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Abstract

The diurnal and sub-diurnal variations of the mass and wind terms of the axial Atmospheric Angular
Momentum (AAM) are explored using a 1-year integration of the LMDz-GCM, twelve 10-day ECMWF
forecasts and some ECMWF Analysis products. In these datasets, the wind and mass AAMs present
diurnal and semi-diurnal oscillations which tendencies far exceed the total torque.

In the LMDz-GCM, these diurnal and semi-diurnal oscillations are associated with axisymmetric
(s = 0) and barotropic circulation modes that resemble to the second gravest (n = 2) Eigensolution
of the Laplace’s tidal equations. This mode induces a Coriolis conversion from the wind AAM toward
the mass AAM that far exceeds the total torque. At the semi-diurnal period, this mode dominates the
axisymmetric and barotropic circulation. At the diurnal period, this n = 2 mode is also present, but
the barotropic circulation also presents a mode resembling to the first gravest (n = 1) Eigensolution
of the tidal equations. This last mode does not produce anomalies in the mass and wind AAMs.

A shallow water axisymmetric model driven by zonal mean zonal forces which vertical integral
equal the zonal mean zonal stresses issued from the GCM is then used to interpret these results. This
model reproduces well the semi diurnal oscillations in mass and wind AAMs, and the semi-diurnal
mode resembling to the n = 2 Eigensolution that produces them, when the forcing is distributed
barotropically in the vertical direction. This model also reproduces diurnal modes resembling to the
n = 1 and n = 2 Eigensolutions when the forcings are distributed more baroclinically. Among the
dynamical forcings that produce these modes of motion, we found that the mountain forcing and the
divergence of the AAM flux are equally important, and more efficient than the boundary layer friction.

In geodesy, the large but opposite signals in the mass and wind AAMs due to the n = 2 modes

can lead to large errors in the evaluation of the AAM budget. The n = 2 responses in surface pressure

can affect the Earth Ellipcity, and the n = 1 diurnal response can affect the geocenter position. For

the surface pressure tide, our results suggest that the dynamical forcings of the zonal mean zonal flow

are a potential cause for its s = 0-component.
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1 Introduction

Over the last 4 decades, the budget of Atmospheric Angular Momentum (AAM) has been the
subject of many studies. For the geodesists, this interest follows that at near all periodicities,
changes in AAM correspond to changes in the parameters of the Earth rotation (Barnes et al.
1983). For the climatologists, this interest follows that the AAM varies with the planetary scale
tropical oscillations affecting the climate at intra-seasonal (Madden 1987, Hendon 1995) and
inter-annual (Chao 1989) time scales. In the extratropics, and at shorter time scales, it also
varies with traveling Rossby waves (Lejenas and Madden 2000), low-frequency oscillations (Lott
et al. 2001, 2004a), weather regimes (Lott et al. 2004b) and synoptic scale eddies (Iskenderian
and Salstein 1998).

Although early papers revealed substantial links between observed changes in AAM and the
changes in the frictional torque associated with the large scale variability of the deep convection
in the tropics (Madden 1987), it is now clear that at periodicities below 40-days the mountain
torque dominates the friction torque. Although the relative importance of those two torques
has been debated during the 1990’s (see for instance Weickmann et al. 1997) less attention has
been paid to the relative importance of the mass angular momentum and of the wind angular
momentum in the total angular momentum itself. This follows from the fact that the mass
AAM contributes little to the total AAM at long periods, where most of the AAM variance is
contained. Nevertheless, at periodicities below 25-days, the variations in mass AAM compare
with those in wind AAM. This equi-partition occurs because in this frequency band: (i) the
total torque is dominated by the mountain torque; (ii) the major mountain ranges are located
in the midlatitudes so the mountain torque is essentially due to a mountain stress applied
to the atmosphere in the midlatitudes; and (iii) the atmospheric response to this stress is in
geostrophic balance (see Lott and d’Andrea 2005). This process results in lead-lag relationships
between the mountain torque and the mass AAM which have some interest for the low-frequency
variability in the Northern Hemisphere extratropics (Lott et al. 2004a). Indeed, the leading
mode of variability there, the Arctic Oscillation (Thomson and Wallace 1998), corresponds
to a redistribution of mass from the polar latitudes to the midlatitudes and the subtropics.
Its variations are associated with substantial changes in mass AAM (von Storch 1999, von
Storch 2001). Note nevertheless that Lott and d’Andrea (2005) do not discuss the fact that the
mountains stress can be transmitted to the zonal flow at a long distance from the mountains
that produce it.

To interpret dynamically the partition between the mass and the wind AAM in the NCEP
re-analysis data, Lott and d’Andrea (2005) also used an axisymmetric shallow water model and
analyzed its balanced response. Incidently, they also found that when the mountain torque
varies abruptly (i.e. with a time scale near one day), and results in a force applied to the atmo-
sphere in the midlatitudes, it produces wind and mass AAM oscillations with periods between
12h and 24h. These oscillations are related to global scale free inertio-gravity modes with zero
zonal wavenumber (s = 0, Longuet-Higgins 1968, hereafter LH68, Tanaka and Kasahara 1992)
produced in the midlatitudes during the geostrophic adjustment of the model to the torque.
Note that Egger (2003), also discussed the global adjustment to a mountain forcing in the
context of the AAM budget.

In the real atmosphere, these modes can influence the AAM budget at diurnal and sub-
diurnal periodicities. Indeed, as the surface pressure fields associated with the traveling at-
mospheric tides vary in longitude, they result in a zonal mean surface stress when the zonal
pressure gradients are pronounced over the major mountain ranges. Note that this pressure
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gradients can also be enhanced locally through a dynamical interaction between the traveling
tidal signals and the mountains (Frei and Davies 1993). The daily cycle of the zonal mean zonal
forces on the atmosphere resulting from these interactions between the traveling tides and the
mountains, can trigger secondary tides with zero zonal wavenumber that give substantial but
largely compensating daily fluctuations of the wind and mass AAMs.

These issues have two potential applications. The first concerns the evaluation of the Earth
Orientation Parameters. Today, the major technical problems in this context are in closing the
AAM budget at the daily time-scales (de Viron et al. 2005): the presence of the large canceling
terms presented in this paper is probably at the origin of these problems. The second concerns
the dynamics of the atmospheric tides. Indeed, our interpretation of the mass and wind AAM
oscillations involve tidal modes generated by dynamical forcings which have not been studied
before.

The first objective of this paper is to point out that the mass and wind terms of the axial
AAM budget present daily oscillations that have no substantial impact on the total AAM itself.
The second objective is to describe the zonal mean and barotropic tidal patterns associated with
these oscillations. The third objective is to show that these daily oscillations are in part forced
by the daily cycle of the zonal forces acting on the atmosphere.

