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Linear theory is used to analyze trapping of infrasound within the lower tropospheric waveguide

during propagation above a mountain range. Atmospheric flow produced by the mountains is pre-

dicted by a nonlinear mountain gravity wave model. For the infrasound component, this paper

solves the wave equation under the effective sound speed approximation using both a finite differ-

ence method and a Wentzel–Kramers–Brillouin approach. It is shown that in realistic configura-

tions, the mountain waves can deeply perturb the low-level waveguide, which leads to significant

acoustic dispersion. To interpret these results, each acoustic mode is tracked separately as the hori-

zontal distance increases. It is shown that during statically stable situations, situations that are com-

mon during night over land in winter, the mountain waves induce a strong Foehn effect

downstream, which shrinks the waveguide significantly. This yields a new form of infrasound

absorption that can largely outweigh the direct effect the mountain induces on the low-level wave-

guide. For the opposite case, when the low-level flow is less statically stable (situations that are

more common during day in summer), mountain wave dynamics do not produce dramatic responses

downstream. It may even favor the passage of infrasound and mitigate the direct effect of the obsta-

cle. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5020783

[DKW] Pages: 563–574

I. INTRODUCTION

Infrasound, which is defined as sound waves that are

lower in frequency than 20 Hz, is characterized by an ability

to travel over long horizontal distances in the atmosphere.

This is related to the fact that the wind and temperature

strongly vary with altitude, providing multiple ducts in

which infrasound can propagate efficiently.1 Although an

important duct is potentially in the lower thermosphere, as a

result of the steep increase in temperature (e.g., above

90 km), the decrease in mean density produces substantial

absorption coefficients there.2 For this reason, the most effi-

cient ducts are often within the middle atmosphere, e.g.,

above the tropopause at around 20 km and below the meso-

pause at 90 km. At lower altitudes, infrasound can also be

trapped within tropospheric waveguides over distances that

may reach several hundred of kilometers, at least when the

weather conditions permit.3,4 However, in this case, the

wave interacts with the ground surface much more than

wave refracting higher in the atmosphere and topographic

features produce quantifiable effects on the recorded data.5

Furthermore, at these altitudes, the absorption coefficient is

small, and thus it is neglected in most practical applications.

Although much less studied, the propagation of infra-

sound over distances of a few tens of kilometers can be con-

trolled by a planetary boundary layer duct,6,7 which is a

region of approximately 1 km depth in which the boundary

effects are reflected in the flow.8 For these relatively short

propagation ranges, the upward refraction at higher altitudes

(around and above the tropopause) can be ignored7 and the

acoustic field can be described by a modal expansion involv-

ing a few modes. For completeness, it is important to note

that the absorption properties of ground play a significant

role,9 in the sense that vegetation-covered land absorbs more

energy than bare-ground for instance. We know that some

modes are sensitive to such absorptions,10,11 but we will not

include these effects here essentially because a comprehen-

sive theory of acoustic propagation which accounts for both

absorption by vegetation and turbulence is lacking.

The common approach to calculate infrasound propagation

in the atmosphere consists in solving the acoustic equation in a

given background atmospheric state that varies with altitude

and horizontal distance. This approach captures the most signif-

icant ducts, but sometimes it fails in predicting important arriv-

als.12–14 The reason is that the atmospheric specifications that

are issued from operational numerical weather forecasts (e.g.,

provided by the European Centre for Medium-Range Weather

Forecasts Integrated Forecast System or the National Oceanic

and Atmospheric Administration Global Forecast System) or

atmospheric climate reanalysis (e.g., European Research

Associates-Interim or NASA Modern Era Retrospective

Reanalysis for Research and Applications), are associated with

spatial resolutions that are much larger than the typical infra-

sound wavelength. These products therefore fail in representing

important small-scale atmospheric fluctuations that can sub-

stantially modify the larger-scale ducts,15 especially for border-

line ducts that barely return sound to the ground. The statistics

of these fluctuations, however, are poorly understood, whereas
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their knowledge is required for infrasound propagation model-

ing. For instance, Chunchuzov et al.16 have shown the need to

introduce random atmospheric perturbations to adequately rep-

resent the acoustic properties of the boundary layer, but in their

work the sources of perturbations are not specified. As in the

troposphere, the (unresolved) fluctuations are mainly produced

by mountains,17 the contribution of these mountains to infra-

sound propagation remains an important open question.

In a first attempt to incorporate topography effects in

acoustic propagation, high-resolution terrain models have

been used to represent the lower boundary by a sequence of

up and down stair steps.5,18 In this approach, mountains

directly modify the altitude of the lower boundary of the tro-

posphere, which affects the acoustic cut-off frequencies of

the corresponding ducts. This can be viewed as applying a

“mask” onto the atmospheric specifications, and ignoring the

direct influence of the mountain ridges on the local wind and

temperature fields. This is an extremely serious limitation,

given that mountains can dynamically produce very intense

phenomena, like downslope winds, Foehn, or trapped lee

waves.19,20 As an illustration, it is worth mentioning that

even small “mountains,” with elevations of a several hun-

dred meters, can develop substantial winds and temperature

disturbances depending on the incoming flow structure.19

There are two primary objectives in the present investi-

gation. The first is to compare the results of the “mask”

approximation to that obtained with a wind model that cap-

tures the interaction between the topography and the bound-

ary layer. The second objective is to examine the physical

mechanisms that cause a low level acoustic duct to be

affected and eventually destroyed by mountain-induced dis-

turbances. Here we use the mountain flow model described

by Lott.21 With respect to our first objective, this model

involves a nonlinear boundary condition, i.e., it includes an

obstacle that penetrates inside the low-level waveguide and

reduces its depth, an effect that potentially recovers the clas-

sical “mask” technique. It is worth while to point out that the

model also predicts a mountain wave field, which compares

in amplitude to the background winds and temperature varia-

tions responsible for the waveguide. This inherently affects

the trapped acoustic modes, yielding highly dispersed signals

as well as irreversible absorption of the acoustic wave pass-

ing over the ridge.

