface when the slopes are sufficiently6

small or by flow separation on the downstream side when the slopes are large (see for instance the Large-Eddy Simula-7

tions – LES – in Allen and Brown (2002) and Reinert et al. (2007)). A pretty illustration of such downstream separation8

and the associated circulations is the formation of banner clouds which sometimes appear in the right conditions9

(Voigt and Wirth, 2013). For mountains with bigger horizontal length scale and in the presence of stratification, buoy-10

ancy force can act against downstream sheltering, forcing an intense flow along the downstream flank of the hill. The11

mechanism at work in this case is related to buoyancy/gravity waves, and is efficient for two reasons. The first reason12

is that in the presence of internal waves the disturbance amplitudes no longer decay exponentially with altitude in13

the free atmosphere, which means that the dynamics is no longer limited to the boundary layer. The second reason is14

that close to the surface, the horizontal and vertical wind have opposite phase, i.e large horizontal wind occurs when15

the vertical velocity is negative, which is the fundamental mechanism causing downslope winds (see more details16

in the review by Durran (1990)). Still in these conditions, the wind also becomes weak upstream, causing upstream17

blocking for large mountains (some recent observations and LES simulations are in Pokharel et al. (2017) and Sauer18

et al. (2016)). In these stratified cases, the drag is caused by mountain waves for low hills, and blocked flow drag for19

mountains of sufficient height.20

Although these contrasting dynamics can be studied in great detail using high resolution models (Finnigan et al.,21

2020), the transition between the two regimes has not received much attention. To our knowledge, only a few papers22

address this transition explicitly. Belcher and Wood (1996) analyse theoretically the transition from form drag to23

wave drag, the form drag being related to non-separated sheltering gradually being replaced by wave drag when24

stratification increases. The transition has also been analysed in wind-tunnel experiments and numerical simulations25

by Ross et al. (2004) or in the prediction of where flow separation is likely to occur (Ambaum and Marshall, 2005).26

The fact that the transition itself is not much studied, does not mean that the interplay between boundary layers and27

mountain waves has never been analysed. Numerous papers analyse the impact of the boundary layer on mountain28

waves (Richard et al., 1989; Smith et al., 2006) or on the trapped waves developing at a boundary layer inversion29

(Teixeira et al., 2013a; Sachsperger et al., 2015). The fact that some wave drag in the boundary layer can be significant30

was also recognized by Tsiringakis et al. (2017) and earlier by Chimonas and Nappo (1989). Beyond the drag itself,31

the contribution of boundary layer waves to turbulent exchange is also recognized in oceanography and for sediment32

suspension (Boegman and Stastna, 2019; Soontiens et al., 2015).33

The purpose of this study is to re-visit early theories about the interactions betweenmountain and boundary layer34

in the neutral and stratified case. For this purpose we return to theories dating back from the 80-90’s (Hunt et al.,35

1988a; Belcher and Wood, 1996; Hunt et al., 1988b) and complement them by deriving uniform approximations that36

capture smoothly the transitions between the so-called "inner" and "outer" regions. As we will see, the solutions37
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we obtain capture all together the rich quasi-"inviscid" dynamics associated with the conventional mountain wave38

theory (which includes trapped lee-waves) and its explicit interaction with the boundary layer dynamics (for instance39

the extent to which downslope winds penetrate into the inner layer). Our study also has a more practical motivation:40

there are two families of subgrid scale orography parameterizations in present day weather forecast and climate41

models. A first family represents the enhancement of turbulent drag by orography (Wood and Mason, 1993), with42

parameterizations that are today improved to represent better nonlinear effects and the vertical distribution of the43

drag (Wood et al., 2001; Beljaars et al., 2004). A second family represents a dynamics controlled by gravity waves44

(Palmer et al., 1986) and that has also been extended to include nonlinear effects (Lott andMiller, 1997). It is generally45

assumed that the first type of parameterization, also called TOFD for "turbulent orographic form drag" should act for46

mountains of scale L < 5 km typically, whereas the second type also called SSO for "subgrid scale orography" should47

consider large-scalemountains (Beljaars et al., 2004). With increasingmodel resolution it could be argued that only the48

TOFD parameterizations should stay in the future, the gravity wave part being explicitly resolved, but we are probably49

still far from this status. A first reason is that the effective resolution of weather forecast models can be near an order50

of magnitude coarser than the model grid size (Vosper et al., 2016). A second reason is that the L = 5 km cutoff is51

quite arbitrary and should be determined according to the local condition before removing the SSO-type schemes. A52

third reason is that even if a model can potentially resolve the small-scale gravity waves, they will certainly interact53

with some form of turbulent parameterization: understanding theoretically the interaction remains important.54

In a recent series of papers, Lott et al. (2020a,b) and Soufflet et al. (2022) (hereinafter Part I, Part II, and Part III),55

formulated such theory and presented uniform solutions in the constant eddy viscosity case for small slopes S . They56

show that the disturbance amplitude is near that predicted using inviscid theory if one takes for incident wind its value57

at altitude near the inner layer scale δ where dissipative effects equilibrate disturbance advection,58

U0 (δ )
L

≈ ν′ (δ )
δ2
, (1)

U0 and ν′ being the incident wind and the eddy diffusivity acting on the disturbance respectively. Part II then describes59

the transition from neutral to stratified and shows that the transition occurs when the Richardson number J ≈ 1. To60

interpret this result they estimated in their Eq. (33) the turning point altitude where the Scorer parameter satisfies61

Sc (ht ) =
N (ht )2

U (ht )2
− Uzz (ht )

U (ht )
= 1/L2, (2)

ht being the altitude above which the disturbance with wavenumber 1/L becomes evanescent in the vertical direction.62

In Part II the turning level was found to be approximately at ht ≈ √
J L. With J < 1 (J > 1) the turning level is close to63

(far from) the surface compared to the mountain length, and we argued that the gravity waves have not (have) enough64

vertical space to develop and the dynamics is neutral (stratified). When the wind is sheared in the boundary layer65

and becomes constant above, we found in part III that the Richardson number in the boundary layer, but above the66

inner layer is still the appropriate parameter to estimate the nature of the dynamics. In all cases we found that the67

transition from neutral to stratified is also a transition from downstream sheltering to upstream blocking when the68

height of the mountain approaches the inner layer scale (Part II and III). Part III also revealed the significance of the69

trapped lee waves during the transition (when J ≈ 1) and the redistribution of the pressure drag in terms of vertical70

and horizontal pseudo momentum flux.71

Since the constant viscosity model is too simple to represent the real eddy diffusivity, particularly its decay when72

approaching the surface, the purpose of the present paper is to extend the formalism in Part I, Part II and Part III by73

using a first order mixing length closure reminiscent of the one used in Belcher and Wood (1996).74
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The plan of the paper is as follows. In section 2, we recall the basic equations and give an outline of the theory used75

in comparison to the theories used in the past. In section 3, we describe the transition from downstream sheltering76

to upstream blocking and describe the trapped waves that strongly develop during the transition. In section 4, we77

present diagnostics of mountain drag and Reynolds stresses profiles. In section 5, we summarize and discuss the78

significance of our results in the context of subgrid scale orography parameterization. We also relate them to the79

results in Belcher and Wood (1996). The model is detailed in the Appendix, it combines asymptotic developments80

and numerical integrations of the inner layer equations using a curved coordinate formalism.81

2 | BASIC EQUATIONS82

2.1 | Boussinesq equations and mixing length83

All our calculations use the Boussinesq approximation written in hybrid terrain following coordinates (X , Z ) which84

are related to the Cartesian coordinates (x , z ) via,85

x = X , z = Z + h (X )f (Z ) = Z + z ′, (3)
where h (x ) is the mountain height and the function f (Z ) is positive. f (Z ) ensures the transition from terrain fol-86

lowing coordinates near the surface to Cartesian coordinates by taking f (0) = 1 and decaying towards 0 for Z → ∞.87

From Eqs. (2.21)-(2.28) and (3.18)-(3.20) in Clark (1977), it can be shown that the stationary Boussinesq equations88

can be written,89

ρ (u∂X u +W∂Z u ) = −(∂X ρp + ∂Z ρg
12p ) + ∂Z τX Z , (4a)

