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Abstract

A heuristic model is used to study the synoptic response to mountain Gravity Waves
(GWs) absorbed at directional critical levels. The model is a Semi-Geostrophic version
of the Eady model for baroclinic instability adapted by Smith (1984) to study lee cyclo-
genesis. The GWs exert a force on the large-scale flow where they encounter directional
critical levels (Shutts 1995). This force is taken into account in our model, and produces
Potential Vorticity (PV) anomalies in the mid-troposphere.

First, we consider the case of an idealized mountain range such that the orographic
variance is well separated between small-scale and large-scale contributions. In the ab-
sence of tropopause, the PV produced by the GWs force has a surface impact that is
significant compared to the surface response due to the large scales. For a cold front,
the GWs force produces a trough over the mountain and a larger amplitude ridge imme-
diately downstream. It opposes somehow to the response due to the large scales of the
mountain range, which is anticyclonic aloft and cyclonic downstream. For a warm front,
the GWs force produces a ridge over the mountain and a trough downstream, hence it
reinforces the response due to the large scales.

Second, we verify the robustness of the previous results, by a series of sensitivity tests.
We change the specifications of the mountain range, and of the background flow. We also
repeat some experiments by including baroclinic instabilities, or by using the Quasi-
Geostrophic approximation. Finally, we consider the case of a small-scale orographic
spectrum representative of the Alps.

The significance of our results is discussed in the context of GWs parameterization in
the General Circulation Models. Our results may also help to interpret the complex PV
structures occurring when mountain gravity waves break in a baroclinic environment.

1 Introduction

The large-scale flow response to the breaking of vertically propagating gravity waves
(GWs) has been the subject of many studies during the last 40 years. They follow the
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seminal works of Eliassen and Palm (1961) and Bretherton (1969), which have shown
that mountain GWs induce a net transfer of momentum from the ground toward the
atmosphere. The importance of mountain GWs for the atmospheric circulation is now
well established. The parameterization of mountain GWs in General Circulation Models
(GCMs) reduces the cold bias these models present near the tropopause in the Northern
Hemisphere mid-latitudes (Boer et al. 1984, Palmer et al. 1986, McFarlane 1987). More
recent parameterizations of Subgrid-Scale Orography (SSO) include trapped lee-waves
(Miller et al 1989) and nonlinear low level flow blocking (Lott and Miller 1997, Scinocca
and McFarlane 2000), which both reduce biases in the low-level winds.

Although SSO parameterizations are often evaluated by looking at systematic errors
on the zonal mean flow, they also influence non-zonal planetary scale patterns. For these
patterns, it is noteworthy that the SSO parameterizations are not necessarily helpful,
unless they permit that the SSO force has a substantial component in the direction
perpendicular to the low-level flow (Lott 1999, Webster et al. 2003). This component
can have three origins: (i) the anisotropy of the mountains (Phillips 1984, Scinocca and
McFarlane 2000, Webster et al 2003); (ii) the fact that the mean orography in large-scale
models does not produce enough vortex compression (Smith 1979; Lott 1999); and (iii)
the presence of directional critical levels encountered by the GWs (Shutts, 1995). In
this last circumstance, the orientation of the force with respect to the background flow
is a consequence of the fact that a monochromatic GW encounters a critical level where
the background wind is perpendicular to its horizontal wave-vector. The GW is then
absorbed, provided that the background flow Richardson number is below 0.25 at this
altitude (Booker and Bretherton, 1967). Since the momentum flux associated with a
monochromatic GW is parallel to its horizontal wave-vector, aloft an isolated mountain
the selective absorption of one GW at each level results in a force perpendicular to the
wind at the same altitude. Note that this effect is the result of a vertical shear, and is
distinct from the effects of horizontal variations in the background flow which can modify
the horizontal wave-vector itself (Bühler and McIntyre, 2005).

Another large scale process related to mountains is lee cyclogenesis, for which various
dynamical mechanisms were proposed. The local triggering of standing or transient Eady
or Rossby edge waves (Smith 1984, 1986; Davis, 1997), the low-level modification of pre-
existing large scale unstable baroclinic mode (Pierrehumbert, 1985; Speranza et. al, 1985;
Fantini and Davolio, 2001), or the cold-front distortion by low-level blocking (Mesinger
and Pierrehumbert, 1986; Schär, 1990; Gross, 1994), are some of these processes. Actually,
they are not exclusive, and this variety of theories illustrates the complexity of this
problem. Accordingly, few studies have addressed the role of small scale orography on it.

Nevertheless, as the resolution of regional models increases, the synoptic scales are
nowadays rather accurately represented. Besides, quite recently the forecast models began
to solve together the synoptic scales and the mesoscale dynamics, including the upper-level
GWs and the low-level PV banners appearing downstream of the individual mountain
peaks (Hoinka et al, 2003; Liniger and Davies, 2003; Schär et al, 2003; Flamant et al, 2004;
Jiang and Doyle, 2004). This recent progress in numerical modeling appeals for a better
understanding of the impact of the small scale dynamics onto the synoptic flow, which is
by the way one of the central objectives of the Mesoscale Alpine Program (MAP, Binder
and Schär 1996, Bougeault et al. 2001). It is also in this context that Aebischer and Schär
(1998) have suggested that the low-level cyclonic PV generated along the southwestern
flank of the Alps could help to trigger lee cyclogenesis.

Although the interaction between mesoscale and synoptic-scale dynamics has been
addressed during MAP, by means of either direct field measurements or numerical sim-
ulations, relatively few theoretical studies address this problem. It is nevertheless chal-
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lenging for at least three reasons. First, the net force due to the breaking GWs acts
over a domain which horizontal scales correspond to Rossby numbers of order 1 or larger.
In this case, the large-scale response to the GWs is not entirely balanced but also con-
tains re-emitted inertio-gravity waves (Scavuzzo et al. 1998, Lott 2003). Second, in the
mid-troposphere the mountain GWs have little chance to break if the wind increases uni-
directionaly, because the stationary waves vertical wavenumber decreases with altitude.
Nevertheless, in the presence of fronts, many GWs can be absorbed at directional critical
levels in the mid-troposphere (Shutts 1995) and break thereafter (Broad, 1999). The
effect of this process on the large scale flow has never been evaluated. Third, a force that
is everywhere perpendicular to the background wind can produce dipolar PV banners
with an unusual structure.

This paper presents a theoretical model of the large-scale effect of the GWs generated
by an idealized front passing over a mountain range. This model accounts for the GWs
through the large-scale momentum deposit they induce where they encounter critical
levels, in the mid-troposphere. For this purpose, we adopt a Semi-Geostrophic (SG)
version of Smith’s model (1984) of lee cyclogenesis in which we include a GWs force
following Shutts (1995). The use of a balanced formalism here is supported by Lott (2003)
which has shown by direct 2D simulations that after 12hrs typically, the balanced part
dominates the inertio gravity waves part in the total response to GWs absorption at a
critical level. In this framework, we analyze the surface response associated with the PV
anomaly produced by the GWs force, and compare this response with that due to the
smooth large-scale mean orography.