The plan of the paper is as follows. Section 2 presents the LMDz General Circulation
Model (LMDz-GCM) used, some diagnostic equations for the zonal mean and barotropic flow
evolution, the AAM budget in the LMDz-GCM, and the evolutions of the mass and wind AAMs
in the LMDz-GCM as well in the ECMWF forecasts and analysis. Section 3 describes the zonal
mean and barotropic flow fields associated with the semi-diurnal and the diurnal motion in
the LMDz-GCM. Their structure is compared to the gravest axisymmetric Eigensolutions of
the Laplace’s tidal equations presented in LH68. The dynamical relationship between these
fields and the semi-diurnal and diurnal variations of the mass and wind AAM is also presented.
Section 4 proposes a dynamical interpretation for the origin of these planetary scale modes of
motion, and for the the oscillations between the mass and wind AAM. It is based on a shallow-
water axisymmetric model driven by zonal forces which vertical integral equal the various
stresses issued from the GCM. Section 5 summarizes and discusses the significance of our
results for geodesy and for the atmospheric tides.

2 AAM budget in general circulation models

2.1 Description of the LMDz-GCM simulations

The model data are derived from a 15 months simulation done with the LMDz-GCM at 2.5ox2.5o

horizontal resolution. The model has 19 vertical levels with a near uniform 2km resolution in
the middle troposphere and up to z = 21km. The resolution rapidly degrades aloft, and the
model has only four levels between 25km and 40km (the model top). At the lower boundary, the
model is forced by Sea-Surface Temperature and Sea-Ice cover that varies along a climatological
annual cycle deduced from monthly mean data. The solar short wave forcing of the model
takes into account the annual cycle and the daily cycle. For a more complete description of the
LMDz-GCM, see Hourdin et al. (2006) and Lott et al. (2005a).

The simulation starts from initial fields interpolated from the ECMWF re-analysis. To avoid
spin-up problems, we use only the last 12 months (i.e., 1 model year beginning the 1rst January).
During this year, instantaneous values of the 2 dimensional fields of the surface pressure Ps,
of the barotropic winds, of the meridional flux of zonal momentum, and of the subgrid scale
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surface stresses are stored every 30min. Finally, it is important to recall that the LMDz-GCM
closes very well the AAM budget (Lott et al. 2005b, deViron et al.2005), and has realistic tides
(for the surface pressure Ps and for the barotropic winds, see deViron et al. 2005).

2.2 Zonal mean and AAM budget equations

The conservation law for the axial AAM can be derived by successive spatial integrations of the
local laws for the evolution of the zonal wind and density. If we first limit these integrations to
a vertical and to a zonal average we obtain:

∂U

∂t
− 2Ω sin φV = T + F + B, (1)

∂M

∂t
+

1

r cos φ

∂

∂φ
cos φV = 0. (2)

Here Ω is the Earth rate of rotation, φ is the latitude, and r is the Earth radius. In Eqs. 1–2
M is the zonal mean of the atmospheric mass per unit area, while U and V are the the zonal
mean of the barotropic zonal and meridional momentum per unit area respectively:

M =
1

2π

∫ 2π

0

Ps

g
dλ , U =

1

2π

∫ 2π

0

∫ PS

0

u
dp

g
dλ and V =

1

2π

∫ 2π

0

∫ PS

0

v
dp

g
dλ. (3)

Here, p is the pressure, g is the gravity constant, λ is the longitude, u is the zonal wind and v
is the meridional wind. The forcing terms F , B, and T in Eq. 1 are given by,

F = −
1

r cos2 φ

∂

∂φ

cos2 φ

2π

∫ 2π

0

∫ PS

0

uv
dp

g
dλ, B = 1

2π

∫ 2π
0 τBdλ,

and T = −
1

2π

1

r cos φ

∫ 2π

0

Ps
∂Zs

∂λ
dλ, respectively. (4)

Here, Zs is the altitude of the ground and τB is the subgrid-scale surface friction. More specif-
ically, these forcings are the divergence of the angular momentum flux (F), the surface stress
associated with the explicit longitudinal pressure differences across mountains (T ), and the
zonal mean of the parametrized surface stresses (B). In this formalism, the global AAM ten-
dency is given by,

dM

dt
= T, where M = MO + MR, and T = TM + TB. (5)

Here M is the absolute AAM, MO is the mass AAM and MR is the wind AAM:

MO = 2πr4Ω
∫ π/2

−π/2

cos3 φ M dφ , MR = 2πr3

∫ π/2

−π/2

cos2 φ U dφ. (6)

Still in Eq 5, T is the total torque, TM is the mountain torque, and TB is the frictional torque:

TM = 2πr3

∫ π/2

−π/2

cos2 φ T dφ , TB = 2πr3

∫ π/2

−π/2

cos2 φ B dφ. (7)

To interpret the exchanges between MR and MO, it is also useful to split the AAM budget in
Eq. 5 in two parts (von Storch 2001), and to introduce the Coriolis conversion term C:

dMO

dt
= C ,

dMR

dt
= −C + T , where C = −4πr3Ω

∫ π/2

−π/2

cos2 φ sin φ V dφ. (8)
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2.3 AAM budget from the LMDz-GCM and the ECMWF model

An example of the evolution of the AAM in the LMDz-GCM is shown in the Fig. 1a. We see
that the absolute AAM M expressed in Hadleys day (1Hd=8.64 1022kg m2s−1) has a diurnal
cycle which is hardly visible. On the contrary, MO and Mr present daily fluctuations reaching
10Hd (from minima to maxima), that nearly exactly balance to give a small daily cycle in M .

The corresponding tendencies of M , MR, and MO, are shown in Fig. 1b which compares
them to the total torque T and to the mountain torque TM . We see that the AAM budget
in Eq. 5 is very well closed, with the tendency of M (thick solid) coinciding almost exactly
with the total torque T (plus). Note also that the total torque is in large part due to the
mountain torque TM (thin solid). In particular, T presents daily oscillations which amplitude
is around 10H, and which are essentially due to TM . Note also that the two tendencies in MO

and MR (thick grey solid and thick grey dashed) present daily fluctuations that are much more
substantial and that reach 100H.

These oscillations between the mass and the wind AAM are not specific of the LMDz-GCM.
This is illustrated in the Fig. 2 which presents M , MO and MR issued from the ECMWF 10-
day forecast starting the 1rst February 2004, and for which the AAM data have been provided
every hour. It shows that the daily oscillations between MR and MO are also substantial in
the ECMWF model. They compare rather well in amplitude and phase with the corresponding
oscillations in the LMDz-GCM (Fig. 1). It is also noticeable that the oscillations of the mass
AAM we analyze are also present in the ECMWF analysis (solid line with dots in Fig. 2). This
witnesses that they are not related to an initial adjustment of this model at the beginning of
the forecasts, and that they are somehow present in the datasets that are used to produce the
analysis.