The paper is organized as follows. In Sec. II, the moun-

tain wave model is described and the dominant features of the

mountain wave field are discussed in terms of dimensionless

Richardson and Froude numbers. The effect of mountain

wave disturbances on the acoustic field p(x, z) is then consid-

ered in Sec. III, using a classical range-dependent normal

mode approach22 to account for flow changes along the

source-receiver distance x. To make the absorptive properties

more transparent, the acoustic modes are also obtained using

a Wentzel–Kramers–Brillouin (WKB) approximation. In Sec.

IV, it is found that the interaction between the mountain flow

and the acoustic field gives rise to attenuation or amplification

of ground-based signals, depending on the stability of the

boundary layer flow. The characteristics of the perturbed

acoustic modes such as phase velocities, attenuations, and

wave structures in the (x, z)-plane are provided and discussed.

In Sec. V, the downstream attenuation is systematically evalu-

ated in terms of dimensionless numbers that control the moun-

tain flow dynamics. Importantly, it is found that in near-

neutral conditions, the mountain wave dynamics can favor

infrasound propagation above the mountain, mitigating the

direct effect of the obstacle.

II. ATMOSPHERIC MOUNTAIN FLOW MODEL

A. Formalism

Mountain waves that occur when a stably stratified flow

is forced by an obstacle are often standing, or nearly so, at

least to the extent that the upstream environmental condi-

tions are stationary. They can accompany Foehn wind condi-

tions that are characterized by warm and dry downslope

winds on the lee side of mountains.23 In the present study,

we use the mountain wave model developed by Lott,21

which is adapted from Long’s24 model to incoming shear

flows that varies with altitude. Comparisons with nonlinear

simulations demonstrated that this model is well-suited for

capturing realistic features of mountain flow dynamics.

In the present study, the mean state consists of an iso-

thermal atmosphere, at temperature T0, in the presence of a

background wind U(z), which is assumed to be in the shape

of an hyperbolic tangent function. This representation is

appropriate to describe the planetary boundary layers25,26

and can even be used to initialize mesoscale models.27

Although such a profile can occur during strong stratification

or above the lowest maximum of the wind speed,28 there are

many other semi-empirical models that adequately describe

the wind shear. Here, the profile is used to mimic the incom-

ing boundary layer, so that stationary gravity waves can be

generated through interaction with the mountain, as observa-

tional evidence29,30 suggests. Specifically, the mean flow is

given by

TðzÞ ¼ T0; UðzÞ ¼ U0tanhðz=dÞ; (1)

where d is the boundary layer thickness, U0 denotes the max-

imum wind speed over the mountain, and z is the height,

which is here typically smaller than 5 km. The thermody-

namic sound speed c0 is given by c2
0 ¼ cRT0, where c is the

ratio of specific heats and R is the specific gas constant for

dry air. Hence, in an isothermal atmospheric boundary layer,

the sound speed is constant. Using the ideal gas law and

hydrostatic balance we know that in an isothermal atmo-

sphere the background pressure and density vary as

expð�gz=RT0Þ, and the background potential temperature h
is related to the Brunt-V€ais€al€a frequency1 N through

N2 ¼ g

h
dh
dz
¼ c� 1

c
g2

RT0

; (2)

where g is the gravitational constant. Solving Eq. (2), we

observe that h varies as expðN2z=gÞ, which provides the

stratification needed for internal gravity waves to develop.

Now, given this stratification (through N), it is conven-

tional to neglect the vertical changes of background density

for relatively small d (typically less than 1 km). This is the
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classical Boussinesq approximation, which we can adopt

here because our focus lies on the low-level waveguide.

Within the framework of the above hypothesis, and follow-

ing previous works,21 the vertical perturbation in the velocity

is given by the (inverse) Fourier transform

w0ðx; zÞ ¼
ð

R

f ðkÞŵcðk; zÞeikxdk (3)

where f(k) is an amplitude function that depends on the

wavenumber k, and ŵcðk; zÞ is a canonical solution satisfying

the Taylor–Goldstein equation

d2ŵc

dz2
þ N2

U2
� Uzz

U
� k2

� �
ŵc ¼ 0; (4)

with the condition ŵcðk; zÞ � e�kðkÞz, as z!1, and where

the square-root function k is defined by

k kð Þ ¼ k2 � N2

U2
0

" #1
2

: (5)

In order for the boundedness or outgoing-wave condition to

be satisfied as z!1, the branch cuts of k are inserted such

that we have ŵcðk; zÞ � ei�jkðkÞjz where � ¼ signðkÞ is to

ensure upward propagation for jkj < N=U0.

The boundary condition at z!1 and the choice of

branch cuts allow the solution of Eq. (4) to be expressed in

terms of hypergeometric functions. A dynamically consistent

horizontal velocity field u0 can be obtained in spectral space

using a polarization relation.17 The amplitude f(k) is then

determined through inversion of the “free-slip” nonlinear

boundary condition

w0 x; h xð Þð Þ ¼ U hð Þ þ u0 x; h xð Þð Þ
� � dh

dx
; (6)

with the witch of Agnesi profile

h xð Þ ¼ H

1þ x2

2L2

; (7)

where H is the ridge top height and L is a characteristic

length scale. Application of the Fourier transform to Eq. (7)

leads to ĥðkÞ ¼ HLe�k
ffiffi
2
p

L=
ffiffiffi
2
p

, which implies that the domi-

nant horizontal wavelength is given by k ¼ 1=
ffiffiffi
2
p

L. In the

following, this profile will be centered at x0 ¼ 25 km and we

will use h(x) instead of hðx� x0Þ for notational conciseness.

To describe the flow response, it is also worthwhile to

use the three dimensionless parameters

J ¼ N2d2

U2
0

; HN ¼
NH

U0

; and F ¼ NL

U0

: (8)

While the Richardson number J measures the background

flow stability,31,32 the other parameters are related to the

shape of the mountain. The parameter HN is a dimensionless

mountain height that measures the degree of nonlinearity in

the flow response.33 The classical Froude number F

compares the advective time-scale to cross the ridge and the

buoyancy oscillation time-scale. This last parameter mea-

sures the significance of non-hydrostatic effects.34 In the fol-

lowing we will fix N, U0, and L such that F ¼ 10� 1, a

value that guarantees that no substantial trapped lee waves

are forced. We will vary the boundary layer depth d and/or

the mountain height H.