The plan of the paper is as follows. In Section 2 we present the model. In Section 3 we
analyse the case of a cold front interacting with an idealized complex mountain range in
the absence of tropopause. In Section 4 we describe the warm front case. In Section 5 we
compare the Quasi-Geostrophic (QG) response with the SG response, we present some
sensitivity tests to the altitude at which the gravity waves interact with the background
flow, and we analyse the influence of the tropopause (which introduces unstable baroclinic
modes). In Section 6 we present the results for orographic spectra representative of the
Alps. Section 7 is a summary and a discussion of the implications of our results to the
parameterization of mountain GWs in GCMs, or to the interpretation of the PV patterns
produced in the mid-troposphere when a front crosses a mountain range.

2 Model
2.1 Equations for the large scale flow

A central assumption of our model is that the power spectrum of orography shows a clear
separation between the large scales and the small scales. This permits to study separately
the synoptic dynamics and the GWs dynamics. Although this separation is not valid in
reality, it is implicitly assumed in SSO parameterization schemes. For this assumption to
be valid, we adopt in Sections 3, 4, and 5 an idealized mountain range profile given by,

h(x) = H0 e−
x2+y2

2L2 (1 + cos(kwx)) = H(x) (1 + cos(kwx)) , (1)

where kw = kwex + lwey. In Eq. (1), L is the characteristic large scale, kw is the dominant
horizontal wavenumber associated with the small scales, 2H0 is the maximum altitude of
the mountain range and H(x) is the large scale orography profile, that is the envelope of
the ridges (Fig. 1a,b).

In the linear context, and in the absence of critical levels, the large scale effect of
the GWs forced by h′ = H(x) cos(kwx) is very small if kwL ≫ 1. Nevertheless, if the
GWs encounter directional critical levels (Fig. 1c), they are absorbed and can deposit the
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momentum they transport. For the large scale flow, this effect can be translated into a
force per unit mass (see subsection 2.3 and Appendix),

F(x, z) = F(x, z) ex + G(x, z) ey , (2)

whose impact adds to that of the large scale orography profile H(x).
To study the response to F and H, we adopt the Boussinesq approximation and con-

sider an idealized front such that the background wind U and the potential temperature
Θb have uniform shears:

U(z) = U(z) ex + V0 ey = (U0 + Λz) ex + V0 ey , (3)

Θb(y, z, t) = θr + θ0z.z + Θy.y + θad(t) . (4)

In Eqs. (3)-(4), V0 is the surface wind, Λ is the vertical wind shear, θr is a constant
reference temperature, θ0z is the vertical stratification, Θy is the cross front potential
temperature gradient, and θad(t) is the uniform change in potential temperature asso-
ciated with the advance of the front. In this framework, the constant Brunt Väısala
frequency N , Θy and θad(t) can be written

N2 =
g θ0z

θr

, Θy = −Λfθr

g
and θad(t) = −V0 Θy t . (5)

In Eqs. (5), the thermal wind balance relates Θy to Λ, f is a constant Coriolis parameter,
and g is the gravity constant.

If we assume that the forcings F , G and H are of small amplitude and have a char-
acteristic horizontal scale L such that the large scale Rossby number V0

fL
is near or below

1, the response of the flow can be evaluated using a forced and linearized version of the
hydrostatic SG equations given in Hoskins (1975):

(∂t + U∇) ug + wΛ − fv + ∂xφ = F (a)
(∂t + U∇) vg + fu + ∂yφ = G (b)

∂zφ = gθ/θr (c)
(∂t + U∇) θ + vΘy + wθ0z = 0 (d)

∂xu + ∂yv + ∂zw = 0 (e)

(6)

In Eqs. (6), (u, v, w) are the components of the wind perturbation, φ = p/ρr is the
geopotential perturbation, p is the perturbation pressure and ρr is a constant reference
density. Still in Eqs. (6) ug = −∂yφ/f and vg = ∂xφ/f are the geostrophic components
of the wind perturbation. From the system of Eqs. (6), we form the linearized budget
of the PV disturbance q. For this, we calculate [∇ ∧ ((6a),(6b),(6c))] .∇Θb + Λ∂y(6d) −
θ0zR

−1
i ∂x(6b), and use Eq. (5), which yields :

(∂t + U∇) ρrq + ∇.JN = 0 , where (7)

ρr q(x, z, t) = θ0z

(

(1 − Ri−1) ∂xvg − ∂yug

)

+ Λ ∂yθ + Θy ∂zug + f∂zθ , and (8)

JN = − θ0z (1 − Ri−1)G ex + θ0z F ey − Θy F ez . (9)

In Eqs. (7) and (9), JN is the non-advective PV flux, and Ri = N2

Λ2 is the background flow
Richardson number. Note that Eqs.(7)-(8)-(9) are the linearized version of Hoskins (1975)
SG PV budget, with F added. Notably, JN is everywhere parallel to the background
isentropes (JN .∇Θb = 0). And since these isentropes are advected by the background
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flow, the global PV flux ρr q U(z) + JN never crosses them, which is consistent with the
”PV impermeability theorem” (Haynes and McIntyre, 1987).

Then, to determine the surface response from the PV, we also consider the two lin-
earized free-slip adiabatic boundary conditions:

(∂t + U(0)∇) θ + v Θy = −θ0z U(0)∇H at z = 0 , (10)

(∂t + U(D)∇) θ + v Θy = 0 at z = D . (11)

2.2 Inversion of the PV perturbation

If the forcings F , G, and H are specified, it is convenient to solve the Eqs. (7)–(11) in the
Fourier space1. In this space, the PV perturbation in Eq. (7) is then

ρr q̂ = i
1 − ei(k.U).t

k.U

{

Θy∂zF̂ + θ0z

(

−ik(1 − Ri−1)Ĝ + ilF̂
)}

, (12)

provided that q̂(t = 0) = 0. Introducing the geostrophic balance and the hydrostatic
relation Eq. (6c), we can invert the PV in terms of geopotential via the elliptic equation :

∂2φ̂

∂z2
− 2iλi

∂φ̂

∂z
−

(

λ2
r + λ2

i

)

φ̂ =
g

fθr

ρr q̂ , where (13)

λr =
N

f

√
1 − Ri−1 |k| and λi = l

Λ

f
. (14)

First, we form a particular solution that contains the whole PV q̂ and vanishes at z = 0 :

φ̂p(k, z, t) = e−λz

∫ z

0

e2λrz′
∫ D

z′
−gρr

fθr

q̂ e−λ∗z”dz”dz′ , where (15)