3 Tidal signals responsible for the mass and wind AAM

variations

3.1 Methodology and application to MO

To extract the diurnal and the sub-diurnal signals from the LMDz-GCM we follow a conven-
tional procedure and first build a mean daily cycle for each quantity. For the mean daily cycle
of the mass AAM for instance, we evaluate for each 30min in the day, the yearly average of
the value of MO at the same time. From the resulting 48 points half-hourly time series we
then subtract the linear trend to ensure a perfect 24h period. We then extract the diurnal and
sub-diurnal signals by applying a Fourier decomposition to this mean daily cycle.

The mean daily cycle for MO (not shown) has an amplitude of 5-6Hd. From minimum to
maximum it corresponds to the 10Hd mass AAM daily fluctuations that are directly apparent
in Fig. 1a. The semi-diurnal and the diurnal cycles for the mass AAM are shown by the thick
dashed line in the Figs. 3a and 3b respectively. Their amplitudes are comparable (around 2-3Hd
for both), but their phases differ: the semi-diurnal mass AAM maximum is at t = 4.5hr and
the diurnal mass AAM maximum is at t = 7hr. It is noticeable that the contribution of the
shorter periodicities is quite small (not shown): the diurnal and the semi-diurnal signals of MO

explain almost entirely the daily cycle of MO.
To sample the mean daily cycle from the ECMWF model, we have also used 12 ECMWF 10-

day forecasts starting the first day of each month during the year 2004. We have then followed
the same procedure to build a mean daily cycle and to extract the diurnal and sub-diurnal
signals. The results (not shown) are in good agreement with the diurnal and sub-diurnal cycles
from the LMDz-GCM in Fig. 3.
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3.2 Semi-diurnal zonal mean diagnostics

According to Eq. 6, MO strongly depends on the latitudinal distribution of the zonal mean
mass M. Its semi-diurnal component is shown in Fig. 4a at four different times separated by
a quarter of period. At t = 4.5hr, the pattern of M presents an excess of mass everywhere in
the tropical band (i.e. between 30oS and 30oN) equilibrated by a deficit of mass everywhere
in the midlatitudes and in the polar regions. It is also at this time that the semi-diurnal
component of MO is maximum (Fig. 3a), and this is due to the fact that the atmospheric
masses have been moved away from the Earth rotation axis. At all times, the patterns for M

are also rather smooth, and resemble to the geopotential height of the axisymmetric (s = 0)
Eigensolution of the Laplace tidal’s equations with n = 2 nodes between the poles (see LH68,
Fig. 7). Furthermore, the location of the nodes at φ ≈ ±30o in Fig. 4a indicate that the Lamb
parameter γ = 4Ω2r2

gH0

, of the n = 2 Eigensolution in LH68 that fits the best the patterns of of
M is near γ ≈ 10. Here, H0 is an equivalent depth associated with the vertical structure of the
tidal signal associated with M (see Chapman and Lindzen 1970 and Section 4 below).

The semi-diurnal signal for U is shown in Fig. 4b. It is everywhere negative at t = 4.5hr,
thus yielding a negative MR (not shown). This pattern for U is also smooth, with minima at
t = 4.5hr located around φ = ±50o. This again resembles to the zonal wind signal associated
with the n = 2, γ ≈ 10 Eigensolution shown in LH68 (Fig. 7). The semi-diurnal signal for V is
shown in Fig. 4c, it is antisymmetric with respect to the Equator and with only 1 node between
the poles. It also resembles to the meridional wind pattern associated with the n = 2, γ ≈ 10
Eigensolution in LH68 (Fig. 7).

It is noticeable that V is in temporal quadrature with both M and U . For M this follows
that V moves the mass in the latitudinal direction according to the mass conservation in Eq. 2:
in quadrature before M is maximum in the Equatorial region, V is large and positive in the
Southern Hemisphere and large and negative in the Northern Hemisphere (at t = 1.5hr in
Fig. 4c) producing a convergence of masses towards the equatorial band. If we return to the
budget for MO in Fig. 3a, we also see that this pattern for V produces a maximum of the
Coriolis conversion term C at t = 1.5hr (dots in Fig. 3a). Notably, the Coriolis conversion
is one order of magnitude larger than the torques (thin solid for TM and plus for T ), which
explains why the variations in MO (thick grey) are one order of magnitude larger than those
for M (thick black).

Note also that the displacement toward the Equator associated with V at t = 1.5hr in
Fig. 4c produces negative tendencies for U via the Coriolis torque implying that U < 0 almost
everywhere a quarter of cycle later (at t = 4.5hr in Fig. 4b). Nevertheless, this last argument
is only valid if the Coriolis torque dominates the other forcings of the barotropic zonal wind
tendency ∂tU in Eq. 1. This is confirmed in the Fig. 5 which shows that at t = 1.5hr, the Coriolis
term (thick grey) almost opposes to the U -tendency (thick black): both are much larger than
the sum of the three forcings F +T +B (dots in Fig. 5a), their sum (thin line in Fig. 5a) equals
F + T + B almost exactly.

In the context of this budget, the Fig. 5b compares the three forcing terms, F , T , and B

at t = 2.5hr. At this time, the semi diurnal mountain torque TM (thin line in Fig. 3a) is at a
maximum and the mountain stress T is positive everywhere, with a pronounced maximum in
the Northern Hemisphere at φ ≈ 35oN (thick solid). At this time the boundary layer stress B

is substantially smaller than T (thick dashed), and never becomes substantially larger than at
other times (not shown). Although it does not produce a global torque, the momentum flux
divergence is also shown in Fig. 5b. Clearly, it induces a redistribution of the angular momentum
in latitude, which is locally comparable in amplitude with the effect of the mountain stress T .
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3.3 Diurnal zonal mean diagnostics

The diurnal components for M, U , and V are more complex than the semi-diurnal components.
To clarify their description, we will next split each of them in two parts that are respectively
symmetric and antisymmetric with respect to the equator.