B. Effective sound speed disturbances

Following Waxler10 we next use the effective sound

speed approximation,35 in which the component of the hori-

zontal wind speed in the direction of propagation is added to

the thermodynamic sound speed. For an isothermal atmo-

sphere, with a varying background wind U, this approxima-

tion yields cðzÞ ¼ c0 þ UðzÞ and thus, ducting is only due to

the change in altitude of U. Hence, in presence of tempera-

ture and wind fluctuations, the perturbed effective sound

speed is given by

c0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T0

T0

r
þ U þ u0: (9)

where the temperature and the horizontal wind perturbations,

which are denoted by T0 and u0, respectively, are obtained

from the vertical velocity w0 using polarization relations.17

In order to illustrate how mountain waves can perturb

the background state, the mountain wave model described in

Sec. II A is used with parameters that are representative of

the lower troposphere. Here, and in the following, we con-

sider a boundary layer flow at U0¼ 10 m.s�1 in a stratified

medium characterized by N ¼
ffiffiffi
2
p

:10�2 s�1, and take

L¼ 10 km to enforce F¼ 10. For illustrative purposes, the

height of the mountain and the boundary layer thickness are

fixed to H¼ 350 m and d¼ 860 m, respectively. For these

parameters, we obtain J¼ 1.5, which corresponds to a mod-

erately stable situation. Finally, the dimensionless value

HN¼ 0.5 is sufficiently small to guarantee that the near-

linear mountain flow theory applies and produces realistic

downslope winds and Foehn.

Figures 1(a) and 1(b) show the temperature and wind

fluctuations produced by the mountain flow model, respec-

tively. In Fig. 1(a), we observe that the strongest temperature

anomaly is reached on the lee side, which is the “Foehn”

effect. Figure 1(b) shows that the wind intensity on the lee

side is larger than that on the windward side, which is char-

acteristic of downslope windstorms. The streamlines are rep-

resented in Fig. 1(b) to illustrate the so-called isentropic

drawdown mechanism often used to explain Foehn. In this

dry mechanism, the Foehn results from warm air masses that

slightly ascend on the windward side before descending

abruptly on the leeward side. From Lott21 we know that this

effect and the intensity of the downslope winds are not that

strong for significantly smaller values of J.

Figure 2 shows various effective sound speed fields that

will be used in Secs. IV and V. In Figs. 2(a) and 2(c), we just

keep the incident waveguide unaltered and chopped it by the

mountain height for J¼ 1.5 [Fig. 2(a)] and J¼ 0.5 [Fig.

2(c)]. This is representative of the “mask” technique used in
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the literature,18 and to which we will systematically compare

our results to in the following. From Fig. 2(a), we can expect

its effect to be substantial since this mask potentially

excludes from trapping all the waves with phase speed

between around 336 m.s�1 and 339 m.s�1. This exclusion is

not as strong when the mountain wave field is included as

Fig. 2(b) shows, and indeed the effective sound speed

“follows” the ground as the air passes over the mountain

(see, for instance, isoline c¼ 336 m.s�1). Nevertheless, it is

clear that even in this case, the depth of the lower atmo-

spheric duct substantially decreases as we move from the

upstream side of the mountain to its top. This shrinking also

manifests on the lee side, before that the flow reaches an

abrupt expansion at around mid-slope to return to its

upstream depth. Hence, for lower altitudes, these two effects

produce a waveguide contraction as the flow passes over the

mountain. Far above the mountain, the disturbances take the

form of gravity waves that propagate upward. In the

effective sound speed approximation framework, these grav-

ity waves may be regarded as several acoustic waveguides in

which relatively low-frequency acoustic waves can poten-

tially propagate.

It is worthwhile noting that both the distortion of the

low-level waveguide and the mountain wave field are not as

intense for less stable situations [e.g., J¼ 0.5, Fig. 2(d)].

This is consistent with the fact that large values of J favor

downslope winds and Foehn. Comparison with the “mask”

technique [Figs. 2(c) and 2(d)] demonstrates that for J¼ 0.5

the lowest effective sound speed isoline follows the global

curvature of the terrain, instead of being chopped by the

mountain. As discussed in Sec. IV, this effect helps infra-

sound signals to travel across the hill.

III. ACOUSTIC PROPAGATION IN RANGE-DEPENDENT
MEDIA

A. Normal mode approach

The approach follows the formulation of the initial-

value problem adopted by Bertin et al.,15 among others, for

range-dependent environments. Assuming that the modes

couple adiabatically,22 the solution for the Fourier transform

~pðz; x;xÞ of the infrasound pressure fluctuations can be writ-

ten as

~pðz; x;xÞ �
X

j

ajðxÞ/jðz; x;xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjðx;xÞ

p eihjðx;xÞ; (10)

where /j, kj, aj, and hj are, respectively, the jth mode func-

tion, the corresponding modal wave number, amplitude, and

phase function. For a localized point-source at x ¼ z ¼ 0

that emits a signal s(t) we simply have ajðxÞ ¼ /jð0; 0;xÞ,
and the pressure fluctuation reads as

pðz; x; tÞ ¼ 1

2p

ð1
�1

~sðxÞ~pðz; x;xÞe�ixt dx; (11)

where ~sðxÞ is the Fourier transform of s(t). For convenience,

we denote the derivative of hjðx;xÞ by kjðx;xÞ and the fre-

quency dependence is dropped for conciseness. Physically,

kj is the local (acoustic) wavenumber and the local phase

speed is given by cj ¼ x=kj.

It is worth noting that the pressure fluctuation can gener-

ally be decomposed into propagating modes (along the x
axis direction) and evanescent modes, for which the imagi-

nary part of hj is positive. Far downstream of the acoustic

point-source, at a distance large compared to the wavelength,

the evanescent modes are negligible and Eq. (10) is the cor-

rect expression to consider.

Substitution of Eq. (10) into the classical Helmholtz

equation gives, to order unity,

@2/j

@z2
þ x2

c2
� k2

j

� �
/j ¼ 0; (12)

with the Neumann boundary condition expressing that the

derivative of /j at z ¼ hðxÞ vanishes. For unbounded bound-

ary layers, Eq. (12) must be supplemented by requiring a

FIG. 1. (Color online) (a) Temperature fluctuations T0 and (b) horizontal

wind fluctuations u0 resulting from interaction between a mountain and an

incoming boundary layer. The streamlines are given by black lines superim-

posed to the wind fluctuations. The dimensionless parameters used are

HN ¼ 0:5 and J¼ 1.5. The mountain is represented in gray.