λ = λr − iλi and λ∗ = λr + iλi . (16)

Then, to satisfy the boundary conditions, we add to this particular solution two boundary
waves:

φ̂(k, z, t) = φ̂p(k, z, t) + φ̂u(k, t) e−λz + φ̂d(k, t) e+λ∗(z−D) . (17)

In this formalism, the boundary conditions Eqs. (10)-(11) become

λr (∂t − ik.U(0))
(

φ̂u − φ̂d e−λ∗D
)

− ikΛ
(

φ̂u + φ̂d e−λ∗D
)

=
{

(∂t − ik.U(0)) ∂zφ̂p(0) + ΛF̂(0)
}

W
−

{

ik.U(0) N2(1 − Ri−1) Ĥ(k)
}

E
(18)

λr (∂t − ik.U(D))
(

φ̂u e−λD − φ̂d

)

− ikΛ
(

φ̂u e−λD + φ̂d

)

=
{

−λr(∂t − ik.U(D)) φ̂p(D) + ikΛ φ̂p(D) + ΛF̂(D)
}

W
, (19)

at z = 0 and z = D respectively. In the right hand of Eqs.(18)–(19) we have separated
the forcings due to the GWs (W ), and to the enveloppe Ĥ (E). In the following, the
response is always described at the ground, where φ̂ = φ̂W + φ̂E because φ̂p(z = 0) = 0.

1convention : φ(x) =
∫

∞

−∞

∫

∞

−∞
φ̂(k)e−ikxdkdl, where φ̂(k) = 1

4π2

∫

∞

−∞

∫

∞

−∞
φ(x)eikxdxdy.
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2.3 Evaluation of F(x, z)

To evaluate the force F(x, z), we first calculate a net force F(z) using the linear theory
of GWs in a linear background shear flow (Shutts 1995, and Appendix):

F(z) = − d

dz
u′ w′, where u′w′ ≡ 1

πL2

∫ +∞

−∞

∫ +∞

−∞

u′ w′ dxdy . (20)

In Eq. (20), u′ and w′ are the small-scale velocities associated with h′. Then, we consider
that the horizontal distribution of F(x, z) resembles the enveloppe profile H(x):

F(x, z) = F(z) e−
x2+y2

L2 . (21)

Although in Eq. (21), F(x, z) results in a net force equal to F(z), Eq. (21) assumes that
the GWs field stays confined over the mountain range H. This assumption is only valid
for hydrostatic waves in the absence of shear, while for the background flow we consider
here, Shutts and Gadian (1999) have shown for an isolated mountain that the GWs field
is spread downstream over a distance that can reach few times the horizontal scale of the
mountain. Nevertheless, we adopt this assumption for several reasons. First, the drag
u′w′ is less widely spread because it is quadratic. Second, Lott (2003) have shown in 2D
that the spread of the drag is reduced if we increase the vertical resolution and add a
small amount of dissipation to take account of the breaking. Third, since we consider
here the combined effect of several different anisotropic individual ridges, a possible local
shift of the force over a distance comparable to 2π/|kw| can be reasonably neglected in
respect to L, the scale of the global mountain.

As our GWs have horizontal wavenumber k ∼ ±kw (Eq. (1) and Figs. 1b,c), the
forcing F is only significant if there exists a critical level zw for kw : U(zw).kw = 0. In
other words, the background wind has to pass from one side of the ridges to the other
when z increases (Fig. 1b). For a cold front in the Northern Hemisphere, e.g. V0 < 0 and
Λ > 0, this only occurs if kw.lw > 0 (Fig. 1b,c). For a warm front (V0 > 0 and Λ > 0)
this only occurs if kw.lw < 0. In both cases, the total force is well approximated by

F(z) ≈ 1

2
√

π
NΛLH2

0 k0(z)2 e−L2‖kw‖2+L′2k2
0

Λz|V0|
‖U(z)‖2

(

ex −
U(z)

V0

ey

)

(22)

where: k0 =

(

kw − lw
U(z)

V0

)

/

(

1 +
U(z)2

V 2
0

)

, and L′2 =

(

1 +
U(z)2

V 2
0

)

L2 . (23)

Coherently, F(z) is everywhere orthogonal to the background flow U(z) (see Appendix).

2.4 Computation

To solve this problem numerically, we consider a horizontally periodic domain of size
20000km×20000km×10km. The fields are represented by 512 × 512 harmonics and 81
vertical levels, yielding a resolution of 40km×40km×125m. First, we compute analytically
the PV anomaly using the diagnostic Eq. (12), and integrate it vertically by a trapezöıdal
approximation to evaluate φ̂p in Eq. (15). Then, we solve the first order differential
Eqs. (18)-(19), treating separately the parts “W” and “E”. This yields temporal integrals
that converge for a time step of 2 hours (hrs).

3 Cold front with no tropopause
In this section, we place the tropopause altitude at D = ∞. And we consider an idealized
cold front moving toward the South in the Northern Hemisphere midlatitudes, across an
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idealized mountain range. The flow and orography parameters are respectively :

θr = 300 K, ρr = 1 kg m−3, f = 10−4 s−1 , N = 10−2 s−1 ,

Λ = 4.10−3 s−1 , U0 = 0 ms−1 , V0 = −20 ms−1. (24)

H0 = 800 m , L = 200 km , |kW | =
2π

70000
m−1, with kw = lw. (25)

The mountain range half-height width is 2L ∗
√

ln 2 ≈ 330km. It is typically constituted
of 5 to 7 ridges, which are 70km wide and oriented South East - North West (Fig.1b).
The dimensionless mountain heights NH0

fL
= 0.4 < 1 for the large scale orography H, and

N2H0

V0
= 0.8 < 1 for the small scale orography h′, justify a linear treatment for both. The

large scale Rossby number is V0

f L
∼ 1, and the ratio between the large and the short scales

is 2L|kw|/2π ∼ 6 > 1. Note that we could arbitrarily choose to have a bigger number of
thinner ridges in the same enveloppe as here. But therefore, we should have also reduced
the height of these ridges, to conserve a reasonable orographic variance and force.

3.1 PV anomaly due to the absorbed GWs forcing F

The vertical profile of the net force F(z) in Eq. (22) is displayed in Fig. 2. Each component
reaches a maximum near zw = 5km, and is only substantial over a vertical depth of 1 or
2 km around zw. In the rest of the paper we will refer to this area as the critical zone.