90

ρ (u∂Xw +W∂Zw ) = −∂Z p + ρb + ∂Z τX Z , (4b)
91

ρ (u∂X b +W∂Z b ) = ∂Z qZ , (4c)
92

∂X ρu + ∂Z ρW = 0 , (4d)
where the "pseudo" density ρ is the Jacobian of the coordinate transformation, ρg 12 is a metric tensor coefficient,93

andW a velocity in the direction perpendicular to the Z =constant surfaces:94

ρ = ∂Z z , ρg 12 = −∂X z , W = u∂xZ +w∂z Z , (5)
u and w being the horizontal and vertical velocities. Compared to Clark (1977) we have rather followed the common95

practice to neglect the stresses and heat flux in the horizontal direction (τXX , τZX , and qX ), which is consistent with96

the mixing lengthmodel wewill adopt. Finally in (4) we have divided pressure anomaly by a constant reference density97

ρs

(
p−ps (z )

ρs
→ p

) and the buoyancy b = −g θ−θs
θs

, θ being potential temperature and θs a reference value.98
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In general, we will assume no slip and no flow boundary conditions at the surface:99

u (Z = 0) =W (Z = 0) = b (Z = 0) = 0. (6)
To express the stress tensors, we use a closure for eddy diffusivity based on mixing length theory,100

τX Z = ν∂Z u , τZ Z = ν∂Zw , and qZ = ν∂Z b with ν = Λ2
0





 ∂u

∂Z





 , (7)

where Λ0 is the mixing length. Standard atmospheric boundary layer models for neutral flow often have a smooth101

transition from the linear increase of mixing length near the surface to a constant limit value λ far away from the102

surface, for instance according to the so-called Blackadar formulation.103

1

Λ0
=

1

κ (Z + z0 )
+ 1

λ
, (8)

where κ is the von Karman constant and z0 a roughness length. As λ limits the mixing above the surface layer it could104

vary with stratification, a constraint we did not include explicitly. Note nevertheless that our calculations will cover105

a large range of λ, more stable cases being related to smaller values of this parameter. A difficulty with the mixing106

length profile in (8) is that the background flows that give uniform fluxes have a logarithmic contribution that extends107

up to z = ∞ (see Eq. 1 in Belcher and Wood (1996)). As log-layers are confined to the near-surface and to simplify108

the theory, we slightly modify the formula for the mixing length in (8) and take,109

Λ0 = λ tanh
(
κ
Z + z0

λ

)
. (9)

This approximation keeps Λ ≈ κZ near the surface and Λ ≈ λ in the far field. With this expression, the horizontal110

wind and buoyancy profiles that give uniform fluxes are111

UV (Z ) = u∗
κ
log

( sinh κ (Z + z0 )/λsinh κz0/λ
)
, BV (Z ) = b∗

κ
log

( sinh κ (Z + z0 )/λsinh κz0/λ
)
. (10)

where the subscript V denotes the background "viscous" solutions, u∗ =
√
τs/ρs is the friction velocity, and b∗ =112

g Hs/(ρscpu∗θs ) is the buoyancy scale, with τs and Hs for surface stress and heat flux and cp for the air heat capacity113

per unit mass at constant pressure.114

Another difficulty when one tries to analyse the interaction between mountain waves and a dissipative surface115

layer is that the velocity in (10) keeps increasing with altitude which is not realistic. The vertical profiles also tend to116

confine vertically propagating gravity waves to low altitudes. This can spuriously limit the contribution of the gravity117

waves to the Reynolds stress for instance. To circumvent this issue, we will consider cases where the wind profile is118

modified to become constant above a height d119

U0 (Z ) = u∗d
λ

tanh
[

λ

u∗d
UV (Z )

]
, B0 (Z ) = BV (z ) . (11)

This introduces a boundary layer depth d above which the background flow is externally imposed rather than being120

an exact solution of the viscous equations. Note that the case with infinite winds in the far field (10) can be obtained121

with (11) by taking d = ∞.122
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As an illustrative example Fig. 1 shows the background wind profiles for d = 1 km and d = ∞ in a configuration123

that is characteristic for the cases we will analyse. For mountainous areas, typical values for roughness length, the124

limit value of the mixing length, friction velocity, boundary layer depth and the mountain length scale are125

z0 = 1 m, λ = 20 m, u∗ = 0.2 m.s−1, d = 1000 m, L = 1000 m. (12)
The choice for z0 corresponds to that often made over chaotic surfaces (Wieringa, 1992) whereas that for λ is consis-126

tent with observations (Sun, 2011). In Fig. 1a) one sees that when d = ∞,U0 has constant shear over almost the entire127

domain whereas when d = 1 km, the constant shear zone is limited to the boundary layer where z < d . Henceforth128

we will call cases using d = ∞ "constant shear" cases and cases using d , ∞ "variable shear" cases. Note that to129

analyse cases where all harmonics propagate aloft, we will also consider hydrostatic solutions when d , ∞.130

The zoom near the surface in Fig. 1b) shows that, when approaching the surface, the background wind transitions131

from a linear profile to a log-profile around z = λ. We will call the logarithmic domain of the profile the surface layer.132

Figure 1a) and 1b) also show the linear asymptote of U0 when λ ≪ z ≪ d , illustrating that133

U0 (z ) ≈︸︷︷︸
λ≪z≪d

u∗ (z + za )
λ

, B0 (z ) ≈︸︷︷︸
λ≪z

b∗ (z + za )
λ

(13)

where the parameter,134

za = z0 −
λ

κ
log (

2 sinh κz0
λ

)
, (14)

measures the depth of the "critical level": at z = −za all disturbances have null intrinsic phase speed. At least in the135

boundary layer and above the surface layer, these asymptotes match U0 and B0 quite well. An important measure of136

the flow stability is the background flow Richardson number,137

Ri (z ) = B0z

U 2
0z

, (15)

From the flow profiles in (11), it is clear that Ri (z ) is zero near the surface, constant and equal to parameter J in the138

shear zone, and infinite when z ≫ d . Parameter J is defined as139

J = Ri (λ ≪ z ≪ d ) = λ
b∗u∗
u3∗

=
λ

κLmo
, (16)

where Lmo is the Obukhov length. While in principle the characteristic length λ should be related to Lmo , we have140

chosen to keep them separated in order to disentangle the dynamical impact of J through the inviscid dynamics and141

of the turbulence (and hence λ or z0) through the near-surface dissipation. In the remaining part of this paper, J will142

be called the Richardson number for short and will be used to control the stability regime.143

2.2 | Inner scales and turning points144

According to many papers about turbulent flows over gentle hills, it is often necessary to separate in the analysis three145

different layers separated by the inner layer scale and the turning level defined in (1) and (2) respectively (Belcher146

and Wood (1996)). If we replace L by the horizontal wavenumber k −1 and take for the eddy diffusivity acting on147
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F IGURE 1 a) and b) Background winds used and their various fits according to layer properties (see legend)
λ = 20m, z0 = 1m , L = 1 km, d = 1 km, u∗ = 0.2m/s. c) Schematic of the model used. The 3 thin black solid lines
follow the surfaces Z = 0.5, 1, 1.5. In b) and c) the thick black almost horizontal lines span the inner layer scales
corresponding to the dominant harmonics excited by a Gaussian mountain ridge of horizontal scale L. In c) the
vertical lines indicate the location and depth of the turning layer spanned by the turning levels according to (2):
cases with d = ∞ (d=L) are in blue (red). The central crosses are for the dominant wavenumber k = 1/L.

disturbances ν′ = 2Λu∗, (1) becomes148

kU0 (δ ) ≈
2Λ (δ )u∗

δ2
. (17)

We have verified that it is very well approximated by149

δ (k ) =
(
λ2

k

)1/3
, (18)

an expression that facilitates the asymptotic development as a function of the small parameter λ/L presented in the150

Appendix. The turning points are often located above the inner layer scale, at a height ht defined by (2) again replacing151

L by k −1. Their presence quantifies wave trapping, whereas the parameter J quantifies the depth over which trapping152

occurs. To illustrate these points, here and in the rest of the paper we will consider Gaussian ridges with characteristic153

horizontal scale L,154

h (x ) = He
− x2

2L2 , (19)
with H the maximum mountain height. For such profile a large fraction of the excited harmonics have wavenumbers155

that span the interval 2 1
2 /L < k < 2−

1
2 /L. The corresponding interval in δ is shown in Fig. 1b), illustrating that the inner156

layer scales satisfy λ < δ (k ) < d . In panel 1c), this band of inner layer scales is also shown following the mountain157

profiles.158

Panel 1c) shows the vertical space spanned by the turning points, ht , and for the cases with d = ∞ (blue) and d = L159
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(red) after implicit resolution of Eq. 2 and replacing 1/L by 2
1
2 /L < k < 2−