FIG. 2. (Color online) Effective sound speed field without (a), (c) and with

(b), (d) interaction between a mountain and an incoming boundary layer.

The dimensionless parameters used are HN ¼ 0:5 (a), (b), (c), (d) and

J¼ 1.5 (a), (b) or J¼ 0.5 (c), (d).
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boundedness or outgoing-wave condition as z!1. The

solution of Eq. (12) then becomes p � e�l1z as z!1, with

the square-root function

l1ðkÞ ¼ k2 � x2

c2
1

" #1
2

; (13)

and c1 denotes the effective sound speed in the limit

z!1. The function in Eq. (13) depends on the variable k.

Thus, in the complex k-plane, the branch cuts are to be

inserted such that �p=2 < argðl1Þ � p=2. This choice of

the branch cuts assures that as z!1, the solution of Eq.

(12) either goes to zero or represents an outgoing wave for

all values of k in the complex plane.

The branch cuts extend from the branch points k ¼ x=c1
and k ¼ �x=c1 to infinity in the complex k-plane. Over the

initial region, far upstream of the mountain, the gravity wave

field vanishes and we have c1 ¼ c0 þ U0, whereas at ground-

level the effective sound speed reaches its minimum

cð0; 0Þ ¼ c0. For a right-propagating wave, the condition of

trapping therefore imposes that the initial eigenvalues kj lie ini-

tially along the interval c0 < x=k < c0 þ U0. As each mode

propagates downstream, both the vertical sound speed profile

and the branch points x=c1ðxÞ vary, and the local eigenvalues

kjðxÞ slowly adapt to these changes. In this process, the phase

velocity of some acoustic modes eventually becomes larger

than c1 and the associated trajectories terminate at a branch

cut. Since it is not allowed to cross the branch cut, it is therefore

not possible to continue the eigensolution downstream of this

point (and still satisfy the boundedness condition as z!1).

Therefore, the corresponding modes are simply suppressed

from the expansion in Eq. (10).

In this work, the eigenfunctions and eigenvalues of Eq.

(12) are calculated at a discrete set of ranges x¼ xn using the

finite difference scheme used by Waxler et al.,36 among

others. The eigenvalues are obtained using a QR decomposi-

tion for x¼ 0 and, for other ranges, the eigenvalues are

tracked by using an iterative approach.

Since eigenfunctions are determined only up to a multi-

plicative constant, for definiteness we impose the normaliza-

tion condition22

ð1
hn

/2
j ðxn; zÞ dz ¼ 1; (14)

where hn ¼ hðxnÞ, together with the orthogonality conditionð1
hn

/jðxn; zÞ/lðxnþ1; zÞ dz ¼ djl: (15)

Anticipating the presence of upper level waveguides, the

upper bound of integrals [Eqs. (14) and (15)] was set to a

sufficiently large value ztop, and the effective sound speed

profile cðxn; zÞ was smoothly continued to higher altitudes

when necessary. To assess the validity of the numerical

results, it has been checked that the eigenvalues were not

sensitive to changes in ztop, or to the choice of the continua-

tion of cðxn; zÞ above ztop.

For illustrative purposes, Fig. 3 shows the eigenfunc-

tions of the first three modes as x increases along the source-

receiver path, for a fixed frequency x0 ¼ 2p� 2:8125

rad.s�1. For this frequency, these modes carry the dominant

part of sound intensity over long distances and the expansion

[Eq. (10)] can be truncated to j � 3, as discussed by Bertin

et al.15 The first mode [Fig. 3(a)] is weakly sensitive to

changes of the atmospheric flow as x varies. The other two

modes in Figs. 3(b) and 3(c) are clearly affected by the pres-

ence of gravity waves and indeed, ground-based attenuation

is clearly visible in the vicinity of the ridge top elevation.

Furthermore, Fig. 3(c) shows that the presence of mountain

waves aloft allows the modes to be trapped in an upper duct.

This result is discussed further in Sec. IV.

B. WKB treatment of the low level waveguide

To distinguish the effect due to the boundary layer

shrinking from that due to the mountain wave at upper lev-

els, and to gain insight onto the behavior of the trapped

modes, we have obtained solutions to Eq. (12) using the fol-

lowing profile of effective sound speed

�cðzÞ ¼ �c0 þ �c1tanh z=�d
� �

; (16)

and the WKB approximation of Eq. (12). In Eq. (16), the

parameters �c0; �c1, and �d are chosen to minimize the inte-

grated squared error between c and �c over the domain

h < z < zmax, where zmax is the depth of the low-level wave-

guide, e.g. the lowest altitude such that

dc

dz
zmaxð Þ ¼ 0: (17)

This definition ensures that the mountain wave is filtered out

from the sound speed field and that the resulting waveguide

width zmax varies slowly in the flow direction, as required by

the classical asymptotic methods for modeling infrasound

propagation.22

For fixed x, the filtered effective sound speed �c in Eq. (16)

is a strictly decreasing function of height and thus, x2=�c2 � k2

is a continuous function which involves a single turning point37

at z ¼ z0ðkÞ. This choice allows us to use the Langer’s for-

mula38 to build the uniformly valid WKB approximation

�/ðzÞ ¼ 2
ffiffiffi
p
p

C
3

2

S0ðzÞ
l3ðzÞ

� �1
6

Ai
3

2
S0ðzÞ

� �2
3

( )
; (18)

where Ai is the Airy function, and where the phase is given by

S0ðzÞ ¼
ðz

z0

lðsÞ ds; (19)

and the turning point z0 is the unique root of lðz0Þ ¼ 0,

where

lðzÞ ¼ k2 � x2

�c2ðzÞ

" #1
2

: (20)

To ensure that the boundary condition at z!1 is satisfied,

the branch cuts are defined as for the function in Eq. (13).
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Hence, using the leading asymptotic behavior of the Airy

function for large z, Eq. (18) may be approximated by
�/ � C

ffiffiffi
l
p

e�S0 , which is the leading order of the classical

WKB approximation and the constant C is determined by

the normalization condition in Eq. (14). It is important to

point out at this time that this normalization condition plays

a central role, especially when estimating the ground-based

pressure �/j=
ffiffiffiffi
kj

p
as x varies. In many cases, it can easily be

verified that the closer to the ground the turning point is

located, the greater the amplitude of the pressure field at

ground level.