The antisymmetric part of M is shown in Fig. 6a. The first time shown (t = 5hr, thick
solid line) is also the time at which M reaches its maximum value in the Northern Hemisphere.
This pattern is clearly dominated by a planetary scale structure in which the entire mass in one
hemisphere opposes to that in the other. Its structure resembles the height pattern associated
with the n = 1, s = 0 Eigensolution of the Laplace’s tidal equations (Fig. 7 in LH68). Note
that the anomalies in mass in Fig. 6a are not very pronounced in the polar regions, and have
maxima around ±20o suggesting a value for the Lamb parameter around γ ≈ 100 (see again
Fig. 7 in LH68). The antisymmetric patterns of U in Fig. 6b grossly corroborate those for
M: they resemble to the zonal wind structure of the n = 1 Eigensolution in LH68. As the
Eigensolutions that are antisymmetric in geopotential height and zonal wind are symmetric in
meridional wind, Fig. 6c shows the diurnal signal of the symmetric part of V . At a given time,
the sign of V is almost independent of latitude and V has one well defined maximum at the
Equator. It thus exchanges mass from one hemisphere to the other. Note also that it is for V

that the resemblance with the n = 1, γ ≈ 100 Eigensolution in LH98 is the best.
It is noticeable that this antisymmetric part of the diurnal signal of M moves the masses

from one hemisphere to the other. It does not produce M0 anomalies because it does not move
the masses away from the Earth rotation axis. Similarly, the equatorial antisymmetric part of
U in Fig. 6b does not affect the wind AAM. In agreement with these results, the symmetric
patterns for V in Fig. 6c results in a Coriolis conversion term (C in Eq. 8) that is exactly null.

The symmetric part of the diurnal signal of M is shown in Fig. 7a. The thick solid line
at t = 7hr is also the time at which M is the largest in the Equatorial band. By its shape,
this pattern resembles to the geopotential signal associated with the n = 2 Eigensolution of the
tidal equations. By comparison with LH68, the latitudinal structure of M in Fig. 7a, suggests
a value for the Lamb parameter again near γ ≈ 100. For U in Fig. 7b, the resemblance with the
zonal wind of the n = 2 Eigensolution is quite difficult to establish because U is quite irregular.
Nevertheless, note that U is negative at all latitudes when M is positive in the Equatorial band,
a property it has in common with the zonal wind of the n = 2 Eigensolution in LH68. Finally
the antisymmetric pattern for the diurnal signal of V is shown in Fig. 7c. Its shape is rather
smooth, and the resemblance with the meridional wind associated with the n = 2 Eigensolution
is rather good.

The fact that the patterns for V in Fig. 7c are rather smooth while those for U in Fig. 7b are
much more irregular implies that in the evolution for U in Eq. 1, the role of the Coriolis force is
not as prominent as it is in the semi-diurnal case. This point is illustrated in the Fig. 8a which
shows that at t = 1hr the forcing term on the lhs of Eq. 1 (thin solid) can become larger than
the Coriolis term (thick grey). At this time, this forcing is particularly pronounced around the
latitude φ = 30oN where it is in good part equilibrated by the tendency for the zonal mean
barotropic zonal wind U (thick solid) rather than by the Coriolis term (thick grey).

To establish more precisely which among the three forcings (F , T , or B) is producing the
irregular patterns in U , the Fig. 8b compares F , T , and B at t = 13hr. At this time, the
diurnal mountain torque is at a maximum (thin line in Fig. 3b), and the mountain stress T

presents a broad maximum in the southern hemisphere subtropics (thick line in Fig. 8b). At the
same time, the divergence of the momentum flux F (thin line in Fig. 8b) presents a pronounced
minimum in the NH midlatitudes which amplitude is twice that of the maximum value of T .

6



F is also much more irregular than T , and this stays valid at other times (including at t = 1hr
as in Fig. 8a, not shown). Accordingly, it is likely that the irregular structures of the U -field in
Fig. 7b are in good part related to the forcing by the angular momentum flux divergence.

The AAM budgets associated with the diurnal patterns in Fig. 7 are shown in Fig. 3b. In
it, we see that the V pattern at t = 1hr is almost at a maximum of the Coriolis conversion
terms C (dots in Fig. 3b). Here again, note that the Coriolis conversion term C is one order of
magnitude larger than the total torque T .

4 Interpretation with a shallow water model

4.1 Model description and experimental set-up

The fact that the barotropic zonal mean flow responsible for the large daily fluctuations in
MR and MO resembles to the Eigensolutions of the shallow water equations suggests that the
stresses in the LHS of Eq. 1, are associated with zonal mean zonal forces which trigger these
resonant modes of motion. To illustrate how this can occur, we consider a very simplified model,
where a zonally symmetric atmosphere responds to a small zonal mean dynamical forcing X. If
we assume an atmosphere that is isothermal at rest, the response to X can be described using
the hydrostatic linear set of equations:

ρ0

∂u

∂t
− 2Ω sin φ ρ0v = X, (9)

ρ0

∂v

∂t
+ 2Ω sin φ ρ0u = −

g

r

∂h

∂φ
(10)

∂

∂t

(

∂h

∂z
+ (1 − κ)

h

H

)

+
κ

H
ρ0w = 0 (11)

∂

∂t

∂h

∂z
−

1

r cos φ

∂

∂φ
cos φρ0v −

∂

∂z
ρ0w = 0 (12)

In Eqs. 9–12, u, v, and w are the three components of the zonal mean wind, ρ0 = exp (−z/H)
is a non-dimensional profile for the basic density, and H is the mean scale height H = RTr/g
(where Tr is the temperature of the atmosphere at rest and R is the gas constant for dry air).
Finally, κ = R/cp = 2/7 where cp is the specific heat at constant pressure, and the zonal mean
pressure has been written p = ρrgh, where ρr = 1kg m−3 is a constant reference density.

If we now assume that the forcing function is separable in the vertical direction and can be
written

X = X̃ (t, φ) exp (−z/2H − βz) , (13)

where X̃ is a real function, a particular solution to the set of Eqs. 9–12 can be searched in the
form: (

ρ0u, ρ0v, ρ0w, h
)

=
(

ũ, ṽ, w̃, h̃
)

(t, φ) exp (−z/2H − βz) . (14)

After substitution, this yields to the linearized shallow water system,
∂ũ

∂t
− 2Ω sin φ ṽ = X̃, (15)

∂ṽ

∂t
+ 2Ω sin φ ũ = −

g

r

∂h̃

∂φ
, (16)

∂h̃

∂t
+

H0

r cos φ

∂

∂φ
cos φ ṽ = 0, (17)

where H0 is the equivalent depth:
H0 =

κH

1/4 − β2H2
. (18)
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When X̃ = 0, the Eqs. 15–17 are the equations for the tides with zonal wavenumber zero
(LH68).

To analyze the response to the forcing X̃ we solve the shallow-water set of Eqs. 15–16 with
the finite difference model described in Lott and d’Andrea (2005). To specify X̃ we take from
the GCM the semi-diurnal and the diurnal cycles of the stresses F , T , and B in Eq. 4 (see also
Figs. 5b and 8b) and equal each of them to the stress due to X in Eq. 9. More specifically, and
to mimic the mountain forcing for instance, we evaluate the surface stress associated with the
zonal force X and equal it to T :

∫

∞

0

ρrXdz =
ρrX̃
1

2H
+ β

= T . (19)

Using Eq. 13, this yields to X̃ = T

ρrH0

in the barotropic case in Section 4.2, and X̃ = 2κT
ρrH0

in the baroclinic case in Section 4.3. Then, the shallow water model is integrated over one
year, with the amplitude of the forcing increasing smoothly and uniformly during the first six
months. This reduces the influence of the spin-up in the model, and ensures that the period of
the response at the end of the simulation is exactly that of the forcing. We then analyze the
response to each forcings (F , T , and B) looking at the last day of the simulations.