1
2 /L again. As in Part II one sees that in the160

constant shear case (d = ∞ blue vertical lines) the parameter J controls the altitude of the turning levels: when J < 1161

(J > 1) the turning layer is predominantly below (above) L = 1 km and we can expect a neutral (stratified) behaviour.162

Note also that using the linear-log profiles for UV and BV derived from the more classical Blackadar formula (8), the163

above diagnostics of inner layer and turning points do not differ much quantitatively.164

In the variable shear case with d = L (red vertical lines), the turning points altitude also increases with J but are165

located significantly higher than when d = ∞. Furthermore, when J approaches 1 and becomes larger, there are not166

many waves trapped (there is almost no turning level for J = 2). In these cases with fixed d = L, the fraction of167

propagating versus trapped waves is measured by comparing the Scorer parameter in the far field to 1/L2: where we168

have used the buoyancy profile in (10) and the wind profile in (11). Fr is a conventional Froude number, controlling169

the amount of drag that can be transported by gravity waves in the far-field (Teixeira et al., 2013b). It is very likely that170

it impacts the surface drag, an effect that we will only measure indirectly here and by comparing the cases Fr = √
J to171

cases with Fr = 0 (constant shear) and Fr = ∞ (hydrostatic). In other words, when d = L we have to keep in mind that172

J controls both the depth of the trapping region and the significance of trapping. In the present paper we emphasize173

the first aspect and leave to a subsequent paper a more systematic analysis where both the depth of the trapping174

region and the amount of trapping change separately.175

2.3 | non-dimensional formulation176

To integrate our equations using boundary layer techniques we start by deriving a non-dimensional form of (4) using177

the scalings178

(X , Z ) = L
(
X , Z

)
, (U0,u,w ,W) = u∗L

λ

(
U ,u,w ,W)

, p = u2∗
L2

λ2
p, (B0, b ) = u∗

2 L

λ2

(
B , b

)
. (20)

All the length scales characterizing the boundary layer depth and turbulent mixing become,179

d = Ld , δ = Lδ, ht = Lht , λ = Lλ, z0 = Lz 0, Λ0 = λΛ . (21)
According to (9) the last scaling makes Λ (z ) ≈ O (1) which permits to write set (4) as180

ρ
(
u∂X u +W∂Z u

)
= −

(
∂X ρp + ∂Z ρg

12p
)
+ λ

2
∂Z

(
Λ
2 ∥∂Z u ∥∂Z u

)
, (22a)

181

ρ
(
u∂Xw +W∂Zw

)
= −∂Z p + ρb + λ

2
∂Z

(
Λ
2 ∥∂Z u ∥∂Zw

)
, (22b)

182

ρ
(
u∂X b +W∂Z b

)
= λ

2
∂Z

(
Λ
2 ∥∂Z u ∥∂Z b

)
, (22c)

183

∂X ρu + ∂Z ρW = 0 , (22d)
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and makes explicit that the small parameter controlling the inner layer dynamics is λ2. Still in non-dimensional form,184

coordinate transform (3) writes185

x = X , z = Z + h (X )f (Z ) = Z + z ′ . (23)
The following choice is made for the low hill and the vertical scaling function186

h (x ) = Se−
x2

2 , and f (Z ) = exp (
−Z 3/3

)
, (24)

where S = H /L is the mountain slope. In (24) the definition of f (Z ) is such that at the surface, f (0) = 1, ¤f (0) = 0,187

and ¥f (0) = 0, properties that permit to simplify the formalism in the inner layer.188

2.4 | Linear analysis189

If we consider hills of small slope S , we can assume that the response to the forcing terms is linear and consider190

solutions of the form,191

u = U + u ′, w = w ′;W = W′
, p = P + p ′, b = B + b

′
, z = Z + z ′ and ρ = 1 + ρ′, (25)

with normalized backgrounds,192

U (Z ) = d tanh
[
λ

κd
log

( sinh κ (Z + z 0 )/λ
sinh κz 0/λ

)]
, (26a)

193

BZ = J coth (
κ (Z + z 0 )/λ

)
, (26b)

194

Λ (Z ) = tanh(κ (Z + z 0 )/λ ) . (26c)
We then search solutions in the form of Fourier transforms:195

u ′ (X , Z ) =
∫ +∞

−∞
u(k , Z )e i k X dk . (27)

Denoting ρ and z the Fourier transform of ρ′ and z ′ defined in (25), equations (22) linearize to196

i kUu +U ZW + i kp − λ
2
∂Z 2Λ∂Z u = i k Bz (28a)

197

i kUW + ∂Z p − b − λ
2
∂Z Λ∂Zw = ρB + k

2
U

2z, (28b)
198

i kUb + BZW − λ2∂Z

(
Λ∂Z b + JΛ∂Z u

)
= 0, (28c)
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i ku + ∂ZW = −i kUρ, (28d)
199

whereW − w = −i kUz, (28e)
200

The no-slip boundary condition U (0) = B (0) = 0 translates into201

u = W = b = 0. (29)

2.5 | Rationale of the theoretical model and relation with earlier studies202

As expected with terrain following coordinates, Eqs. (28) contain forcing terms associated to the metric, all of which203

are placed at the right hand side. In Appendix A.1we compute the solutions of the homogeneous equations (28) and in204

Appendix A.2, we compute a particular solution that equilibrates these forcings. Both solutions are used to formulate205

a complete solution that matches the boundary conditions. For both the homogeneous solution and the particular206

solution we separate the domain of integration between an "inner layer" and an "outer layer", separated by a matching207

region where we derive asymptotic solutions that are valid in the lower part of the outer layer and upper part of the208

inner layer. The homogeneous and particular solutions have exact analytical solutions in both the outer and matching209

regions, the solutions in the inner layer being evaluated numerically starting from solutions in the matching region.210

Importantly, the numerical integration starts from near 5δ down to the surface, a numerical choice that is consistent211

with conventional viscous boundary layer theory where the inner layer depth, above which dissipation has less than212

1% impact at leading order, is around 5 times the inner layer scale (see also Part I, II, and III).213

To a large extent, equations (28) and their inner layer approximation derived in the Appendix (see Eqs. 62) are214

similar to Eqs. (16)-(19) in Belcher and Wood (1996), and to the basic equations in other papers using linear theory215

in curved coordinates (Beljaars et al., 1987; Weng et al., 1997). In terms of dynamics nevertheless, there is one216

important difference with Belcher and Wood (1996): we do not consider explicitly the presence of an almost inviscid217

middle layer where the Scorer parameter (2) is dominated by the background wind curvature. The reason is that our218

numerical integration starts from around 5δ , which corresponds to altitudes where the background wind curvature is219

small (in the "matching region", the background gradients are almost constant). To appreciate better the significance220

of the middle layer in our case, we have followed Eqs (2.2) in Hunt et al. (1988b), translate them in non-dimensional221

form and calculate the middle layer scale as the highest altitude hm below which,222 




U Z Z

U






 ≫ 1 and





U Z Z

U






 ≫
BZ

U
2
, (30)

and always found that 0 < hm < 2δ with hm ≈ 0 when J is large and hm ≈ 2δ when J is small (not shown). The middle223

layer scale is either near the inner layer scale, or does not even exist (for cases when hm < δ , see Hunt et al. (1988b)).224

This is in contrast with the altitude of the turning levels, which are often well above δ when J , 0 (see Fig. 1c). In225

other words, our model potentially presents a large region between the inner scale and the turning points that can226

support the vertical propagation of internal gravity waves, these waves will fully interact with the turning levels and227

the inner layer yielding trapped lee waves that gradually attenuate downstream. This plus the intrinsic interest of228

providing uniform approximations are the major originalities of our work. Apart from these, our model is consistent229
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with the truncated mixing length model for turbulence adopted in the theory exposed in Belcher and Wood (1996)230

because it neglects the impact of turbulence above the inner layer consistent with the rapid-distortion mechanism.231

3 | WAVE FIELD AND TRANSITION FROM DOWNSTREAM SHELTERING TO232 UPSTREAM BLOCKING233

3.1 | Wave field234

To construct the solutions of Eqs. (27)-(28), we consider a very large periodic domain in the horizontal, e.g. 50 < X < 50235

sampled by 1024 points yielding a spectral resolution dk ≈ 0.06. The resolution in the vertical is refined near the236

surface when needed: typically, we set d Z ≈ S/10 near the surface (actually more for plotting purposes rather237

than for precision). Indeed, the solutions derived in Appendix are analytical in the outer and matching regions (see238

Eqs. (41)-(49)-(52) for the homogeneous solution and (60)-(61) for the particular solution). Hence, when the numerical239

integrations are carried out in the inner layer (A.1.3 for the homogeneous solution and A.2.3 for the particular solution)240

we use an adaptive vertical step to minimize the error. After being evaluated on the curved grid, the solutions are241

linearly interpolated on the rectangular grid, the vertical velocityw ′ being expressed out of W′ according to (28e). In242

all panels representing the velocity fields, we take for parameter values (12) and slope S = 0.2, their non dimensional243

counterpart being given in the caption of Fig. 2. Note that we will also systematically vary the non-dimensional244

turbulent lengths λ and z 0 to test the sensitivity of our results to these two parameters.