Below the turning point, the path of integration must be

deformed such that the square-root function is continued into

l2 ¼ �l2eip for z < z0. On substituting this into Eq. (19),

we note that S
2=3
0 is large and negative, and Eq. (18) can be

simplified for z� z0 by using the asymptotic behavior of the

Airy function for negative argument.39 To leading order, Eq.

(18) may then be written as

�/ðzÞ � 2C �l2ðzÞ
� ��1

4 cos

ðz0

z

�l2 sð Þ
� �1

2 ds� p
4

� �
:

(21)

Now for z¼ h, on account of the (Neumann) boundary con-

dition �/zðhÞ ¼ 0, we obtain the constraint

ðz0 kð Þ

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l2 sð Þ

q
ds ¼ p

4
þ jp; (22)

where j is a non-negative integer. Since l2 depends on k, it

appears that Eq. (22) determines the approximate value of kj.

In other words, Eq. (22) defines the local dispersion relation

where the streamwise station x only appears as a parameter

(which is not specified here for conciseness).

As an additional bonus, Eq. (22) may be used to evalu-

ate the effect of either downslope winds or mountain height

on the local wavenumber. Upon totally differentiating the

implicit function [Eq. (22)] for fixed x, and equating to zero,

we obtain

dk

dx
¼ �

ðz0

h

x2�cx

�c3
ffiffiffiffiffiffiffiffiffi
�l2

p dsþ dh

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l2 hð Þ

q
ðz0

h

kffiffiffiffiffiffiffiffiffi
�l2

p ds

; (23)

where the terms of this ratio are the derivatives of Eq. (22)

with respect to k and x and �cx is the derivative of �c with

respect to x. Similarly, we use the notations kx and hx for the

derivatives of k and h with respect to x, respectively.

Application of Eq. (23) for �cx > 0 and hx > 0 leads to

kx < 0. This means that the phase speed x=k increases as the

flow speeds up or when h increases.

IV. IMPACT OF MOUNTAIN WAVES ON THE NORMAL
MODES

In order to obtain the pressure signal from Eq. (10), the

modal wave numbers kj, or equivalently the phase velocities

cj ¼ x=kj are required. For range-dependent environments,

these quantities are obtained as functions of x and x either

by solving Eq. (12) numerically or by using the WKB

approximation, as described in Sec. III B. Figure 4 show con-

tours of the phase velocity in the ðx; xÞ-plane for the first

three modes [j � 3 in Eq. (10)] and the two effective sound

speed fields considered in Figs. 2(a) and 2(b). In Figs. 4(a),

4(b), and 4(c) the numerically obtained results are repre-

sented in colors, when the mountain “mask” is applied, and

the black curves give the corresponding WKB values.

Figures 4(d), 4(e), and 4(f) show the results obtained when

the mountain flow dynamics is considered. Two important

curves are also plotted as red and blue curves. These curves

are obtained for each eigenvalue by decreasing x, the loca-

tion x being fixed. Starting from an initial value, the phase

velocity cj increases up to the maximum sound speed cmax as

FIG. 3. (Color online) Eigenfunctions j/jj as functions of x and z for the first three modes (from left to right), and for a fixed frequency of 2.8125 Hz. The

background state is computed for HN ¼ 0:5 and J¼ 1.5 [cf. Fig. 2(b)]. (a) j¼ 1, (b) j¼ 2, and (c) j¼ 3.
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x decreases. This behavior allows the so-called cut-off fre-

quency of the low level waveguide to be identified, for

which we have cjðx;xÞ ¼ cðx; zmaxÞ, and which is referred to

as xþj ðxÞ in the following (blue curve). For x ¼ xþ the

eigenvalue obtained from Eq. (22) crosses a branch cut of

Eq. (13), and thus the WKB approximation fails to give a

result for x < xþðxÞ. Physically, this condition may be

interpreted as the requirement that the mode is not to be

trapped in the low-level duct. On the other hand, the eigen-

value can be computed directly from Eq. (12) for lower fre-

quencies, so that the eigenvalue reaches a terminal value for

which we have cjðx;xÞ ¼ cmaxðxÞ. This value is referred to

as x�j ðxÞ (red curve). It turns out that x� is not defined

when considering the “mask” effect alone [Figs. 4(a), 4(b),

and 4(c)], essentially because in this case we have a single

waveguide. Therefore, when mountain waves are present

[Figs. 4(d), 4(e), and 4(f)], the region x�j < x < xþj corre-

sponds to frequencies for which the eigenfunction /j pene-

trates up to the mountain wave field and can be confined

within an upper level waveguide, as depicted in Fig. 3(c) for

x lying in the range 25–35 km. This is an indication that at

sufficiently low frequencies, strong interaction between

modes and mountain waves may occur.

As detailed in Sec. III A, a mode is not allowed to cross

the branch cut, a situation that occurs for x < x�ðxÞ. The

basic problem here is that as soon as the phase velocity of

the locally wave solution becomes larger than the maximum

effective sound speed, it is not possible to find a solution that

remains bounded in the limit z!1. Within the framework

of slowly varying media, this condition translates into

ajðxÞ ¼ 0 for x < x�ð0Þ. Physically, this condition may be

interpreted as the requirement that the mode does not propa-

gate along the source-receiver path, for x> 0. The corre-

sponding regions in the ðx; xÞ plane are represented by blank

areas in Figs. 4(d) and 4(e).

For fixed but quite high frequencies (greater than 1 Hz

typically), the phase velocity of the first mode, which is also

the slowest mode [Figs. 4(a) and 4(d)], increases as we

approach the ridge before decreasing in the lee side.