The Figs. 3a,b,c show three horizontal sections of the PV anomaly due to F in the
critical zone at t=12hrs. At the three levels, the PV amplitude is between 0.4-0.8 PVU,
and the PV patterns are predominantly oriented in the direction of the background wind
U(zw). This general orientation follows that once produced by F aloft the mountain,
the PV is advected by the background flow. To interpret the differences between those
three levels, one visualizes schematically the non advective PV flux JN in Fig. 4. The
Fig. 4a shows that JN is pointing upward to be parallel to the isentropes. In the (y, z)
plane, JNz essentially takes the PV from below zw to put it above (Fig. 4a), yielding the
predominantly positive PV lobe above zw (Fig. 3a) and the predominantly negative one
below (Fig. 3c). Near the altitude zw, the divergence of the vertical component of the
non-advective PV flux is null,

∂zJN z = Θy ∂zF = 0 , (26)

therefore the PV is only due to the vector JNxy = JNx ex+JNy ey, which is nearly opposite
to the wind, the force F(zw) being perpendicular to it (Fig. 4b). Hence, near zw, JNxy

tends to take PV from downstream to put it upstream, according to the direction of
U(zw). At small times, it results in a positive PV anomaly along the upstream flank of
the mountain and a negative one downstream (Fig. 4b). Afterwards, the negative PV
anomaly produced aloft the mountain is advected downstream at the velocity U(zw),
yielding the mid-tropospheric start-up anticyclone in Fig. (3b). Still near zw but over
the mountain, the long-term response is a steady-state cyclonic PV anomaly (Fig. (3b).
There, the PV due to JNxy is exactly balanced by the advection term,

(U.∇) ρrq + ∇.JNxy = 0 . (27)

The PV structure in Fig. 3 essentially represents a PV banner, whose characteristic
horizontal width and depth are fixed by the width and depth of the critical zone, around
2L = 400km and 2km respectively (see Fig. 2 and 4), while its length is controlled by the
advection (i.e. around |U(zw)|.t). This PV banner has a 3D structure that is very different
from the PV banners occurring in barotropic flows when the low level flow passes around
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individual mountain peaks or when mountain GWs break in the absence of critical levels.
In these cases, the effect of the mountain can still be modeled by a non-advective PV flux
JN . It is nevertheless perpendicular to the background wind rather than parallel to it,
resulting in PV lobes of opposite signs localized one next to the other in the horizontal
(Schär and Durran, 1997).

3.2 Surface pressure φW due to the forcing F

The Figs. 5a,b,c show the surface pressure perturbation induced by the GWs momentum
deposit. At small time (Fig. 5a), it presents a small amplitude (approx. -0.1mb) trough
over the mountain and a ridge downstream of it (towards U(zw)), its amplitude is around
0.2mb. In a longer term (Figs. 5b,c), the trough over the mountain near disappears, while
the downstream ridge extends along the direction of U(zw). To the west of this extending
ridge, a second trough is developing (Figs. 5b,c). At 36hrs, the maximum amplitude of
the surface signal is 1.1mb.

To interpret this response, Fig. 6 shows the surface temperature anomaly θr

g
∂zφp(0)

associated with the particular solution φp. This term is central because it translates the
PV into Eady waves forcing (see Eq. (18)) via the weighted average (in the Fourier space):

θr

g
∂zφ̂p(k, z = 0, t) = −

∫ D

0

q̂

f
e−λ∗zdz . (28)

At t=12hrs, θr

g
∂zφp(0) is negative over the mountain, and positive downstream of it.

This follows that the mid-troposphere PV in Fig. (3) is predominantly positive over the
mountain and negative downstream of it. Note also that the positive lobe in surface
temperature exceeds in amplitude the negative one, because the negative PV in Fig. (3)c
has a stronger influence at the surface than the positive one in Fig. (3)a. Note also that
the pattern of θr

g
∂zφp(0) is substantially larger in horizontal size than the PV pattern.

Again, this is due the weight e−λr z in Eq. (28), which favors the large scales, a general
property of PV inversion operators (Hoskins et al, 1985). Still at t=12hrs, the surface
trough over the mountain and the downstream ridge in Fig. 5a are essentially needed for
the surface temperature θr

g
∂zφW (0) to oppose θr

g
∂zφp(0).

At later stages (t=24hrs, 36hrs), the temperature pattern θr

g
∂zφp(0) is more complex

(Fig. 6b,c), with an elongated negative anomaly appearing along the North East flank
of the extending downstream positive anomaly. This negative anomaly, is the surface
signature of the upper level positive PV (the one shown in Fig. (3)a at t=12hrs). At
these times, it is no longer masked by the lower level negative anomaly (the one in
Fig. (3)c at t=12hrs), because the wind is turning clockwise with altitude.

As a result, the surface response φW is predominantly anticyclonic near along the axis
of U(zw) (Figs. 5b,c). Nevertheless, it presents a trough along the South-Eastern flank of
this ridge: to the opposite of the place where the elongated negative surface anomaly of
θr

g
∂zφp(0) is located in Figs. 6b,c. This witnesses of the fact that boundary Eady waves

start to modulate the surface response via the meridional thermal advection in Eq. (18),
and make it differ from the simple mirror image of the PV deposit.

To support this last statement, we note that the Eady waves forcing θr

g
∂zφp(0) (Fig. 6)

has a quite stationary structure upstream of the advected start-up anticyclone. In terms
of Eady waves dispersion relationships, this translates into:

ω = k.U(z =
1

λr

) = k
Λ

λr

+ l V0 = 0 . (29)

As the shape of θr

g
∂zφp(0) also imposes k ∼ l, Eq. (29) yields λr ∼ Λ

−V0
= 2.10−4 m−1,

and a dominant wavelength 2π
|k|

∼ 3000 km rather consistent with the Fig. 5c. For these
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scales, the group velocity points towards the South-South-West:

Cg =

(

Λ

λr

l2

|k|2 ,
Λ

λr

l2

|k|2
)

∼
(

−V0

2
,

3V0

2

)

, (30)

whereas U(zw) is South-West. Accordingly, we observe the development of a trough at
the West of the extending ridge.

3.3 Surface pressure φE due to H(x)
The time evolution of φE is shown in Figs. 5d,e, and f at=12hrs, 24hrs, and 36hrs re-
spectively. A boundary Eady lee wave is developing and extending downwind according
to U(0) = V0 ey. The wave is bounded downstream by the start-up cyclone due to the
warm potential temperature anomaly θ0z H present over the mountain range when t < 0
and swept away by U(0) when t > 0. It is bounded over the mountain by an anticyclonic
pattern due to vortex compression. The corresponding high keeps almost constant after
12hrs and reaches 1.2 mb at 36hrs. Immediately downstream of the mountain a trough is
settling, whose amplitude reaches -1.3mb at 36hrs. The amplitudes obtained are signifi-
cantly smaller than in Smith (1984, 1986) because our mountain is substantially smaller
in width and height.