4.2 Barotropic configuration and semi-diurnal response

If we take for the parameter β the value β = 1−κ
H

−
1

2H
, then, the equivalent depth H0 = H

1−κ
and

the thermodynamic Eq. 11 implies that our particular solution w = 0: this solution satisfies as
well a free slip lower boundary condition, and has the vertical structure of a Lamb wave (Lamb
1932). In this configuration the Eqs. 15–17 satisfy the AAM budget:

d

dt
(MR + MO) = TX , (20)

where the wind AAM, the mass AAM, and the torque due to X are:

MR = 2πr3

∫ +π/2

−π/2

cos2 φ ρrH0ũ dφ , MO = 2πr4Ω
∫ +π/2

−π/2

cos3 φ ρrh̃ dφ , and (21)

TX = 2πr3

∫ +π/2

−π/2

cos2 φ ρrH0X̃ dφ . (22)

This AAM budget is very close to the AAM budget in Eqs. 5, replacing (i) U in the definition
of MR in Eq. 6 by ρrH0ũ, (ii) M in the definition of MO by ρrh̃, and (iii) the stresses (F , T
or B) in the definition of the torques in Eq. 7 by ρrH0X̃. Similarly, a separate budget for the
mass AAM can be written,

dMO

dt
= C , where C = −4πr3Ω

∫ π/2

−π/2

cos2 φ sin φ ρrH0ṽ dφ . (23)

Here the Coriolis conversion term is as in Eq. 8 replacing V by ρrH0ṽ.
The semi-diurnal evolution of the AAM budget in the shallow water model is presented in

Fig. 9 when H0 = 9.5km. When the forcing X̃ is keyed to the mountain stress T , the mass
AAM tendency (dMO/dt thick grey solid) presents a semi-diurnal cycle that far exceeds the
corresponding cycle in the absolute AAM tendency (dM/dt thick solid). This comparatively
large daily cycle is due to the fact that the Coriolis conversion term (C, black dots) far exceeds
the mountain torque (TX , plus). The corresponding amplitude of the cycle in MO is around 2Hd
(thick grey in Fig. 9b), a value quantitatively comparable with the semi diurnal signals seen
in the mass AAM from the LMDz-GCM (Fig. 3a). Note also that the phase is almost correct
with a maximum in M0 at t=5.5h (Fig. 9a), while the maximum for MO in the LMDz-GCM is
at t=4.5h (Fig. 3a).
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To establish the significance of the other forcings, the Fig. 9b shows the mass AAM cycles
when X̃ is keyed to F and B. The amplitude of the MO-response to F is also quite large
(grey dashed in Fig. 9b) but the phase is almost in phase opposition with that found in the
LMDz-GCM (Fig. 3a). Finally, note that the response when the shallow water model is keyed
to B is significantly smaller than the two others (grey dots in Fig. 9b). This naturally follows
that the boundary layer stress is by far the smallest stress at the semi-diurnal period (Fig. 5b).

The fields ρrgh̃, ρrH0ũ, and ρrH0ṽ associated with the semi-diurnal mountain stress T

are shown in the Fig. 10. As for the semi-diurnal zonal mean and barotropic fields from the
LMDz-GCM in Fig. 4, the shallow water model response resembles to the second gravest mode
(n = 2) Eigensolution of the axisymmetric (s = 0) Laplace’s tidal equations shown in the Fig. 7
of LH68. The best correspondence is with the n = 2 Eigensolution associated with a Lamb
parameter γ = 10, which follows that the value H0 = 9.5km yields to γ ≈ 9.3. Note also
that the amplitudes of all the fields from the shallow water model match relatively well the
corresponding fields from the GCM in Fig. 4.

4.3 Sensitivity test to the value of H0

To understand the shallow water model response, it is mandatory to refer to the Fig. 1 from
LH98, where the dispersion curves for the s = 0 Eigensolutions of the Laplace’s tidal equations
are shown. From this figure, we can deduce that for the semi-diurnal frequency, σ/2Ω = 1, the
Eigenvalues of the Lamb parameters γn increases with n and the values of the leading ones are
given by: γ1 ≈ 3 < γ2 ≈ 10 < γ3 ≈ 25 < ·· < γn < γn+1 < · · . (24)

When H0 = 9.5km, the Lamb parameter γ = 9.3, which means that the semi-diurnal forcing is
in near resonance with the n = 2 Eigenmode. Note also that the forcing is subcritical regarding
this Eigensolution, in the sense that the semi-diurnal frequency is smaller than the period of
the n = 2 Eigensolution of the shallow water equation.

Because of this resonant behavior, it is important to analyze the sensitivity of our result to
the choice of H0. This is done in the Fig. 11 which shows the maximum amplitude and the
phase of the mass AAM response when the forcing X̃ is keyed to the semi-diurnal mountain
stress T . We see that there is a large range of values for H0 (from 9.2km to 10km ) that leads
to maxima in M0 around MO ≈ 1−3Hd: our choice for H0 is not the one for which the resonant
amplification is extremely large (i.e; around H0 ≈ 8.9km). Note also that the phase (i.e., the
time at which MO reaches its maximum value) is almost insensitive to the value of H0, and as
long as our forcing is subcritical. Nevertheless, note that the whole response changes sign (e.g.
the time of the maximum for MO shifts by 6hr) when the forcing becomes supercritical (here
when H0 < 8.9km).

4.4 Baroclinic configuration and diurnal response

If in the same configuration we impose diurnal forcings in the shallow water model (not shown),
the response resembles to an n = 1 Eigensolution of the tidal Equations but its amplitude is
very small compared to the corresponding signal from the GCM in Fig. 6. To understand this
more precisely, it is mandatory to recall that for the diurnal frequency σ/2Ω = 0.5 the leading
Eigenvalues of the Lamb parameters are (from Fig. 1 in LH68):

γ1 ≈ 25 < γ2 ≈ 150 < γ3 ≈ 400 < ·· < γn < γn+1 < · · . (25)
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Hence the response of the shallow water model follows that when γ = 9.8 the closest eigenvalue
of the Lamb parameter is indeed for the gravest mode γ1 = 25 but is quite far from it.