Although this effect is less strong in presence of mountain

flow, this behavior can be captured qualitatively using the

“mask” technique and the WKB approximation. In fact this

mode, which is confined in the vicinity of the ground, find its

way through the ridge, even when the waveguide is substan-

tially shrunk by mountain wave dynamics [Fig. 4(d)] or

chopped by the ridge [Fig. 4(a)]. The excellent agreement

with the WKB approximation suggests that the mode essen-

tially adjusts to the vertical shrinking of the waveguide, the

increasing in its phase velocity being correctly predicted by

Eq. (23) with �cx ¼ 0. For lower frequencies (less than 1 Hz),

the discrepancies between the results obtained with the

“mask” technique and the mountain flow are more pro-

nounced, and essentially occur in the region where the low-

level duct fails to trap the modes, e.g., when lines of constant

phase velocity intersect the blue curve. This is detailed in the

following for the next two modes. For j¼ 1, we observe an

FIG. 4. (Color online) Phase velocity

cj for the first three modes (from top to

bottom) as a function of streamwise

location and frequency, for HN ¼ 0:5
and J¼ 1.5. (a), (d) j¼ 1; (b), (e) j¼ 2;

(c), (f) j¼ 3. The results obtained by

applying a “mask” onto the effective

sound speed field are given on the left

(a)–(c). The figures on the right (d)–(f)

show the impact of mountain wave

dynamics. Black, red, and blue curves

give the WKB prediction and the cut-

off frequencies x� and xþ as defined

in Sec. IV.
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overall agreement between the results obtained by solving

Eq. (12) numerically or by using the WKB approximation.

From a practical standpoint, this demonstrates that the inter-

action between infrasound and mountain flows can ade-

quately be predicted at a low numerical cost, through finding

the first maximum in the local effective sound celerity and

using the WKB approximation. This approach, however, is

justified only if we can neglect the contribution of other

modes (j> 1).

In computing the phase velocity for the other modes

(j> 1), we observe that the mask technique fails in predict-

ing important changes. Primarily, Figs. 4(b) and 4(c) show

that the cut-off frequency xþ substantially increases as we

approach the ridge top, and reaches its maximum at x0 ¼ 25

km. As discussed in Sec. III A, when the condition x
< xþðx0Þ is satisfied downstream x0, the mode is simply

suppressed. In presence of mountain waves [Figs. 4(e) and

4(f)] the low-level waveguide is extremely shrunk, and the

penetration of xþðxÞ into the ðx; xÞ-plane is very pro-

nounced. This effect is essentially due to Foehn, which shifts

the maximum cut-off frequency xþðxÞ on the leeward side

of the ridge, at a distance of approximately 30 km [Figs. 4(e)

and 4(f)]. Hence, immediately downstream of this location,

the mode obtained with the one-turning-point WKB approxi-

mation (i.e., when mountain waves are filtered out) must be

suppressed, as shown in Figs. 4(e) and 4(f). This is not the

case when mountain waves are considered and, indeed, the

fact that the mode remains propagating in the horizontal

direction for x > x0 is essentially due to the emergence of

multiple possible upper ducts above the mountain. For j¼ 2,

we even see that the cut-off frequency of the upper duct x�

decreases as we pass over the ridge and, thus, the contribu-

tion of the mode has to be maintained in Eq. (10). This find-

ing is in strong contrast with that obtained using the “mask”

technique. On the other hand, and for j¼ 3, Fig. 4(f) shows

that x� increases as we move closer to the ridge. This means

that the mountain wave pattern failed in ducting the mode

that escapes from the low level duct. Finally, it is important

to notice that for smaller values of J (HN being constant), the

boundary layer tends to follow the global curvature of the

terrain, thereby yielding a significant number of modes to

travel over the mountain, whereas the upper bound xþ

obtained with the “mask” technique penetrates much more

into the ðx; xÞ-plane.

Figure 5 shows the sound intensity j/j=
ffiffiffiffi
kj

p
j at ground

level z ¼ hðxÞ, as a function of x and x, for the first three

modes. The magnitude of the contours is labelled in decibel,

with a reference sound intensity computed at x¼ 0. Results

are given for the two effective sound speed profiles defined

above and depicted in Figs. 2(a) and 2(b). The contours in

color are for the results obtained by solving numerically Eq.

(12), and the black curves give the one-turning-point WKB

approximation. Red curves and blue curves represent the

cut-off frequencies x�j and xþj , as in Fig. 4. Figures 5(d),

5(e), and 5(f), essentially show strong attenuation in the

region x�j < x < xþj . These attenuations are due to strong

interactions between the acoustic waves and the mountain

waves, the latter creating new acoustic waveguides at higher

altitudes, as discussed previously. The energy leaks that

follow the tunneling effect for sound waves [cf. Figs. 3(b)

and 3(c)] and the standard requirement that the integral of

/2
j is fixed to one [Eq. (14)], lead to strong attenuations at

ground level. These attenuations are more pronounced for

higher indices, simply because the corresponding turning

points, at x¼ 0, are closer to zmax. Since the phase velocity

adapts to the local environment encountered by the sound

wave, the highest modes are more likely to leave the low

level waveguide.

While the ground-based attenuation of sound intensity

can be qualitatively understood when the mode shifts to

upper-level waveguides (for x�j < x < xþj ), it is less

clear why it occurs when the waveguide shrinks, as Figs.

5(a), 5(b), and 5(c) show for x > xþ. This behavior

appears to contradict the normalization requirement,

which a priori results in surface amplifications rather than

surface attenuations. However, using the WKB approxi-

mation, the apparent contradiction is resolved by the rec-

ognition that the proper measure of the size of the

dispersive region, z0 � h is always smaller than its value at

x¼ 0. Based on the above discussions, clearly the surface

attenuation is a combination of the emergence of upper-

level waveguides as well as depth reduction of the low

level waveguide.

V. IMPACT OF MOUNTAIN WAVES ON SIGNALS

In the previous section we have seen how the normal

modes, in which the structure over the whole ðx; xÞ-plane

can be delineated, are attenuated by mountain waves, and we

have given a general condition by which this interaction can

be characterized, in terms of the cut-off frequencies x� and

xþ. To measure the extent to which these effects are signifi-

cant when the sources of infrasound are localized in both

space and time, we next calculate ground-based waveforms,

using the FFT algorithm.40 A source function is introduced

in the form

sðtÞ ¼ Ke�½ðt�T0Þ=r�2 cosð2pfctÞ; (24)

where T0 ¼ 10 s, fc¼ 3 Hz and r ¼ 1=5. The parameters are

adjusted such that the maximum frequency is 6 Hz, with a

leading frequency of 3 Hz. K is a suitable coefficient that

yields a normalized pulse. This source transfers most of its

energy onto the first three modes [j � 3 in Eq. (10)] which

are the modes of greatest contribution when the frequency is

relatively low. For this reason, the modal expansion is trun-

cated to these modes in the following.