As in Section 3.2 this surface response can also be interpreted in terms of stationary
boundary Eady waves dynamics. In this case the large scale orography induces a steady
forcing with dominant wavenumbers |k| ≈ 1/L, and Eq. (29) implies

l/k = −Λ/(λrV0) ∼ 0.5 > 0 . (31)

Accordingly, the troughs and ridges are oriented from North-West to South-East, and
are strongly inclined along the y axis. Likewise, Eq. (31) permits to predict 2π/l ≈
4πL = 2400km, which roughly corresponds to the crest-to-crest distance along the y-axis
in Fig. 5f. These values yield a dominant group velocity consistent with the Eady lee
wave extension along the y-axis in Fig. 5f:

Cg ≈ (6 ;−20) ms−1 . (32)

3.4 Total response at the surface φ = φW + φE

The total response φ = φW +φE is displayed in the Figs. 5g,h,i. Although the GWs effect
is rather small, they reduce by near 20% the ridge produced by the large-scale orography
over the mountain, as well as the downstream trough. More pronounced effects occur
further downstream. In particular the ridge produced by the GWs and which extent
below the PV banner in Figs. 5b, affects substantially the surface response in the far
field.

4 Warm front with no tropopause
In this part, we consider the case of a warm front by taking V0 = 20 ms−1 in our model.
To obtain a significant force F we also rotate the small-scale ridges and take kw = −lw
(see Appendix). All the other parameters are the same as in Section 3.

As in the cold front case, the PV anomaly on both flanks of the critical zone has an
elongated structure. It is predominantly positive above zw and negative below (Figs.7a,c).
This is almost as in the cold front case in Fig. 3a,c. Near the altitude zw nevertheless
(Fig. 7b), the PV anomaly over the mountain is negative, and an opposing pattern of
positive PV is advected downstream at the velocity U(zw): the opposite to what occurs
in the cold front case in Fig. 3b.
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This last difference between the cold front case and the warm front case is an important
result that has a simple dynamical origin. The necessity that there exist critical levels in
the troposphere for the GWs to affect the large scale flow, imposes that the GWs force
has one component in the direction of the shear Λ (the x-component in our case, see
Fig. 4b). Its other component is opposed to the low level wind, which is natural for a
gravity wave drag. Where this force acts, F makes an angle with U(zw) equal to π/2 in
the cold front case, and equal to −π/2 in the warm front case. From this, it follows that
the horizontal component of the PV flux JNxy is such that JNxy.U(zw) < 0 in the cold
front case, whereas JNxy.U(zw) > 0 in the warm front case. Because of this difference, the
surface response to the GWs in the warm front case (Figs. 8a,b,c) presents no symmetry
with that in the cold front case (Figs. 5a,b,c). On the other hand, the response to the
large-scale orography φE is the symmetric of the cold front response, in respect to the
x-axis (Figs. 8d,e,f and Figs. 5d,e,f).

In response to the PV pattern in Fig. 7, the surface response φW is dominated by a
strong anticyclonic lobe which keeps attached to the mountain (Figs. 8a,b,c). Immedi-
ately downstream according to U(0) a substantial trough develops. Note also that the
magnitude of the response is stronger than in the cold front case (between 1.8 mb and
-1.2 mb at t=36hrs). It follows that the anticyclonic PV anomalies over the mountain
and extending below zw downstream of it in Figs. 7b, and c reinforce each other to pro-
duce a strong surface response near the mountain. By summing the two responses, it is
apparent in Figs. 8g,h,i that in this case the absorbed GWs reinforce the anticyclone over
the mountain as well as the downslope trough.

5 Sensitivity experiments
5.1 Quasi-Geostrophic simulations
The fundamental reason for choosing the SG formalism rather than the QG formalism is
that we obtain a more accurate PV budget, closer to the primitive equations PV budget.
More precisely, in our case, the non-advective PV flux JN has a vertical component
JNz that keeps J parallel to the tilted isentropes (Haynes and McIntyre, 1987). This
vertical component is neglected in the QG formalism. To evaluate its significance, we
have repeated the cold and warm front experiments in Sections 3 and 4 using a QG
version of the model of section 2. To do it, we take ΘyFz = Ri−1 = 0 in the PV Eq. (12)
and Ri−1 = λi = 0 in the definition of the vertical decay length λ Eq. (14).

The most noticeable difference is that the warm front response is exactly anti-symmetric
with the cold front response according to the x-axis (Fig. 9). Because of the neglect of
JNz, at all altitudes the PV is due to an horizontal flux JNxy that is aligned with the wind
(not shown), so it resembles that at zw in the SG simulations (Fig. 3b and 7b). The QG
simulations fail in simulating the substantial, sign definite, and elongated PV anomaly
located on the lower flank of the critical zone (Fig. 3c and 7c). That is the reason why
the surface signal in the QG cases is much smaller than in the corresponding SG cases.

Nevertheless, we can notice that downstream of the mountain the GWs remain cy-
clolitic for a cold front case and cyclogenetic for a warm front. Over the mountain, the
GWs still produce a low for the cold front case and a high for the warm front.

5.2 Front, orography and critical zone altitude
The numerical simplicity of our model permits to analyze many different flow and orogra-
phy configurations. For example, increasing only H0 favors the GWs forcing (varying in
H2

0 , Eq. (22)) relatively to the large scale orography forcing (in H0, Eq. (18)). Increasing
the number of ridges in our mountain (i.e. increasing |kw|L) results in the same effect,
even if L is fixed, and although the critical zone becomes thinner. Changing the orien-

tation of the ridges (i.e. the angle ̂(ex;kw)) has a more subtle effect. In the cold front
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case, for 0 < ̂(ex;kw) < π
4
, the GWs meet critical levels nearer the ground. It results in

3 effects : (i) the PV anomaly is nearer the ground, (ii) the advection of PV is slower,
and (iii) the axis of the PV anomaly is closer to the surface wind V0 ey. As illustrated in
Figs. 10a,b,c, this makes the surface response (i) thinner in width, (ii) shorter in length,
and (iii) oriented closer to the surface wind V0 ey. The same results hold for the warm

front case and for −π
4

< ̂(ex;kw) < 0 (not shown). The compromise of those different
processes is summarized in Fig. 11, where the extrema of φW at t=36hrs are plotted

versus ̂(ex;kw) in the cold and warm front cases. Notably, in both cases, the maximum

amplitude is obtained for an intermediate value of | ̂(ex;kw)|, and not for | ̂(ex;kw)| ≈ 0
for which zw is nearer the ground. The reason is that zw ≈ 0 requires kw.U0 ≈ 0, that is a
quasi null cross-ridge velocity, and therefore a weak GW drag (see Eq. (41) in Appendix).

The amplifying effect of the descent of the critical zone by decreasing | ̂(ex;kw)| is thus
balanced by a decrease of the total force amplitude.