To produce more substantial diurnal signals, one needs to consider diurnal forcings imposing
a more baroclinic response. In the simplified model (Eqs. 15-17), this can be done by taking
for β a pure imaginary value β = iβ′ where β′ is real. In this case the forcing changes sign
at the altitude π/β′, it decays more rapidly with altitude than in the barotropic case, and
H0 = κH

1/4+β′2H2 can be substantially smaller than before. Although it maintains an attracting
simplicity, our shallow water model has in this case an important defect: w̃ is not null at the
ground so the solution in Eq. 14 can only be a part of the forced solution. As we are in a linear
framework, we must add to it a solution that is not forced inside the flow, but which vertical
velocity at the ground opposes to w̃. If we neglect it, nearly half (1 − 2κ = 3/7 more exactly)
of the meridional mass flux associated with the solution in Eq. 14 passes through the lower
boundary instead of changing the atmospheric mass ρrh̃. This omission has a direct effect on
the AAM budget which now write:d

dt

(

MR +
1

2κ
MO

)

= TX , (26)

where the wind AAM and the torque due to X are:

MR = 2πr3

∫ +π/2

−π/2

cos2 φρr
H0

2κ
ũdφ , TX = 2πr3

∫ +π/2

−π/2

cos2 φρr
H0

2κ
X̃dφ . (27)

while the mass AAM is as in Eq. 21. Its separate budget is given by:
d

dt

MO

2κ
= C , with C = −4πr3Ω

∫ π/2

−π/2

cos2 φ sin φ ρr
H0

2κ
ṽdφ . (28)

Again, this AAM budget is very close to the actual AAM budget in Eqs. 5, (i) taking for U in
the definition of MR in Eq. 6 the value ρr

H0

2κ
ũ, (ii) taking for M in the definition of MO the

value ρrh̃, (iii) taking for the stresses (F , T , and B) in the definition of the torques in Eq. 7)
the value ρr

H0

2κ
X̃, and (iv) taking for V in the definition of the Coriolis conversion term in Eq. 8

the value ρr
H0

2κ
ṽ.

4.4.1 H0 = 2.5km, n = 1 response to T

If the first zero of the diurnal forcing in Eq. 13 is near π/β′ ≈ 30km, the altitude H0 = 2.5km,
the Lamb parameter γ ≈ 35 is closer to the diurnal value for γ1 ≈ 25, and the diurnal forcing is
supercritical with regard to the n = 1 Eigensolution. In this case, the response of the shallow
water model when X̃ is keyed to each of the three stresses T , F , and B is dominated by a n = 1
Eigensolution of the s = 0 Laplace’s tidal equations. Again, the largest responses are those
associated with the mountain stress T and the angular momentum flux divergence F . It is also
for T that the phase agreement To illustrate this point, the Figs. 12a–b show the equatorially-
antisymmetric patterns for the surface pressure ρrgh̃ and for the zonal momentum ρr

H0

2κ
ũ when

X̃ is keyed to T . Fig. 12c show the equatorially-symmetric patterns of the meridional mass
flux ρr

H0

2κ
ṽ.

Clearly, for ρr
H0

2κ
ṽ in Fig. 12c the agreement with V from the LMDz-GCM in Fig. 6c is quite

good both in phase and amplitude. For the zonal wind in Fig. 12b, the resemblance is not as
pronounced but stays fairly good, in particular, the location of the jet maxima around ±30o

is rather well reproduced. Finally, the surface pressure pattern from the shallow water model
in Fig. 12a also has a good shape, but the amplitude is almost half that of the corresponding
quantity in Fig. 6a. This mismatch with the mass fields from the GCM, while the velocity fields
compare in amplitude is again associated with the fact that the forced solution in the shallow
water model only translates 2κ of the meridional mass flux ρr

H0

2κ
ṽ into mass ρrh̃.
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As for the barotropic case, we have also checked that the value for H0 chosen is not strictly
ad-hoc, in the sense that it is not the value for which an extremely strong response occurs. Fi-
nally, as the shallow water model response is largely dominated by the antisymmetric responses
in mass and zonal wind shown in Figs. 12a–b, it does not present signals in mass and wind
AAM tendencies exceeding substantially the diurnal cycle of the total torque T .

4.4.2 H0 = 1km, n = 2 response to F

To produce a diurnal response with amplified signals in mass and wind AAM, we have to
consider that a fraction of the diurnal forcing is even more baroclinic than in the previous
section. In the shallow water model, this can be done by considering that the first zero of the
forcing is near π/β′ ≈ 17km. In this case, H0 = 1km, γ ≈ 90 is relatively close to γ2 ≈ 150,
and the diurnal forcing is subcritical with regard to the n = 2 Eigensolution.

In this case, the strongest signal are still obtained when X̃ is keyed to T and F . To document
in one case the structure of the response when the forcing follows the angular momentum flux
divergence, the Figs. 13a–b show the equatorially-symmetric patterns for the surface pressure
ρrgh̃ and for the zonal momentum ρr

H0

2κ
ũ resulting from the diurnal cycle in F when X̃ is keyed

to F . The Fig. 13c show the equatorially-antisymmetric patterns of the meridional mass flux
ρr

H0

2κ
ṽ in the same configuration.

Again, it is for the meridional mass flux from the shallow water model (ρr
H0

2κ
ṽ in Fig. 13c)

that the resemblance with the GCM is the best (V in Fig. 7c). More specifically, in both
models, the two extrema for this quantity are located around ±30o. The comparison between
the barotropic zonal winds in the (ρr

H0

2κ
ũ in Figs.7b and U in 13b) is quite difficult, because these

fields are rather erratic in both models. This propensity for the momentum flux divergence to
produce irregular zonal wind fields was found to be quite systematic (e.g. it does occur for all
values of H0). If we put this in relation with the fact that in the diurnal zonal mean budget,
the signal for F exceeds in some places the Coriolis force 2Ω sin φV and is much more irregular
(see the Eq. 1, the Fig. 8b and the corresponding discussion in Section 3.3), this suggests that
the irregularities in the zonal wind from the LMDz-GCM in Figs.7b are related to the angular
momentum forcing. Finally, the patterns for the surface pressure from the shallow water model
in Fig.13 also compare relatively well with with those from the GCM (once taken into account
the 2κ factor on the amplitude discussed above). In particular, the nodes at ±30o are well
located. Nevertheless, in the shallow water model the signal in the polar latitudes is very small,
while it is significant in the LMDz-GCM. This difference is strongly suggestive that we have
decreased too much H0 to obtain a diurnal signal with a realistic amplitude.

It is also of interest to notice that in this baroclinic case the shallow water solution forced
by F can produce mass AAM variations that compare with those from the GCM. This point is
illustrated in Fig. 14 which shows the mass AAM cycle associated with the response displayed
in Fig. 13. We see that the mass AAM reach 1Hd, and is entirely driven by a Coriolis conversion
term (C dots) which value is around 10 − 15H, again one order of magnitude larger than the
daily cycle of the torque (Fig. 3b).