F IGURE 2 Non dimensional vertical velocity field w ′ for a mountain of slope S = 0.2, and boundary layer flow
with mixing length λ = 0.02 (corresponding inner layer δ ≈ 0.07) and roughness length z 0 = 0.001 (depth of the
critical layer z a ≈ 0.16). The boundary layer depth d = 1 except in (b) (e) and (h) where d = ∞. Contour interval
CI = 0.01 with negative values dashed. Note that all these patterns have been validated with the non-linear model
used in Lott et al. (2020b) (not shown).
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We plot in Fig. 2 the vertical velocity field w ′ when the outer flow has variable shear (left column), constant245

shear (middle column), and variable shear with the hydrostatic approximation (right column). In each case, we present246

results for increasing values of the Richardson number (from top to bottom). In the left column panels, harmonics with247

wavenumber k > √
J encounter a turning height above which they are evanescent (see Eqs. (41)-(42) when d = 1).248

In the middle column panels, all harmonics encounter a turning height. In the right column panels there is no turning249

point: all harmonics propagate upward when z → ∞.250

A first interesting aspect to notice is that the typical amplitude of the vertical velocity right on the windward side251

of the hill is near U (δ/2)S ≈ 0.04, which is the amplitude of the vertical velocity produced when an inviscid flow of252

speedU (δ/2) passes over a ridge of slope S (note that the contour interval in each panel stays the same at 0.01). This253

situation is very similar to the constant viscosity case discussed in Part I, where dissipative effects force streamlines,254

up to Z = δ/2, to be displaced vertically over a distance S , such that at Z = δ/2, the vertical velocity should scale as255

U (δ/2)S .256

If we now look for similarities with previous constant viscosity studies, we conclude that the solutions with vari-257

able wind in the first column are similar to those shown in Part III. In the near neutral case (Fig. 2a) almost no waves258

develop aloft because most harmonics encounter a turning height and perhaps because the resonant modes have259

longer horizontal wavelength than those predominantly excited by (19) (as in Part III and anticipating results in a sub-260

sequent paper). In contrast, when J = 0.5 in Fig. 2d, trapped waves dominate the response, because many harmonics261

still encounter turning altitudes, whereas near resonant modes have shorter horizontal wavelength. The response be-262

comes dominated by upward propagating waves when J = 2 in Fig. 2g. This occurs because less harmonics encounter263

turning height but there is also a system of trapped lee waves developing downstream.264

The solutions with constant shear in the second column are characterized by very weak waves up to J = 0.5265

(Figs. 2b and 2e) which is a consequence of the facts that (i) all harmonics encounter turning heights in the vertical, (ii)266

the turning heights are located near the surface (around ht ≈
√
J ) and (iii) upward waves cannot fully develop. When J267

increases further in Fig. 2h, trapped lee waves start to develop. They have two origins, the first is that in this case the268

gravity waves have more room to propagate vertically before returning to the surface downstream (see Part II), and269

the second is that the waves returning to the surface are less absorbed than in the constant viscosity case permitting270

downward propagation. A more complete analysis of the trapped waves will be given in a subsequent paper, but the271

onset of trapped waves when the wind shear becomes constant is reminiscent of the inviscid solutions with constant272

wind shear and non-zero wind at the surface in Keller (1994).273

The hydrostatic solutions in the right column present purely vertically propagating waves, as expected from274

Eq. (43), the vertical wavelength decreasing with J .275

3.2 | Downstream sheltering versus upstream blocking276

To characterize the near surface flow, we plot in Fig. 3 the wind perturbation caused by the hill, normalized by the277

incident wind and the total wind vector (background plus perturbation) in the quasi neutral and stratified cases shown278

in Figs. 2a and 2g. The neutral case in Fig. 3a shows a relative augmentation in wind amplitude above the hill top279

compared to the upstream flank, and an intensification above the hill crest that is characteristic of neutral flow over280

hills. Still in the near-neutral case, the wind amplitude along the downstream flank is also reduced compared to the281

upstream flank, a behaviour characterizing non-separated sheltering and produced by enhanced surface friction and282

dissipation as the air travels across the ridge. Note nevertheless that the sheltering effect is much less pronounced283

than in the constant viscosity case, a behaviour that naturally follows from the decrease of the diffusion coefficient284
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F IGURE 3 Near mountain velocity fields with the same parameters as in Figs. 2(b) and 2(h). The panels (a) (c) on
the left are for the total wind amplitude normalized by the background wind, √u2 +w 2/U (Z ) . The contour interval
is 0.1 with values below 0 in dash. The panels on the left are for the total wind vector u,w .

when approaching the surface (compare Fig. 3b here and Fig. 6b in Part II).285

In the stratified case in Figs. 3c and 3d the upslope/downslope asymmetry is much more pronounced: there is286

strong wind intensification on the downstream side, with strong downslope winds penetrating well into the inner287

layer. On the upstream side there is also pronounced deceleration, a process that we called non-separated blocking288

in Part II.289

We analyze more systematically the transition from neutral to stratified flow according to the downslope/upslope290

asymmetry (i.e. following Part III) in Fig. 4. We plot the ratio between the downslope wind intensity and upslope wind291

intensity,292

Max︸︷︷︸
z< 2S

3 ,0<x<2

√
u2 +w 2

/
Max︸︷︷︸

z< 2S
3 ,−2<x<0

√
u2 +w 2 , (31)

as a function of the Richardson number J . We also systematically vary the value of the mixing length λ between 0.005293

and 0.05, a range of variation that permits to satisfy δ ≪ 1 and to keep the dimensional values of λ of the order of294

20m and below when the the dimensional hill length varies between 200m< L < 5 km. In order to be consistent with295

our asymptotic analysis, we have to keep the roughness length λ/2 < z 0 < λ/40, and to keep z a = O (δ ) , z a being296

controlled by the ratio z 0/λ (see Eq. 14). Physically, it means that our calculations are only valid if the depth of the297

critical level z a compares with the inner layer scale. In practice we found that we should always satisfy the criterion298

5δ − z a > 0 to have inner solutions that converge.299

For almost all values of the dissipation parameters, Fig. 4 shows that the transition from neutral to stratified300

behaviour occurs for J ≈ 0.5, almost as in Part III (see Fig. 7b there). The sheltering is nevertheless less pronounced,301

the ratio (31) falling below 0.5 in the constant viscosity case when J ≪ 1 and for S = 0.15, whereas it is always302

between 0.5 and 1 for a larger slope (S = 0.2). Again this is related to the fact that here, dissipative effects are smaller303
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F IGURE 4 Downslope sheltering versus upstream blocking index defined as the ratio between the max
downslope wind amplitude and the max upslope wind amplitude (see Eq. (31)). Non-hydrostatic cases with variable
shears, S = 0.2, and for values of λ and z 0 shown in the legend.

near the surface when compared to the constant viscosity case.304

4 | WAVES STRESS AND MOUNTAIN DRAG305

4.1 | Pressure drag and Momentum fluxes306

To appreciate the action of the wave on the large-scale flow, we next use a momentum budget in curved coordinates307

by averaging in X the Boussinesq equation (22a) written in flux form,308

∂ρu

∂t
=

∂

∂Z

©­­­­«
−ρuW + p∂X z︸             ︷︷             ︸

τwav
+τX Z

ª®®®®¬
, (32)

where we have "re-"introduced a "large-scale" tendency on the left hand side to emphasize that we will use the309

stationary linear model to analyse the effect of the disturbances on the large-scale flow. This expression is appealing310

because the first two terms in themomentumflux on theRHSpermit to capture smoothly the transition frommountain311

drag at Z = 0 to the conventional "Eulerian mean" wave momentum flux when Z ≫ 1 (e.g. where Z = z ). To a312

certain extent this expression has also a Lagrangian character. In the surface layer, the averaging is simply along the313

streamlines that follow the ridge making the average in good part Lagrangian by construction. Above the inner layer314

it follows that when dissipation is weak, the Reynolds stress alone equals the pressure torque along streamlines (see315

Eq. 23 in Part I when dissipation is small). In the following, we analyse the wave stress τwav, which is the contribution316

of our linear solutions to the sum of these two terms, after verification that the second order contribution to the317

dissipative stress τX Z ,
(
λΛu ′

Z

)2, is significantly smaller than the wave stress in the inner layer.318

Figure 5a shows the surface pressure drag as a function of J in the variable shear case (d = 1) and for the different319

values of the parameters λ and z 0. The pressure drag is divided by S2, simply because we diagnose a quadratic term320

from a theory that is linear in S . On it, we see that the curves spread over a very large range of values and that the321

drag has a systematic tendency to increase with J . This is the classical behaviour where gravity wave drag gradually322

replaces the form drag due to non-separated sheltering andwhen the trapping region becomes thicker (Yu and Teixeira,323
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and for different values of λ and z o . a) Mountain drag τwav (Z = 0) ; b): Ratio between wave stress in the far field and
at the mountain drag (

τwav (Z = ∞)/τwav (Z = 0)
) .