5.3 Influence of the tropopause
To study the impact of the geostrophic baroclinic instability on our results, we place a rigid
lid at the altitude D = 10 km. A conventional linear stability analysis for our model shows
that unstable baroclinic modes have wavelengthes exceeding 2π/(2.6∗f/ND) ∼ 2400 km,
and that the most unstable mode is oriented in the along-front direction (Λ = Λex) with
a wavelength near 3700 km (k = 1.7 ∗ f/(ND) ex).

As shown in the Figs. 12a,b,c for the cold front case in Section 3, in the short term
(12hrs, Fig. 12a) the instability essentially has a slight quantitative effect on the sur-
face pressure pattern, compared to the case with no tropopause in Fig.5a. At t=24hrs
(Fig. 12b), the presence of long unstable modes starts to modulate the response substan-
tially. In particular, near and over the mountain the trough is more intense (see Fig.5b),
and its horizontal scale exceeds 2000 km along Λ. Later (t=36hrs, Fig. 12c), the long
modes influence is even stronger. Nevertheless, they do not affect much the maximum
amplitude of the signal, but rather spread it towards Λ. A qualitatively comparable
behavior occurs in the warm front case of Section 4 (Figs. 12d,e,f), except that it is
quantitatively less pronounced.

6 Extension to more realistic mountains
The near monochromatic nature of the small scale orography used until now results in a
rather thin critical zone. In reality however, mountains have broad band spectra and the
GWs can interact with critical levels almost everywhere over the entire troposphere depth.
To account for this, we follow Gregory et al. (1998) and represent the real orography
spectrum over square domains of size X ∗ Y by a spectral density function A(k) which
captures exactly the orographic variance:

1

XY

∫ X

0

∫ Y

0

h′2dxdy =

∫ +∞

0

∫ 2π

0

4π2

XY
|ĥ(K,α)|2 KdKdα =

∫ +∞

0

∫ 2π

0

A(K,α) KdKdα . (33)

In Eq. (33) K and α are the polar coordinates of k. ĥ(K,α) is the Fourier transform of
h′ inside of the domain X ∗Y , that can be estimated for real data by the FFT coefficient
h̃ calculated from the discrete series of h′. We then assume an isotropic spectral density
in the wavenumber band relevant for gravity waves:

K A(k) = a

(

K0

K

)γ

, for KL < ‖k‖ < KU . (34)

In Eq. (34) K0 and γ are constants that vary regionally, and a = 1m3 is introduced for
dimension consistency. We take KU = 2π/(10 km) ≈ N/V0 because disturbances with

11



shorter wavelength do not propagate vertically, and KL = 2π/
√

X2 + Y 2, i.e. approxi-
mately the longest harmonic the domain X ∗ Y can represent. Note that we could have
defined KL as the lower cut-off of the stationnary inertia-GWs, KL = f/V0 ≈ 1200km.
This is larger than the size of our domain, hence not represented in our spectrum analysis.
Nevertheless, we have checked that the following analyses are not sensitive to KL: for
such low values of γ, the orographic variance concentrates on the small scales.

To evaluate the effect of this spectrum in the context of our model, we consider the
effect of the small-scale mountains located in a domain of size πL2 = XY , and use the
method in Appendix to evaluate the net force due to A(k):

F =
2NΛa

2 − γ

[(

K0

KU

)γ

K2
U −

(

K0

KL

)γ

K2
L

]

Λz |V0|3
||U(z)||4

(

ex −
U(z)

V0

ey

)

. (35)

We then distribute this force regionally as in Section 2: F(x, z) = F(z) e−
x2+y2

L2 .
To give realistic values to the parameters K0 and γ, we have considered the Alpine

sector (5oE-16oE; 43oN-48oN) and used the ETOPO2 dataset2. In this sector, we de-
fine 30 partially overlapping square domains, each of size XY = 352km2 = πL2, giv-
ing L =200km as in Section 3,4,5 (Fig. 13a). For each of these domains, we estimate
(γ, ln(Kγ

0 )) by a best square fit between A(k) and the azimuthal mean of the orography
periodogram h̃h̃∗. An example for one particular box [5o26′E, 9o58′E]× [43o48′N, 46o58′N]
is shown in Fig. 13. For this box, the best fit is γ = 0.96 and ln(Kγ

0 ) = 10.2 (Fig. 13b). For
other boxes, the results are summarized in Fig. 13c: even if the parameters γ and ln(Kγ

0 )
have significant variations (the range obtained for γ is from 0.56 to 1.02), the resulting
force for each box has a rather stable magnitude around 2 10−4 kg m−2 s−2. Therefore, in
our simulations we can use, for the force, the mean values:

γ = 0.76 ; ln(Kγ
0 ) = 13.5 . (36)

Note that our γ is smaller than in Gregory et al. 1998 (who found γ > 1), probably
because the Alps are sharper than the mountains studied by these authors.

The Figs. 14a,b present the vertical profiles of F obtained with Eqs. (35)-(36) and
for the cold front of Section 3. As expected, the critical zone is deeper than in Fig. 2
and covers the entire troposphere. The surface response to this force in the absence of
tropopause is shown in Fig. 14c at t=36hrs. It resembles very much that of the idealized
case in Fig.5c. A predominant ridge is followed by a weaker trough, both being embedded
in the South to South-East sector. The dominant wave-vector is very similar to that of
Subsection 3.2, although not so well defined. The reason is that the critical zone is deep,
giving no precise horizontal axis to the PV pattern.

7 Discussion and Conclusion
This paper gives an heuristic evaluation of the significance of mountain GWs for the
synoptic-scale dynamics near large mountain ranges, in the presence of directional critical
levels. The model used is an extension of the model of Smith (1984) for lee cyclogenesis.
It includes a representation of the GWs adapted from Shutts (1995). The interaction
between the GWs and the large-scale flow occurs via the PV anomaly, which is produced
by the force due to the GWs which encounter critical levels in the troposphere.

Section 3 details this interaction for a cold front, in the case where there is a good
separation between the small-scale dynamics and the large-scale dynamics. In a config-
uration such that almost all the GWs encounter critical levels, they induce a force in a

2around 2 km horizontal resolution, see the NGDC’s web-site:
www.ngdc.noaa.gov/mgg/fliers/01mgg04.html
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thin critical zone centered around a well defined altitude zw. The level zw depends on
the configuration of the front relatively to the orientation of the anisotropic small-scale
orography. This force is everywhere perpendicular to the background flow and produces
a PV anomaly around zw that is advected and steered by the background wind. Near zw,
the PV anomaly is predominantly cyclonic aloft the mountain, and it presents a start-up
anticyclone that travels at the velocity U(zw) away from the mountain (Fig. 3). Below
zw the PV anomaly is predominantly anticyclonic, whereas above zw it is predominantly
cyclonic. Accordingly the surface response presents at small time (12hrs in Fig. 5a) a
trough over the mountain and a ridge downstream. In a longer term, this response is
modulated by Eady waves (Figs 5b, and c): the trough over the mountain becomes quite
small, and an elongated ridge builds-up immediately downstream towards U(zw). The
GWs thus tend to slightly reduce the amplitude of the response to the large-scale orog-
raphy, notably the ridge over the mountain and the lee trough (Figs. 5d,e,f). As the lee
trough is associated with lee-cyclone initiation in Smith (1984), we can argue that the
GWs are cyclolytic in the cold front case.