5 Conclusion
5.1 Summary

A 1-year integration done with the LMDz-GCM has been used to analyze the axial angular
momentum budget at the diurnal and sub-diurnal periodicities. The model results have been
compared with 12 ECMWF 10-days forecasts and some ECMWF analysis products.
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As the surface pressure tides result in longitudinal pressure gradients across the major
mountain ranges, they give rise to a surface stress T acting on the zonal mean barotropic flow
(Eqs. 1 and 4). Globally, this mountain stress results in a mountain torque TM that has a
daily cycle of few Hadleys (Eq. 7 and Fig. 1b). This translates in a daily cycle for the total
torque T of the same magnitude, the daily cycle of the the boundary layer torque TB being
substantially smaller than that of TM . The daily cycle of T produces variations in the total
angular momentum (M) that are almost one order of magnitude below 1Hd, e.g. that are very
small compared to the amplitude of the natural variations of M . Nevertheless, this very small
daily signal in M results in fact from the cancellation between much stronger daily cycles of
the mass AAM MO and of the wind AAM MR (their amplitudes are of few Hds, see Fig. 1 for
the LMDz-GCM, and Fig. 2 for the ECMWF forecasts and analysis).

To interpret these large and almost canceling oscillations, we have diagnosed from the LMDz-
GCM, the diurnal and semi-diurnal cycles of three zonal mean and barotropic fields, M, U ,
and V , which latitudinal distributions are directly related to the mass AAM (MO), to the wind
AAM (MR), and to the conversion between them (C) respectively.

The semi-diurnal signals in M, U , and V are almost like the n = 2 zonally symmetric (s = 0)
Eigensolution of the Laplace’s tidal equations. It corresponds to a redistribution of masses (M)
from the midlatitudes and polar regions toward the Equatorial band (Fig. 4a) that results in
variations of the mass AAM MO of a few Hds (Fig. 3a). It also corresponds to variations in
the zonal wind U with two extrema in the mid-latitudes of the same sign (Fig. 4b), which
results in large variations of the wind AAM MR. Via the conservation of the zonal mean of
the atmospheric mass, M is driven by the transport of meridional mass V (shown in Fig. 4c),
while U is also driven by V via the Coriolis torque (because the latter dominates the other
forcing terms of the U tendency in the zonal mean of the zonal momentum budget see Fig. 5).
In terms of the AAM budget, this driving role of V via the conservation of the mass and via
the Coriolis force implies that the Coriolis conversion term C is one order of magnitude larger
than the torque T in the separate semi-diurnal budgets of MO and MR (Fig. 3a).

The diurnal signals in M, U , and V are more complex to interpret, so we separate for each
fields its symmetric part and its anti-symmetric part with respect to the Equator.

The Equatorially antisymmetric diurnal cycles of M and U , as well as the Equatorially sym-
metric diurnal cycle of V , are quite substantial and reminiscent of an n = 1 s = 0 Eigensolution
of the Laplace’s tidal equation. By construction, they cannot be associated with variations in
axial mass AAM or wind AAM, and the symmetric part of V produces no Coriolis conversion
between them.

For M, the Equatorially symmetric patterns in Fig. 7a also resemble to the n = 2 zonally
symmetric (s = 0) Eigensolution of the Laplace’s tidal equations. The same is true for the
antisymmetric part of V in Fig. 7c. Nevertheless, the Equatorially symmetric part of U in
Fig. 6b is quite irregular in latitude when compared for instance with the symmetric part of V
in Fig. 6c. This follows from the fact that the angular momentum flux divergence in the right
hand side of the zonal momentum Eq. 1 is as large as the Coriolis term 2Ω sin φV . Nevertheless,
and for the same reason than for the semi-diurnal signals, these different patterns explain the
large but opposite daily cycles in mass and wind AAM (Fig. 3b).

We have then postulated that these large and compensating diurnal and semi-diurnal os-
cillations in MO and MR results from a dynamical excitation of axisymmetric free modes of
oscillation, and that this dynamical forcings are also associated with the surface stresses that
affect the zonal mean angular momentum budget (Eq. 1). To support this hypothesis, we
have used a shallow water model driven by dynamical forcings which vertical integral equal the
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various zonal mean zonal stresses extracted from the LMDz-GCM (Eq.19).
If the shallow water model configuration is barotropic (taking for the equivalent depth

H0 = 9.5km), a semi-diurnal forcing keyed to the mountain stress induces a response associated
with mass and wind AAM oscillations (Fig. 9a) consistent in amplitude and phase with the
semi-diurnal oscillations seen in the LMDz-GCM (Fig. 1c). In the shallow water model, the
response is also dominated by a planetary mode of oscillation that is very similar to the n = 2
and s = 0 Eigensolution of the Laplace’s tidal equations (Fig. 10), and that is also very near
the GCMs results (Fig. 4). These results follow that in the shallow water model, the semi-
diurnal frequency is not far from the eigenfrequency of the n = 2 Eigensolution. We also find
a substantial n = 2 response when the shallow water model forcing is keyed to the angular
momentum flux divergence F , but we find a substantially smaller response when it is keyed
to the boundary layer stress B. These results stay qualitatively unchanged when we vary the
shallow water model depth, H0, between 9.2km and 10km.

To obtain substantial effects at the diurnal frequency in the shallow water model, we need to
consider a more baroclinic set-up. For instance, if we take for H0 a value around H0 = 2.5km,
the diurnal response when the shallow water model forcing is keyed to the mountain stress
T is dominated by a zonally symmetric planetary scale pattern which is almost like an n = 1
Eigensolution of the s = 0 Laplace’s tidal equations (Fig. 12). The shallow water model response
is also close to the zonal mean and barotropic diurnal signal in the LMDz-GCM, for which the
M and U patterns are antisymmetric with respect to the Equator, and V is symmetric with
respect to the Equator (Fig. 6). Again the shallow water model response is comparable when the
forcing is keyed to F , but substantially smaller when it is keyed to B. By its n = 1-structure,
this response from the shallow water model does not produce amplified signals in mass and
wind AAMs.

To produce amplified diurnal signals in mass and wind AAMs in the shallow water model,
one needs to consider an even more baroclinic set up, taking for instance H0 = 1km. In this
case the response to all the stresses is dominated by large scale circulation patterns resembling
to the n = 2 Eigensolution of the Laplace’s tidal equations. In this case, a good fit with the
results from the LMDz-GCM in Fig. 7 are when the forcing is keyed to the divergence of the
momentum flux F (Figs. 13 and 14). The simulation with the shallow water model nevertheless
shows a signal that is rather small at high latitudes compared to the LMDz-GCM diurnal signal
in Fig. 7. According to the shapes of the Eigensolutions in the Fig. 7 of LH68, this indicates
that we have decreased H0 too much. Interestingly, the barotropic zonal wind in the shallow
water model response to F (Fig. 13b) also presents a rather irregular structure. This irregular
structure is reminiscent of the one found for U in the GCM (Fig. 7b), and this illustrates that
divergence of the momentum flux also plays a significant role in our problem.