2015). There is also a tendency for the drag to increase with λ. As the incident wind at the inner layer scale U (δ )324

increases with λ (not shown) this is consistent with our results in Part I where we show that it is the incident wind at325

the inner layer scale that controls the drag amplitude.326

The dependence of the drag on z 0 is related to flow stability. In the neutral case, say for J < 0.5, the drag increases327

with roughness ("triangles" are above "plus signs") simply because there ismore dissipation, making the shelteringmore328

pronounced ("triangles" are below "plusses" in Fig. 4). The situation reverses in the stratified case (J > 0.5) where the329

drag decreases when the roughness length increases. An interpretation could be that when z 0 increases, z a decreases,330

i.e. the critical level gets closer to the surface, which makes that the waves are more attenuated by the enhancement331

of the dissipative effects that occur near critical levels (Booker and Bretherton, 1967). As in these cases the drag is332

dominated by wave drag, enhanced wave dissipation could result in decreased wave drag.333

In Fig. 5b, we plot the ratio between the wave stress in the far field and the surface pressure drag. Without a334

surprise, one sees that for small J , most of the pressure drag is deposited at low levels (typically about 80% when335

J ≲ 0.1), which is a natural consequence of the fact that most harmonics are evanescent in the vertical and in the far336

field. At the other extreme for the stable cases, a good fraction of the drag radiates in the far field (about 70% when337

J > 1), with only 30% of the surface drag being eroded by dissipation. Finally, the transition region, say for 0.1 < J < 1,338

is remarkably rich in terms of variations in this ratio. When we look at the vertical velocity fields in Fig. 2 and compare339

the casewith J = 0.5 in Fig. 2e to the other less stable andmore stable cases in Figs. 2b and 2h respectively, we see that340

the transition region is clearly dominated by trapped lee waves that do not contribute substantially to the momentum341

flux in the far-field. In this intermediate regime, we also observe a big variability in the momentum flux arriving in342

the far field. As an illustration, we see in Fig. 5b that for J = 0.3, about 20% of the drag becomes a momentum flux343

when (λ = 0.005, z 0 = λ/2) (black line with triangles), whereas it is 80% when (λ = 0.035, z 0 = λ/10) (blue line with344

diamonds).345

Following the earlier suggestion that the incident velocity relevant for the drag must be measured at the inner346

layer scale, Fig. 6a shows the pressure drag divided byU (δ/2)S2, which is an estimate of the wave drag occurring for347

an incident flow of speed U (δ/2)S2 when J = 1. We believe that this predictor could also work for the drag due to348

non-separated sheltering because it compares relatively well to δu (S )S , a measure of the drag associated with the349

pressure decrease across the hill that equilibrates surface friction (see Part II). With this normalization, one sees that350
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lines in a) and c) are for the rough estimates of the variations in drag with Richardson number discussed in Section 5
(see Eqs. (33) and (34) respectively).

the drag values remain on the order of magnitudes around 1 with smaller values in the neutral cases and larger values351

in the stratified cases. The figure also illustrates well the transition around J = 1, with larger drag in the stratified case.352

There is nevertheless a rich variability in drag as a function of z 0 and λ when stability is large: we did not manage to353

capture this variability with a simple predictor.354

To emphasize the significance of the conditions of wave propagation aloft, we plot in Figs 6b and Figs 6c the drag355

when all the waves are trapped (the non-hydrostatic case with constant shear) and free to propagate aloft (hydrostatic356

with variable shear) respectively. When all the disturbances are trapped in Fig. 6b, the transition at J ≈ 1 is even more357

pronounced than in Fig. 6a. In almost all cases, and when J varies between 0.5 and 1, the drag decreases before358

increasing rapidly as J approaches 1. These rapid transitions occur for all values of λ and z 0, as was also seen in359

the constant viscosity case. This variation is related to the interaction between the reflected waves and the surface360

(yielding relatively low and high drag states (see also Teixeira et al. (2013a)). When all the waves can propagate aloft,361

we observe the opposite behaviour (Fig. 6c, hydrostatic variable shear). The variations in drag with J are much less362

dramatic than in the other two cases. Interestingly, one sees that for small J the pressure drag is larger than in Figs. 6a363

and 6b, illustrating that allowing all the disturbances to propagate freely as gravity waves in the vertical direction364

favors the drag. Of course this is academic, since only few disturbances can propagate vertically when J is small in365

the non-hydrostatic case but it illustrates the general significance of the waves for the mountain drag.366

Finally, Fig. 7 shows vertical profiles of the waves stress (τwav in Eq. 32) in the nine cases presented in Fig.2. As367

expectedwe see a decreasewith altitude of themomentumflux, which typically occurs over a depth near Z ≈ 3δ ≈ 0.2.368

The fact that such a decrease occurs inside the inner layer depth 5δ is systematic, but the exact depth is somehow369

dependent on the critical level depth z a (and hence z 0) (not shown). We see that themomentum flux decrease has two370

causes: (i) the effect of wave trapping that always dominates the constant shear case (black curves) and (ii) the erosion371

by dissipation of the waves when they travel upward through the inner layer and that is the only mechanism at work in372

the hydrostatic case (about 15% to 20% erosion, see blue curves). In the non-hydrostatic case with variable shear, one373

sees that the two effects contribute almost equally. For instance in the stratified case (J = 2), the red and blue dotted374

curves show that the decrease of the stress in the inner layer is two to three times larger in the non-hydrostatic case375

than in the hydrostatic one. The contribution of the trapped waves to the momentum flux decay equals and exceeds376

the erosion of the freely propagating waves.377
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5 | SUMMARY AND DISCUSSION378

In dynamical meteorology and oceanography, boundary layer turbulence is often parameterized with an eddy diffusiv-379

ity in order to capture the interaction between the surface and the boundary layer. Although these types of closure380

are today questioned, for instance because the smallest scales of turbulence can backscatter on the large scales381

(Schumann and Launder, 1995; Weinbrecht and Mason, 2008), or in mountaneous areas, because the turbulence is382

notoriously non-homogeneous in the horizontal direction (Stiperski and Rotach, 2016), many numerical models still383

use them. It seems therefore essential to provide theory that could help explain the behaviour of these models, e.g.384

the system of mountain waves developing in a boundary layer parameterized by a classical mixing length closure.385

This type of study could also provide some guidance to develop parameterization of subgrid scale orography for386

at least two reasons. The first is that parameterizations of subgrid scale mountains are rooted in linear theories that387

depict (i) the interaction between the boundary layer and subgrid scale orography using eddy diffusivity closure, and388

(ii) the generation of mountain waves in the stratified case neglecting the boundary layer (except that the large-scale389

flow that enters in the evaluation of thewave drag is impacted by the boundary layer). The second is that the transition390

between stratified and neutral flow can seemingly be characterized by near resonant trapped lee waves which are not391

well parameterized in models. The present paper provides some answers to help developing a parameterization that392

encompasses all the scales of the SSO. The first answer is that it suggests that the incident wind value at the inner layer393

scale should be used to measure the drag (or average over the inner layer, see normalisation in Fig. 6). In a large-scale394

model that uses a viscosity type closure, and for a given mountain length, this height can be diagnosed by comparing395

the amplitude of the disturbance advection with dissipation (according to Eq. 1). With our mixing length model closure396

this is well approximated by δ = L1/3λ2/3 as in Eq. (18) with k = 1/L. The second answer is that the nature of the drag397