In Section 4 we repeat the same study in the warm front case (Figs. 7–8), after rotating
by 90o the orientation of the mountain ridges in order that the GWs exert a substantial
force. In this case, the PV anomaly produced by the GWs is predominantly anticyclonic
over the mountain and cyclonic downstream (Fig. 7). It is also predominantly anticyclonic
below zw and cyclonic above. Hence, the surface response presents a large-scale ridge
attached to the mountain (Figs. 8a,b,c), and extending below the PV anomaly, toward
U(zw) (Fig. 7). Eady waves dynamics produce a trough downstream of the mountain,
toward the surface wind U(0) (Figs. 8b,c). In this case, and contrary to the cold front case,
the GWs reinforce the ridge over the mountain and the downstream trough (Figs. 8d,e,f).

The rest of the paper consists in doing tests of the robustness of these results. They
indeed seem to be linked to geometrical properties of the GWs directional critical levels,
indicating that they are rather systematic. In Section 5a, we adopt the QG framework.
This illustrates the important role of the vertical component of the PV flux in baroclinic
environments. In Section 5b, we change the orientation of kw, and other crucial pa-
rameters. Even if those changes have some quantitative effects on the amplitude or the
horizontal scale of the surface response, the cyclolytic nature of the GWs in the cold front
case stays unchanged. The same is true in the warm front case, where the interaction
remains cyclogenetic. The introduction of a tropopause in Section 5c is more significant
qualitatively, even if in our model, the baroclinic instabilities can only modulate the GWs
response at horizontal scales much larger than discussed up to now. The effect is par-
ticularly pronounced in the cold front case (Figs. 12a, b, and c) where, compared to the
same case without a tropopause (Figs. 5a, b, and c) the trough over the ridge becomes
rather large in the long term (Fig. 12c) instead of becoming small (Fig. 5c), while the
ridge downstream becomes rather small, instead of being large. In the warm front case
(not shown) the effect of the GWs aloft the mountain and immediately downstream of it
stays the same as without a tropopause. It is only in the far field and at large scales that
the influence of the baroclinic instabilities become substantial.

In Section 6 we present an extension of our model to more realistic small-scale oro-
graphic spectra. We use for this a method presented in Gregory et al. (1998) in the
context of the parameterization of mountain GWs via a spectral method in the UKMO
model. This method consists again in evaluating the GWs force exactly, but using a
realistic spectral density function for the orography. For the case of the Alps (Fig. 13),
the GWs force is more broadly distributed over the troposphere. Nevertheless, the sur-
face responses to the GWs (Figs 14) share many properties with the responses for the
idealized orography profiles used in Sections 3, 4, and 5.
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Despite the attractive simplicity of our model, these results should be interpreted with
some caution. For instance, the neglect of unbalanced effect can be inaccurate for shears
larger than here: the inertio-gravity waves generated during the interaction (Lott, 2003;
Vadas et al, 2003) or the non-geostrophic unstable baroclinic modes (Plougonven et al,
2005) may have a substantial influence at the surface. More seriously, by representing the
fronts by uniform shears we do not consider the barotropic growth of unstable modes that
the smooth mountain and the GWs may trigger. This may result in effects rather different
from those discussed here, in particular because the horizontal scale of the unstable modes
may be much closer to the horizontal scale of the mountain.

Nevertheless, we believe that the structure of the PV anomalies we discuss here is
of some interest. They are produced by PV fluxes that are everywhere parallel to the
background wind, a situation rarely discussed in the literature. As a result, they do
not resemble the horizontal PV banners that are often discussed. These PV anomalies
are also strongly affected by the inclination of the isentropes. For these reasons, they
may reflect some aspects of the mesoscale and synoptic scale PV patterns found in the
observations. For example, Hoinka et al (2003) have carried out an analysis of the MAP
IOP 15 (see also Buzzi et al., 2003) in which a PV streamer from the low stratosphere
passes above the Alps, triggering lee cyclogenesis. They mention the importance of the
breaking GWs in the cut-off process and the presence of enhanced shear. Since the order
of magnitude of our PV anomalies is comparable to theirs, the process we have studied
here might have some relevance in their case.

Another interest of this study is to give a theoretical approach to the problem of
mountain GWs parameterization in large-scale models. In this respect, the fact that the
response to the GWs is generally smaller than the response to the large-scale orography
is reasonable. The SSO parameterizations are intended for correcting errors, not for
producing the dominant signal. In this context, it gives two messages.
First, a rather systematic error of large-scale models is that they underestimate, at least
in winter, the anticyclonic circulation that occurs over the large-scale mountains. These
errors have been corrected in the past either by introducing an envelope orography, or by
introducing lift forces oriented perpendicularly to the geostrophic flow and towards the
right (in the Northern Hemisphere). The two approaches are in good part equivalent (Lott
1999). Although the GWs force is also perpendicular to the flow, our results show that it
does not systematically help the building-up of anticyclones over mountains. Indeed, it
is probably the other way round because cold fronts are stronger than warm fronts in a
climatological sense. Second, our results show that absorbed GWs have little chance to
help lee-cyclogenesis, and seem to have a rather cyclolytic influence, if we again assume
that cold fronts are more frequent.

APPENDIX
Evaluation of the GWs force F

We use the linear Boussinesq theory of hydrostatic stationary mountain GWs in uniform
background shears (Shutts, 1995). The vertical velocity for each monochromatic wave
satisfies

∂2ŵ′

∂z2
+

N2

(k.U(z))2

(

k2 + l2
)

ŵ′ = 0 , with ŵ′(0) = −ikU0 ĥ′. (37)

The waves which present a critical level at zc = −kU0

kΛ
> 0 can be written

ŵ′(z) = − ikU0 ĥ′

(

1 − z

zc

)1/2 + ǫ iα

, ǫ = ±1 , for z < zc (38)

≈ 0 for z > zc , (39)

14



where α =
√

Rik2+l2

k2 − 1
4
. We take ǫkU0 > 0 to impose an upward group velocity.