The normalization of signals obtained for different loca-

tions downstream the mountain is fixed so that the amplitudes

can be compared to each other. The global effect of the moun-

tain can be summarized by means of the attenuation

1� I xð Þ
I0 xð Þ ; (25)

where the sound intensity at ground level (z¼ h) is defined as

570 J. Acoust. Soc. Am. 143 (1), January 2018 Damiens et al.



IðxÞ ¼
ð1

0

pðh; x; tÞ½ �2 dt; (26)

where the waveform pðh; x; tÞ is obtained from Eqs. (11) and

(10), with j � 3, and by solving the Helmholtz equation [Eq.

(12)] numerically. Here, I0 is a reference sound intensity

obtained by taking x¼ 0 in Eq. (26). This choice allows the

results to be compared with the classical mountain-free

range-independent case [i.e., when the effective sound speed

is given by c0 þ UðzÞ], which is used in the infrasound

research community.

In this section, we proceed systematically and vary the

Richardson number between 0.25 and 2 and the non-

dimensional mountain height HN between 0.2 and 0.8. As

discussed in Sec. IV, the sound speed modifications are inti-

mately linked to the mountain flow situations. To measure

the downslope wind amplitude and Foehn, and following

Lott,21 we use

A ¼ max
2z < HN

0 < x < 2F

u0 x; zð Þ
U Hð Þ

" #
; (27)

which is the maximum of the ratio between the horizontal

wind disturbance along the foothill and the background wind

at the top of the hill. Typically, when A approaches and

exceeds 1, the dynamics induce wind amplitudes that are

either equal to or exceed the amplitude of the winds at the

summit of the ridge. In other words, the flow speeds up along

the ridge, and this occurs easily for J> 1.

Before proceeding systematically we present here three

cases that illustrate the general results that will conclude the

paper. Case I is defined by d¼ 600 m and H¼ 250 m, which

corresponds to a relatively small mountain and a pronounced

shear. In terms of dimensionless parameters, we have

J¼ 0.75 and HN ¼ 0:3 so that the downslope wind amplitude

is A¼ 0.75. Case II is associated with a larger depth

d¼ 1 km and a higher mountain H¼ 600 m. The correspond-

ing dimensionless parameters are given by J¼ 2 and HN

¼ 0:8 so that A¼ 3, which reflects intense downslope winds.

In order to estimate the role of stability, we keep HN ¼ 0:8
and consider a much less stable flow with a Richardson num-

ber J¼ 0.3, as a third case III. This last case corresponds to a

situation for which we have H=d ¼ HN=
ffiffiffi
J
p
’ 1:5 and thus,

we can expect that most of the modes are obstructed by the

mountain when the “mask” technique is used.

The resulting acoustic signals associated with cases I,

II, and III are shown in Fig. 6 for different locations down-

stream the mountain. The blue and red colors correspond to

waveforms computed by applying the “mask” technique and

by solving mountain flow dynamics, respectively. Waveforms

obtained for the unperturbed range-independent profile c0

þUðzÞ are plotted in gray. The envelope of signals is plotted

in thinner line, using the Hilbert transform. Figure 6 shows evi-

dence that the interaction between the mountain flow and the

acoustic wave may give rise to attenuation or amplification of

ground-based signals, depending on the Richardson number.

While the impact of the mountain on the ground-based signals

is moderate for case I [Fig. 6(a)], for which the attenuation

FIG. 5. (Color online) Ground-based

sound intensity j/j=
ffiffiffiffi
kj

p
j for the first

three modes as a function of stream-

wise location and frequency, for HN

¼ 0:5 and J¼ 1.5. (a), (d) j¼ 1; (b),

(e) j¼ 2; (c), (f) j¼ 3. The WKB pre-

diction is superimposed in black con-

tours. Red and blue curves correspond

of those of Fig. 4.
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does not exceed 13%, case II [Fig. 6(b)] gives rise to attenua-

tions as large as 48% at x¼ 40 km. This attenuation is mainly

due to the fact that the first mode is no longer trapped in the

low-level waveguide and thus, a large part of the energy is lost

at higher altitudes through interactions with mountain waves.

On the other hand, case III [Fig. 6(c)] shows that the mountain

wave dynamics may favor the passage of acoustic waves, miti-

gating the “mask” effect. The essential contrast with case II is

that, despite a strong reduction of its height, the incoming

waveguide slips over the mountain rather than being destroyed

over the winward side. The acoustic path then follows the

global curvature of the terrain and the sound intensity is 80%

larger than that obtained with the “mask” technique.

As discussed above, the signals obtained for the three

cases considered in Fig. 6 do not cover all situations. In order

to estimate how the mountain wave dynamics impacts the

infrasound measurement, the ground-based attenuations [Eq.

(25)] are first computed as functions of x, and then averaged

over two intervals x0 < x < x1 and x1 < x < x2, with x0

¼ 25 km, x1 ¼ 40 km and x2 ¼ 50 km. The process is

repeated for different values of J and HN so as to obtain a

complete portrait of averaged attenuations in time domain.

Figures 7 and 8 show typical results for the first and second

intervals, respectively. The first interval x0 < x < x1 is

adopted here to quantify the infrasound attenuation on the

leeward flank of the ridge. First, Fig. 7(a) shows that the

mountain flow produces larger attenuations than that obtained

with the “mask” technique [in Fig. 7(b)]. Furthermore, even

though the shrinking of the waveguide by the Foehn produces

strong attenuations (A is almost everywhere larger than 1), a

significant fraction of the attenuation is indeed associated

with sound propagation within upper level waveguides,

through local adjustments of few normal modes, as discussed

in length in Sec. IV. This is typically the case for relatively

large J (J> 1.5) and small HN, in the range 0:2 < HN < 0:4.

In this region, the sound intensity on the lee-side flank of the

ridge is attenuated by a factor of 30% [Fig. 7(a)] and

decreases down to about 20% far downstream [Fig. 8(a)].