(i.e. mountain drag due to non-separated sheltering versus gravity wave drag) has to be decided above the inner layer.398

This is very important because it can be done without requesting information about the properties of the turbulence399

itself: we just have to find, for a given mountain length L the turning point altitude ht , defined in Eq. 2, and compare400

it to L. If ht < L gravity waves have not enough space to develop in the vertical and the dynamics is neutral, if ht > L401



18 Francois Lott et al.

the dynamics is stratified. More specifically, in the constant shear cases with the turning altitude at around ht ≈
√
JL,402

small (large) values of J mean that the turning altitude is close to the surface (far from the surface) and we found403

neutral (stratified) behaviour. In the variable shear case, the turning altitude is slightly above the surface for small J404

and substantially higher (up to the top of the atmosphere) for large J yielding about the same qualitative conclusions.405

In contrast to Belcher andWood (1996), we find that this turning altitude should not be used to evaluate the incident406

wind that enters in the drag formula.407

Making closed form predictions beyond the fact that the drag scales with ρs

(
u∗L
λ U (δ/2)S2

) turned out to be408

quite difficult, so we did not propose any in the core of the paper. Nevertheless, we can suggest some attempts to409

capture at least the J dependence. The first is410 (
ρs

u∗L
λ

U (δ/2)S2

)
0.25 ∗

(
1 + 2

√
J
)
, (33)

where the first term in parenthesis is the dimensional form of the normalization used in Fig. 6, and the second term411

is the sum of a form drag and a wave drag, as shown by the thick black curves in Fig. 6a and 6c. This fit is adapted412

in the hydrostatic case when all disturbances becomes waves in the far field. It overestimates the drag in the neutral413

case, where gravity waves should not play a role. So, to separate both regimes and allow a rapid transition from one414

to the other we also plot in thick grey the predictor415 (
ρs

u∗L
λ

U (δ/2)S2

)
∗ 0.25 ∗

(
1 +

(
1 + tanh

(
(J − 0.5)

0.5

)) √
J

)
. (34)

The tanh term in (34), limits the wave contribution in the neutral case and allows for a quite rapid transition from the416

neutral to the stratified cases. The rapid increase in drag when J ≈ 0.5 is presumably related to trapped waves.417

An important limitation of our work is nevertheless that we have focused on the depth of the trapping region and418

less on the relative amount of waves that stay trapped (i.e. that are evanescent for z → ∞). This relative amount is419

controlled by the inverse Froude number420

F =
U (∞)
N (∞)L , (35)

which is well known to control the non-hydrostatic effect on the mountain wave drag. (Teixeira et al., 2013b). In the421

constant shear case (F = ∞), all the waves stay trapped; in the variable shear case (F = L
d
√
J
), the fraction of trapped422

waves decreases when J increases because we always take d/L = 1; and in the hydrostatic case (F ≈ 0), all the waves423

propagate up. Accordingly, it is likely that the increase in drag with J in Figure 6a is due to the fact that more waves424

can propagate up. To illustrate that this effect is at work in our results, we notice that when J is small (J ≤ 0.5) the425

drag is larger in the variable shear case then when all the waves are trapped (Figure 6b) and smaller than when all426

can propagate up (Figure 6a). In a companion paper, we do experiments where J only controls the free shear layer427

stability not the amount of trapping, for instance leaving F r constant by taking d = L√
J
.428

We are not going to speculate further on the application of our results except to formulate them in a way that429

involve further the background flow at the dynamical levels we have identified. We can for example approximate430

the wind factor u∗L
λ byU (ht ) , and interpret the Richardson number dependence in terms of ht the ratio between the431

turning heights and the mountain length in which case, the drag predictor (33) can be roughly approximated by432

ρsU (ht )U (δ/2)S2 ∗ h2c ∗ (1 + ht /hc ) where ht =
ht
L
, (36)
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hc = 0.5 being a critical value. In all these formula one should replace ht by the "normalized" boundary layer depth433

d when it is larger. This formula could be compared to (72) and (73) in Belcher and Wood (1996), the slope S being434

replaced byHk and ht by the inverse of a Froude number (F rt = U (ht )
LN (ht ) ). According to the above discussion concerning435

the potential role of the Froude numbers on the dynamics and drag we leave this issue to further analysis. In this paper,436

the most significant difference we identify is that one of the two background wind values in (36) is to be taken near437

the inner layer scale (i.e. in δ/2) not at the turning altitude ht . Nevertheless, the most important similarity is that in438

both formulations, the nature of the dynamics (neutral or stratified) has to be decided at the turning height.439

A | MIXED THEORETICAL FINITE DIFFERENCE MODEL440

To solve the set of equations (28) over a semi infinite domain we combine theoretical inviscid solutions and numerical441

solutions in the inner layer, the inner layer scale varying for each harmonics according to:442

δ (k ) =
(
λ
2

k

)1/3
. (37)

The matching between the inviscid or "outer layer" solution will be made in a matching region in which analytical443

asymptotic solutions are also derived. These "matching" solutions will permit to initialize the dissipative equations at444

z ≈ 5δ , which is relatively near the ground, and integrate them down to the surface to give the "inner solutions". The445

uniform solutions are combinations of these three "outer", "matching" and "inner" solutions, they will be evaluated446

for both the homogeneous solution and the particular solution. The derivation of the matching solutions is central to447

our study, because in them one can identify those asymptoting the inviscid solution, and which are the Booker and448

Bretherton (1967) solutions, and those with exponential growth with altitude and which are purely due to dissipations.449

The fact that they have exponential growth explains why the system we analyse is almost impossible to integrate450

numerically from z ≈ ∞ to the surface.451

A.1 | Homogeneous solution452

A.1.1 | Outer solution453

When λ ≪ 1 and without the right hand side terms, the set of equations (28) reduce to the homogeneous inviscid454

equations. We will use this approximation where Z ≫ δ , and as δ > λ, they can be solved using the background455

profiles approximated by456

U ≈ d tanh Z + z a

d
, B ≈ J

(
Z + z a

)
. (38)

For such profiles the inviscid homogeneous part of (28) satisfies the Taylor-Goldstein equation,457

d 2W
d Z

2
+

(
J

U
2
+ 2

d
2

(
1 − U

2

d
2

)
− k

2

)
W = 0, (39)

which solutions can be expressed in terms of Haenkel functions when d = ∞ or hypergeometric functions when d , ∞458

(i.e. the solution namedwI given Eq. (12) in Part II and Eq. (13) in Part III respectively). The only difference with Part II459
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and Part III is that the critical level is at Z = −z a rather than at Z = 0, a behaviour that is transparent when we write460

the asymptotic forms461

WI (z ) = wI (k , Z + z a ) ≈︸︷︷︸
Z→∞

e−m (Z +z a ) , (40)

≈︸︷︷︸
Z→0

a1

(
Z + z a

)1/2−i µ
+ a2

(
Z + z a

)1/2+i µ
= WIM , (41)

where the a1 and a2 are given by (13) in Part II when d = ∞ and by (A12) in Part III when d , ∞. Still in (41),462

µ =

√����J − 1

4

����, and m =

√���k 2 − J/d 2
���, (42)

when J > 1/4 and k
2
d
2
> J respectively. When J < 1/4, µ is changed in i µ and when k

2
d
2
< J , m is changed463

in −i sign(k )m. Solution (41) corresponds to a "unit amplitude" exponentially decaying mode when Z → ∞ (or re-464

sumeard propagating wave when m is imaginary). Near the surface (41) behaves like the linear combinations of the465

near critical level solutions of Booker and Bretherton (1967), the critical level being located below the surface (at466

Z = −z a ). The function wIM in (41) is a matching function that will play a central role in the build up of uniform467

approximations.468

Note finally that when the shear varies in the far field, the hydrostatic approximation is simply obtained by chang-469

ing m in (42) by470

m = −i sign(k )√J/d . (43)

A.1.2 | Matching region471

An important aspect of our work is that there exists a matching region when Z is small but above the surface layer472

where dissipative effects starts being significant. In this region, the backgroundwind shear and stratification are almost473

constant (in dimensional form see (13)) and we can find approximate form of the viscous solutions that will match the474

outer solution and that will allow to initialise analytically the inner layer numerical integration. In this matching region,475

the homogeneous parts of Eqs. (28) are approximated by476

i k (Z + z a )u +W + i kp − 2λ
2
∂Z ∂Z u = 0. (44a)