In Eqs. (38)-(39) the GWs reflected or transmitted at zc have been neglected because
Ri ≈ 6 ≫ 0.25 (Booker and Bretherton 1967). Note that Eq. (38) is an exact solution of
Eq. (37) for the entire domain under zc. Besides, the mean stress satisfies

u′w′ ≡ 1

πL2

∫ +∞

−∞

∫ +∞

−∞

u′ w′ dxdy =
4π2

πL2

∫ +∞

k=0

∫ +∞

l=−∞

(ûŵ∗ + û∗ŵ) dl dk . (40)

We take the background wind of Eq. (3) for a cold front (V0 < 0, Λ > 0), and use
Eqs. (38)-(39) and the dispersion relationships for the GWs, which yields

u′w′ (z) =
8π2

πL2

∫ +∞

k=0

∫ +∞

l=−
k U(z)

V0

− k

‖k‖ (kU0) N |ĥ′|2dl dk + ... , (41)

where the dots are for the z-independent part of the flux carried by the GWs that do not
encounter critical levels. Then, the associated force is :

F(z) = − d

dz
u′ w′ =

8π2

πL2
NΛ .

∫ +∞

0

k2

∣

∣

∣

∣

ĥ′(k, l = −k
U(z)

V0

)

∣

∣

∣

∣

2

dk .
Λz

‖U(z)‖

(

ex −
U(z)

V0

ey

)

(42)
This last formula is valid for any kind of front of the form of Eq. (3), cold or warm. For
the idealized orography profile of Eq. (1), h′ = H(x) cos(kwx), which leads to

ĥ′ =
H0L

2

4π

(

e−(k−kw)2 L2

2 + e−(k+kw)2 L2

2

)

. (43)

To simplify the analytical treatment under the assumption that the horizontal scales are
clearly separable (‖kw‖L ≫ 1), we neglect the second gaussian term of Eq. (43), because
it is centered around −kw and the integral in Eq. (42) is for k > 0. The steepest descent
estimate of the integral of the remaining gaussian term in Eq. (42) yields the Eqs. (22)-
(23) in Section 2.3. Note that if kw lw < 0 for the cold front case, coherently we obtain
F ≈ 0, because the waves which encounter a critical level have a very small amplitude
in this case. On the opposite, in the warm front case, F ≈ 0 if kw lw > 0.
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Schär, C., M. Sprenger, D. Lüthi, Q. Jiang, R. B. Smith, and R. Benoit, 2003: Structure
and dynamics of an alpine potential-vorticity banner. Quart. J. Royal Meteor. Soc.,
129, 825–855.

Scinocca, J. F., and N. A. McFarlane, 2000: The parametrization of drag induced
by stratitified flow over anisotropic orography. Quart. J. Royal Meteor. Soc.,
126(568), 2353–2393.

Shutts, G. J., 1995: Gravity-wave drag parametrization over complex terrain: the effect
of critical-level absorption in directional wind-shear. Quart. J. Royal Meteor. Soc.,
121, 1005–1021.

17



Shutts, G. J., and A. Gadian 1998: Numerical simulations of orographic gravity waves
in flows which back with height. Quart. J. Royal Meteor. Soc., 125, 2743–2765.

Shutts, G. J., 2003: Inertia-gravity wave and neutral eady wave trains forced by direc-
tionnally sheared flow over isolated hills. J. Atmos. Sci., 60(4), 593–606.

Smith, R. B., 1979 Some aspects of the quasi-geostrophic flow over mountains. J. Atmos.
Sci., 36, 2385–2393.

Smith, R. B., 1984: A theory of lee cyclogenesis. J. Atmos. Sci., 41(7), 1159–1168.

Smith, R. B., 1986: Further development of a theory of lee cyclogenesis. J. Atmos. Sci.,
43(15), 1582–1602.

Speranza, A., A. Buzzi, A. Trevisan, and P. Malguzzi, 1985: A theory of deep cyclogen-
esis in the lee of the alps. part i: Modifications of baroclinic instability by localized
topography. J. Atmos. Sci., 42, 1521–1535.

Vadas, S. L., D. C. Fritts, and M. J. Alexander, 2003: Mechanism for the generation of
secondary waves in wave breaking regions. J. Atmos. Sci., 60, 194–214.

Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to
the representation of orography in the met office unified model. Quart. J. Royal
Meteor. Soc., 129, 1989–2010.

18



x, k

L
. x

kW

kW

z

kW

π2

U(z)

H(x)

h(x)

a)

y, l

Λ

kW

Vo
U(z W)

WARM

COLD

COLD FRONT
b)

Vo U(z)

kw

k

-k

Λ

 = 0k .U(z)

k

l

small scale mountain h’
gaussian spectra of the

below z

a critical level

GWs that have met

critical level below z

GWs

that have met a

c)

Figure 1: Schematic representation of the idealized mountain range and of the background
flow used to derive the model equations in the cold front case: a) vertical section with
horizontal axis along kw, b) view from top, c) spectrum of the small-scale orography
h′ = H(x) cos(kwx).

19



0 0.5 1
0

1

2

3

4

5

6

7

 F/|F|
max

 z
 (

 k
m

 )

 |F|
max

= +0.00292 m.s −2

 CRITICAL ZONE

0 0.5 1
0

1

2

3

4

5

6

7

 G/|G|
max

 z
 (

 k
m

 )

 |G|
max

= +0.00291 m.s−2

Figure 2: Vertical profile of the force F(z) in the idealized cold front case in section
3 : θr = 300 K, , f = 10−4 s−1, N = 10−2 s−1, Λ = 4.10−3 s−1, U0 = 0 ms−1, V0 =
−20 ms−1, H0 = 800 m, L = 200 km, |kW | = 2π

70000
m−1 and kw = lw.

20



−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

 b)

z=4.969 km

 y
  (

 1
00

0k
m

 )
 q ( PVU ) : [ −0.41; 0.41 ]

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

 a)

z=5.281 km

 y
  (

 1
00

0k
m

 )

 q ( PVU ) : [ −0.09; 0.69 ]

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

 c)

z=4.656 km

 x  ( 1000km )

 y
  (

 1
00

0k
m

 )

 q ( PVU ) : [ −0.80; 0.06 ]

 k
w

 

 Λ 

 V
0
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Figure 8: Same as in Fig.5 but in the warm front case (same parameters as in Fig. 7).
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Figure 9: Quasi-geostrophic response to the GWs force: a), b) and c) Cold front, same
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negative values are dashed.
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Figure 11: Extrema in the surface geopotential due to the GWs at t=36hrs and for various
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Figure 12: Simulations with a tropopause at D=10km. Cold front with the same param-
eters as in Fig. 5: a) t=12hrs, b) t=24hrs and c) t=36hrs; Warm front with the same
parameters as in Fig. 8: d) t=12hrs, e) t=24hrs and f) t=36hrs. CI=0.2mb, negative
values are dashed.
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Figure 14: Cold front simulations with an orographic spectrum representative of the Alps.
a) Vertical profile of F(z), b) Vertical profile of G(z), c) φW at t=36hrs: no tropopause,
and φW at t=36hrs: tropopause in D =10km. CI=0.1mb, negative values are dashed.
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