Second, comparisons of Figs. 7(a) and 7(b) show that at low

Richardson numbers (J< 0.5) and for high mountains

(0:6 < HN < 0:7) attenuation is mainly due to the “mask”

effect, which produces a strong reduction of the waveguide

height. The second interval is used to capture the far-field

sound attenuation downstream the mountain without includ-

ing the constructive/destructive interference effects associ-

ated with local changes of phases. In fact, at about two or

three mountain half-widths downstream of the maximum

height location, the modes recover their initial characteristics

for x!1, unless they reach a branch cut as discussed in

Sec. II A. Owing to these changes in the resulting modal

expansion [Eq. (10)], a residual attenuation is expected far

downstream the mountain. This attenuation is irreversible in

the sense that the full set of eigenvalues at x¼ 0 is not recov-

ered downstream the mountain. Comparison of Figs. 7(a)

and 8(a) shows that this effect is apparent at relatively high

Richardson numbers, in the top right corner of Fig. 7(a).

Finally, it is important to point out that another striking result

FIG. 6. (Color online) Waveforms obtained for cases I (a), II (b), and III (c) as functions of the retarded time t� x=c0 without (blue) and with (red) interaction

between the mountain and the boundary layer. The signals obtained for an unperturbed range-independent case (without mountain and mask) are plotted in

gray, for reference. Case I: J¼ 0.75 and HN ¼ 0:3; case II: J¼ 2 and HN ¼ 0:8; case III: J¼ 0.3 and HN ¼ 0:8. The source is defined by Eq. (24).

FIG. 7. (Color online) Far-field averaged attenuation downstream the moun-

tain, in the range 25–40 km as a function of J and HN with mountain wave

disturbances (a) and the “mask” effect alone (b). The downslope wind

amplitude A is given by black and white contours.
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here is that for large values of HN and narrow waveguides

(small J), the mountain flow dynamics favor infrasound prop-

agation, as discussed in Sec. IV.

VI. CONCLUSIONS

In this paper, we have examined the propagation of sound

within mountain flows. The mountain flow model is based on

the integration of the linear inviscid Taylor–Goldstein equa-

tion, forced by a nonlinear surface boundary condition. To cal-

culate infrasound signals, we also used a range-dependent

normal mode approach, which allows the decomposition of the

acoustic pressure field into distinct normal modes. The basic

assumption introduced in the present work is that the acoustic

modes couple adiabatically, i.e., without any transfer of energy

to higher or lower modes. Ground-based signals were com-

puted using Fourier synthesis of frequency-domain solutions,

for a given ground-based broadband acoustic source.

The central result of this paper is that mountain wave

dynamics may lead to strong attenuation or amplification of

upcoming acoustic waves, regarding to the direct “mask”

effect the mountain has on acoustic propagation. For a stable

flow (J 	 1), the mountain wave dynamics produces large

horizontal winds and buoyancy disturbances at low-level

that result in intense downslope winds and Foehn. When the

downslope wind is less intense (J< 1), the flows can rein-

force the acoustic waveguide over the mountain and lead to

a signal of greater amplitude compared to that obtained by

the “mask” effect. The acoustic waveguide is then strongly

impacted, which leads to a new kind of acoustic (reversible)

absorption that can be related to local adjustments of few

normal modes. It is worthwhile to point out here that acous-

tic absorption is mainly governed by the Richardson number,

and more precisely by the critical value J ’ 1, which is also

a transition regime for mountain wave dynamics.

In striking contrast to this local behavior of acoustic

modes is the sound attenuation far downstream from the

mountain. This second type of absorption is due to irrevers-

ible processes that are intimately connected to leaking modes

along the source-receiver path. While leaking modes are

known to play a role in the transient waveform, the classical

practice is to neglect the contributions from these modes at

large horizontal distances from explosions in the atmo-

sphere. This approach, however, ignores range-dependence

of the environment. These modes may be “activated” by a

point-source in the form of classical waveguide modes and

then decay exponentially with increasing distances far down-

stream from the mountain as a result of the atmospheric state

evolution. In this way, the corresponding component involv-

ing these modes vanishes far downstream from the moun-

tain. This results in absorption farther downstream from the

mountain, even though the background state recovers its ini-

tial state (e.g., upstream from the mountain).

The present work presents our current understanding of

acoustic absorption due to mountain wave dynamics with

emphasis upon a modal description of the acoustic field,

including static stability effects. Though the present analysis

does not answer all the questions regarding the complex phe-

nomenon of absorption, it has shown how a range-dependent

analysis can provide some insight into the interaction of

acoustic waves and mountain wave fields. Other aspects that

may give rise to additional dissipation have not been fully

explored, such as interaction of infrasound waves with

ground and turbulence. However, the mountain wave model

used in this study cannot predict the turbulence associated

with Gravity Wave (GW) breaking, a process that occurs for

small J. While a rough estimate of the complex impedance

effect gives an absorption of 1% for the cases considered in

this study, the role of turbulence is more complex to quantify.

The main difficulty is that the adiabatic approximation ceases

to apply when the turbulence correlation length and acoustic

wavelength are of the same order of magnitude. Some pre-

liminary calculations have been made by the authors for esti-

mating far-field absorption, using the techniques described in

this paper, but with mode couplings and the complex imagi-

nary part of the grounding impedance. The results show good

agreement with that obtained in the present work, except for

cases where fine-grained turbulence dominates.

The present work is also related to the more general

issue of incorporating unresolved GW variability in infra-

sound propagation calculations. Recent works42–44 suggest

that the mismatch between simulated and observed signals is

related to the fact that the atmospheric specifications used in

most studies do not adequately represent internal gravity

waves. In the Atmospheric General Circulation Models

which are used to produce the atmospheric specifications,

these GWs are represented by parameterizations and in

return, these parameterizations can be used to predict the

GWs field used in infrasound studies. This is the approach

followed by Drob et al.,41 in which the global spectral

scheme of Hines44 is used to estimate the effect of GWs on

infrasound time arrivals. The interesting aspect of using the

model proposed by Hines44 is that it allows obtaining GW

fields that give rise to the right climate.45
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FIG. 8. (Color online) Far-field averaged attenuation, in the range 40–50 km

as a function of J and HN with mountain wave disturbances (a) and the

“mask” effect alone (b). The downslope wind amplitude A is given by black

and white contours.
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