477

i k (Z + z a )b + JW − λ2∂Z

(
∂Z b + J ∂Z u

)
= 0, (44b)

478

∂Z p − b = 0, and i ku + ∂ZW = 0, (44c)
which can be approximated by one 6t h order equation for W:479

2δ
6W(6) − 3i (Z + z a )δ

3W(4) − (2 − J )i δ3W(3) − (Z + z a )2W(2) − JW = 0. (45)
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To find asymptotic solutions we follow Koppel (1964) and try the WKB Ansatz,480

W(Z ) = A (Z + z a )e
B (Z +z a )

ϵ , (46)
where A and B are functions and ϵ a small parameter. If we use that481

W(n ) ≈
(
A ¤Bn

ϵn
+ n

¤A ¤Bn−1

ϵn−1
+ n (n − 1)

2

A ¥B ¤Bn−2

ϵn−1
+O (ϵ2−n )

)
eB/ϵ , (47)

a choice that left non-degenerated (45) at the leading order is ϵ = δ
3/2. In this case and at order ϵ−2 one has:482

2 ¤B6 − 3i (Z + z a ) ¤B4 − (Z + z a )2 ¤B2 = 0. (48)
This admits 3 solutions corresponding to disturbances that do not grow exponentially in the far field:483

¤B = 0, ¤B = −
√
i

√
Z + z a , and ¤B = −

√
i /2

√
Z + z a .

When ¤B = 0 all terms with powers in δ in (45) are small which give the two inviscid solutions of Booker and Bretherton484

(1967):485

(Z + z a )
1
2 −i µ ; (Z + z a )

1
2 +i µ . (49)

For ¤B , 0 one needs to go to order ϵ−1 and obtain:486

¤A
(
12 ¤B5 − 12i (Z + z a ) ¤B3 − 2(Z + z a )2 ¤B

)
487

+A
(
30 ¥B ¤B4 − 18i (Z + z a ) ¥B ¤B2 − (2 − J )i ¤B3 − (Z + z a )2 ¥B

)
= 0. (50)

After substitution of ¤B this gives488

¤A
A

= − 9 + 2J

4(Z + z a )
and ¤A

A
= − 5 − 2J

4(Z + z a )
(51)

for ¤B = −
√
i

√
Z + z a , and ¤B = −

√
i /2

√
Z + z a respectively. This gives two other WKB solutions,489

(Z + z a )−
9+2J
4 e

− 2
3

√
i

(
Z +z a
δ

)3/2
; (Z + z a )−

5−2J
4 e

− 2
3

√
i
2

(
Z +z a
δ

)3/2
. (52)

The inner solutions having these asymptotic behaviour do not need to be matched to the outer solution because they490

decay exponentially fast in the vertical, they are mandatory to satisfy the 3 no-slip surface conditions.491
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A.1.3 | Inner solutions492

To evaluate the solution when Z → 0, we next introduce the inner layer scale and the inner variables,493

δ =

(
λ
2

k

)1/3
, Z + z a = δ (Z̃ + z̃a ), W = δkW̃, p = δp̃, u = ũ, b = b̃ . (53)

With these new variables and at leading order, the homogeneous part of (28) transforms into:494

i Ũ ũ + ŨZ̃ W̃ = −i p̃ + ∂Z̃ 2Λ̃∂Z̃ ũ, (54a)
495

i Ũ b̃ + JŨZ̃ W̃ = ∂Z̃ Λ̃
(
∂Z̃ b̃ + J ∂Z̃ ũ

)
. (54b)

496

∂Z̃ p̃ = b̃, and i ũ + ∂Z̃ W̃ = 0, (54c)
Here, we have also written497

U ≈ δŨ , where Ũ =
λ̃

κ
log

( sinh κ (Z̃ + z̃0 )/λ̃sinh κz̃0/λ̃
)
, Λ̃ = tanh

(
κ
Z̃ + z̃0

λ̃

)
, (55)

which take into account that in the inner layer U scales as δ and U ≈ UV . As in Lott et al. (2020a) 3 solutions of498

(54) are evaluated numerically using a standard Runge-Kutta algorithm with adaptative vertical mesh, the integrations499

typically starting around z̃ ≈ 5 initialized by the matching functions and integrated toward the surface.500

More specifically, and to ensure the matching with the outer solution, we first evaluate the inner solution W̃2501

which almost coincides with the matching function WIM when Z̃ → ∞, i.e we initialize the integration with502

W̃2 ≈︸︷︷︸
z̃→∞

ã1 (z̃ + z̃a )1/2−i µ + ã2 (z̃ + z̃a )1/2+i µ , where ã1 =
a1
k
δ
−1/2−i µ

, ã2 =
a2
k
δ
−1/2+i µ

. (56)

Second and to permit to satisfy the 3 boundary conditions we also evaluate numerically the two solutions that are503

exponentially small in the far field, i.e. the two solutions W̃3 and W̃4 with asymptotic behaviours (52):504

W̃3 ≈︸︷︷︸
Z̃→∞

(Z̃ + z̃a )−
9+2J
4 e−

2
3

√
i (z̃+z̃a )3/2 , and W̃4 ≈︸︷︷︸

Z̃→∞

(Z̃ + z̃a )−
5−2J
4 e

− 2
3

√
i
2 ( Z̃ +z̃a )3/2 . (57)

A.1.4 | Uniform approximations505

Now that we have inner, matching and outer solutions, we can build uniform approximations out of the three, but all506

have to be written with the same coordinate. If we take the outer coordinate for instance, the uniform approximation507

for the vertical velocity of the outgoing solution can be written508

W2U (Z ) = WI (Z ) + k δW̃2 (Z /δ ) − WIM (Z ) . (58)
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whereas the uniform approximations of the viscous solution corresponding to W̃3 and W̃4 simply consist in writing509

them using outer coordinates, both functions becoming exponentially small in the outer layer (in this case, outer and510

matching just coincide):511

W3U (Z ) = k δW̃3 (Z /δ ), W4U (Z ) = k δW̃4 (Z /δ ) . (59)

A.2 | Particular solution512

A.2.1 | Outer solution (z ≫ δ )513

When neglecting the viscous terms in (28), a particular solution is the linear approximation of the difference between514

the backgrounds expressed in cartesian and curved coordinates (for the wind the difference U (z ) − U (Z )), yielding515

uI p = zU Z , bI p = zBZ , pI p = zB (Z ), and WI p = −i kUz. (60)

A.2.2 | Matching region516

In the matching region, this solution is517

uMp = z, bMp = Jz, pMp = J (Z + z a )z, and WMp = −i k (Z + z a )z. (61)

A.2.3 | Inner region518

In the inner region, we use the scalings (53) and (55) yielding at leading order,519

i Ũ ũ + ŨZ̃ W̃ + i p̃ − ∂Z̃ 2Λ̃∂Z̃ ũ = i B̃h, (62a)
520

∂Z̃ p̃ − b̃ = 0, (62b)
521

i Ũ b̃ + B̃ Z̃ W̃ − ∂Z̃ Λ̃
(
∂Z̃ b̃ + J ∂Z̃ ũ

)
= 0, (62c)

522

i ũ + ∂Z̃ W̃ = 0. (62d)
The particular solution is obtained through numerical integration of Eqs. (62) initialized by the particular solution523

matching function (61). If we call W̃V p (k , Z̃ ) the solution, an uniform expression of the particular solution can be524

written525

WUp (k , Z ) = WI p (k , Z ) + k δW̃V p (k , Z /δ ) − WMp (k , Z ), (63)
with similar expressions for uUp and bUp .526
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A.3 | Boundary conditions527

We then re-write the complete flow fields combining linearly the three homogeneous uniform solutions and the par-528

ticular uniform solution,529

W(X , Z ) =
∫ +∞

−∞

(
f2 (k )W2U (k , Z ) + f3 (k )W3U (k , Z ) + f4 (k )W3U (k , Z ) +WpU (k , Z )

)
e i k X dk , (64)

with similar expressions for u, b and p. With this notation, the surface conditions (29) give,530

f2 (k )W2U (k , 0) + f3 (k )W3U (k , 0) + f4 (k )W4U (k , 0) = −WUp (0), (65)
with similar expression for u and b. The 3 relations obtained for each k permit to evaluate the coefficients fi (k ) and531

reconstruct the wave field after inverse Fourier transform and interpolation on the rectangular grid.532

references533

Allen, T. and Brown, A. (2002) Large-eddy simulation of turbulent separated flow over rough hills. Boundary-LayerMeteorology,534

102, 177–198.535

Ambaum, M. and Marshall, D. (2005) The effects of stratification on flow separation. Journal of the Atmospheric Sciences, 62,536

2618–2625.537

Belcher, S. E. and Wood, N. (1996) Form and wave drag due to stably stratified turbulent flow over low ridges. Quart. J. Roy.538

Meteor. Soc., 122, 863–902.539

Beljaars, A., Walmsley, J. and Taylor, P. (1987) A mixed spectral finite-difference model for neutrally stratified boundary-layer540

flow over roughness changes and topography. Boundary-Layer Meteorology, 38, 273–303.541

Beljaars, A. C. M., Brown, A. R. and Wood, N. (2004) A new parametrization of turbulent orographic form drag. Quarterly542

Journal of the Royal Meteorological Society, 130, 1327–1347.543

Boegman, L. and Stastna, M. (2019) Sediment resuspension and transport by internal solitary waves. Annual Review of Fluid544

Mechanics, 51, 129–154.545

Booker, J. R. and Bretherton, F. P. (1967) The critical layer for internal gravity waves in a shear flow. J. FluidMech., 27, 102–109.546

Chimonas, G. and Nappo, C. J. (1989) Wave drag in the planetary boundary layer over complex terrain. Boundary-layer mete-547

orology, 47, 217–232.548

Clark, T. L. (1977) A small-scale dynamic model using a terrain-following coordinate transformation. Journal of Computational549

Physics, 24, 186–215.550

Durran, D. R. (1990) Mountain waves and downslope winds. AMS Meteorological Monographs, 23, 59–83.551

Finnigan, J., Ayotte, K., Harman, I., Katul, G., Oldroyd, H., Patton, E., Poggi, D., Ross, A. and Taylor, P. (2020) Boundary-layer552

flow over complex topography. Boundary-Layer Meteorology, 177, 247–313.553

Hunt, J. C. R., Leibovich, S. and Richards, K. J. (1988a) Turbulent shear flows over low hills. Quart. J. Roy. Meteor. Soc., 114,554

1435–1470.555

Hunt, J. C. R., Richards, K. J. and Brighton, P. W. M. (1988b) Stably stratified shear flow over low hills. Quart. J. Roy. Meteor.556

Soc., 114, 859–886.557



Francois Lott et al. 25

Keller, T. L. (1994) Implications of the hydrostatic assumption on atmospheric gravitywaves. Journal of the atmospheric sciences,558

51, 1915–1929.559

Koppel, D. (1964) On the stability of flow of a thermally stratified fluid under the action of gravity. Journal of Mathematical560

Physics, 5, 963–982.561

Lott, F., Deremble, B. and Soufflet, C. (2020a)Mountain waves produced by a stratified boundary layer flow. part i: Hydrostatic562

case. Journal of the Atmospheric Sciences, 77, 1683–1697.563

— (2020b) Mountain waves produced by a stratified shear flow with a boundary layer. part ii: Form drag, wave drag, and564

transition from downstream sheltering to upstream blocking. Journal of the Atmospheric Sciences.565

Lott, F. and Miller, M. (1997) A new subgrid scale orographic drag parameterization; its testing in the ecmwf model. Quart. J.566

Roy. Meteor. Soc., 123, 101–127.567

Palmer, T. N., Shutts, G. J. and Swinbank, R. (1986) Alleviation of systematic westerly bias in general circulation and numerical568

weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112,569

2056–2066.570

Pokharel, B., Geerts, B., Chu, X. and Bergmaier, P. (2017) Profiling radar observations and numerical simulations of a downslope571

wind storm and rotor on the lee of the medicine bow mountains in wyoming. Atmosphere, 8, 39.572

Reinert, D., Wirth, V., Eichhorn, J. and Panhans, W.-G. (2007) A new large-eddy simulation model for simulating air flow and573

warm clouds above highly complex terrain. part i: The dry model. Boundary-layer meteorology, 125, 109–132.574

Richard, E., Mascart, P. and Nickerson, E. C. (1989) The role of surface friction in downslope windstorms. J. Appl. Meteor., 28,575

241–251.576

Ross, A., Arnold, S., Vosper, S., Mobbs, S., Dixon, N. and Robins, A. (2004) A comparison of wind tunnel experiments and577

simulations of neutral and stratified flow over a hill. Boundary-Layer Meteorology: an international journal of physical and578

biological processes in the atmospheric boundary layer, 113, 427 – 459.579

Sachsperger, J., Serafini, S. and Grubisic, V. (2015) Lee waves on the boundary-layer inversion. Frontiers in Geophysics, Submit-580

ted.581

Sauer, J. A., Muñoz-Esparza, D., Canfield, J. M., Costigan, K. R., Linn, R. R. and Kim, Y.-J. (2016) A large-eddy simulation study of582

atmospheric boundary layer influence on stratified flows over terrain. Journal of the Atmospheric Sciences, 73, 2615–2632.583

Schumann, U. and Launder, B. E. (1995) Stochastic backscatter of turbulence energy and scalar variance by random subgrid-584

scale fluxes. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 451, 293–318.585

Smith, R. B., Jiang, Q. and Doyle, J. D. (2006) A theory of gravity wave absorption by a boundary layer. J. Atmos. Sci., 63,586

774––781.587

Soontiens, N., Stastna, M. and Waite, M. L. (2015) Topographically generated internal waves and boundary layer instabilities.588

Physics of Fluids, 27, 086602.589

Soufflet, C., Lott, F. and Deremble, B. (2022) Mountain waves produced by a stratified shear flow with a boundary layer. part590

iii: Trapped lee waves and horizontal momentum transport. Journal of the Atmospheric Sciences, 79, 1601 – 1614.591

Stiperski, I. and Rotach, M. W. (2016) On the measurement of turbulence over complex mountainous terrain. Boundary-Layer592

Meteorology, 159, 97–121.593

Sun, J. (2011) Vertical variations of mixing lengths under neutral and stable conditions during cases-99. Journal of Applied594

Meteorology and Climatology, 50, 2030–2041.595



26 Francois Lott et al.

Teixeira, M. A. C., Argain, J. L. andMiranda, P. M. A. (2013a) Orographic drag associated with lee waves trapped at an inversion.596

J. Atmos. Sci., 70, 2930–2947.597

Teixeira, M. A. C., Argaín, J. L. and Miranda, P. M. A. (2013b) Drag produced by trapped lee waves and propagating mountain598

waves in a two-layer atmosphere. Quarterly Journal of the Royal Meteorological Society, 139, 964–981.599

Tsiringakis, A., Steeneveld, G.-J. and Holtslag, A. (2017) Small-scale orographic gravity wave drag in stable boundary layers600

and its impact on synoptic systems and near-surface meteorology. Quarterly Journal of the Royal Meteorological Society,601

143, 1504–1516.602

Voigt, M. and Wirth, V. (2013) Mechanisms of banner cloud formation. Journal of the Atmospheric Sciences, 70, 3631–3640.603

Vosper, S. B., Brown, A. R. andWebster, S. (2016) Orographic drag on islands in the nwpmountain grey zone. Quarterly Journal604

of the Royal Meteorological Society, 142, 3128–3137.605

Weinbrecht, S. and Mason, P. J. (2008) Stochastic backscatter for cloud-resolving models. part i: Implementation and testing606

in a dry convective boundary layer. Journal of the Atmospheric Sciences, 65, 123–139.607

Weng,W., Chan, L., Taylor, P. and Xu, D. (1997)Modelling stably stratified boundary-layer flow over low hills. Quarterly Journal608

of the Royal Meteorological Society, 123, 1841–1866.609

Wieringa, J. (1992) Updating the davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics,610

41, 357–368. URL: https://www.sciencedirect.com/science/article/pii/016761059290434C.611

Wood, N., Brown, A. and Hewer, F. (2001) Parameterizing the effects of orography on the boundary layer: an alternative to612

effective roughness lengths. Quart. J. Roy. Meteor. Soc., 127, 759–777.613

Wood, N. and Mason, P. (1993) The pressure force induced by neutral, turbulent flow over hills. Quart. J. Roy. Meteor. Soc.,614

119, 1233–1267. 206,1 96615

Yu, C. L. and Teixeira, M. C. (2015) Impact of non-hydrostatic effects and trapped lee waves on mountain-wave drag in direc-616

tionally sheared flow. Quarterly Journal of the Royal Meteorological Society, 141, 1572–1585.617