5.2 Significance for Geodesy and for the theory of tides

The results we presented have two potential domains of application: geodesy and the theory of
the atmospheric tides.

Concerning Geodesy, it is noticeable that nowadays the measurements of the Earth orien-
tation parameters become increasingly precise (Rotacher et al. 2001, Schreiber et al. 2004).
Accordingly, the analysis of the different terms that affect their diurnal and sub-diurnal changes
is an important topic of research (Rotacher et al. 2001). To estimate the atmospheric contri-
bution, two methods have been used: the momentum approach and the torque approach. In
the first, the AAM of the atmosphere is evaluated directly from atmospheric reanalysis and the
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Earth+Ocean angular momentum varies to equilibrate the AAM changes. In the second, the
torque of the atmosphere on the Earth is evaluated directly from a combination of atmospheric
analysis and short-range forecasts. Although the two methods should give exactly the same
results, they present large discrepancies at the diurnal and sub-diurnal periodicities (deViron
et al. 2005). The presence of the large canceling terms between the mass AAM tendency and
the wind AAM tendency documented in this paper are probably at the origin of these errors
for the axial component of the AAM budget.

Still in the context of geodesy, it is noticeable that our axisymmetric modes exert an ax-
isymmetric pressure force on the Earth Surface. In particular, the semi-diurnal and the diurnal
modes with n = 2 can modify the Earth ellipticity at the corresponding periods. For the same
reason, the diurnal mode with n = 1 can affect the diurnal cycle of the geocenter position along
the rotation axis.

Our results also have some implications for the theory of the atmospheric tides. In the
observations, the diurnal and semi-diurnal s = 0 tidal signal in surface pressure is close to 10Pa
(Dai and Wang 1999). Although it represents only 10% of the surface pressure tide, this value
is not negligible: it corresponds in amplitude to the gravitational (lunar) tide (Goulter 2005). If
we assume that the LMDz-GCM has a rather realistic diurnal tidal signal, and as we reproduce
rather well in phase and amplitude the s = 0 surface pressure signal with our shallow water
model, we have established here that the dynamical forcings of the zonal mean zonal flow can
force a good part of the s = 0 surface pressure tide.

It is quite clear nevertheless that our reproduction, with a linearized shallow water model of
those axi-symmetric and barotropic tidal signals, is not a definite proof that they are due to the
forcings analyzed in this paper. To establish this more precisely, one should use a more complete
tidal model (see for instance Hagan 1996, Hagan and Forbes 2001) and analyze its axisymmetric
response to all the possible zonal mean forcings (e.g., dynamical as well as thermodynamical).
The latitudinal and vertical structures of these forcings could also be deduced from the GCM,
as it has been done here for the latitudinal structures only.
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Figure 1: AAM budget in the LMDz-GCM. a) First 10 days of February: total AAM (M black
solid), mass AAM (MO grey solid), and wind AAM (Mr grey dashed). For clarity, each curve
has been shifted vertically. b) First 5 days of February: global AAM tendency (dM/dt thick
black solid), mass AAM tendency (dMO/dt grey solid), wind AAM tendency (dMR/dt grey
dashed), Total Torque (T plus), and mountain torque TM (thin solid)
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Figure 2: AAMs in the ECMWF model. 10 day forecast starting the 1 February 2004 and its
corresponding analysis: total AAM (M black solid), mass AAM (MO grey solid), and wind
AAM (Mr grey dashed), mass AAM from the analysis (solid and dots). For clarity, each curve
has been shifted vertically.
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Figure 3: Mass AAM and mass AAM budgets: a) Semi-diurnal; b) Diurnal. Mass AAM (MO

thick dashed), Total torque (T plus), Mountain torque (TM thin line), Coriolis conversion (C
thick dots), Total AAM tendency (dM/dt thick solid), and mass AAM tendency (dMO/dt thick
grey). Note that in a) and b) the thin line for TM almost coincides with the thick line for
dM/dt.
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Figure 4: Semi diurnal cycle in the GCM LMDz: zonal mean and barotropic diagnostics. a)
Zonal mean of the surface pressure (gM); b) Zonal mean of the barotropic zonal momentum
(U); c) Zonal mean of the barotropic meridional momentum (V).

18



-90 -60 -30 0 30 60 90
Latitude

-0,03

-0,02

-0,01

0

0,01

0,02

0,03

T
en

de
nc

ie
s 

(k
g 

m
-1

s-2
)

dU/dt
-2ΩsinφV
lhs
rhs

a)

-90 -60 -30 0 30 60 90
Latitude

-0,008
-0,006
-0,004
-0,002

0

0,002
0,004
0,006
0,008

T
en

de
nc

ie
s 

(k
g 

m
-1

s-2
)

rhs
Mom Flux
Mount. Stress
Blyr Stress

b)

Figure 5: Zonal mean barotropic momentum budget in Eqs 1-2, semi-diurnal signals. a)
t=1.5hr, zonal momentum tendency (∂tU thick solid), Coriolis term (-2Ω sin φV thick grey
solid), RHS of Eq. 1 (thin), and LHS of Eq. 1 (dots); b) t=2.5hr, RHS of Eq. 1 (thick grey
solid), momentum flux divergence (F , thin solid), mountain stress (T , thick black), and bound-
ary layer stress (B thick black dashed).
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Figure 6: Diurnal cycle in the GCM LMDz: zonal mean and barotropic diagnostics. a) Zonal
mean of the surface pressure (gM), pattern antisymmetric with respect to the Equator; b)
Zonal mean of the barotropic zonal momentum (U), pattern antisymmetric with respect to the
Equator; c) Zonal mean of the barotropic meridional momentum (V), pattern symmetric with
respect to the Equator.
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Figure 7: Diurnal cycle in the GCM LMDz: zonal mean and barotropic diagnostics. a) Zonal
mean of the surface pressure (gM), pattern symmetric with respect to the Equator; b) Zonal
mean of the barotropic zonal momentum (U), pattern symmetric with respect to the Equator;
c) Zonal mean of the barotropic meridional momentum (V), pattern antisymmetric with respect
to the Equator.
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Figure 8: Zonal mean barotropic momentum budget in Eqs 1-2, diurnal signals. a) t=1hr, zonal
momentum tendency (∂tU thick solid), Coriolis term (-2Ω sin φV thick grey solid), RHS of Eq. 1
(thin), and LHS of Eq. 1 (dots); b) t=13hr, RHS of Eq. 1 (thick grey solid), momentum flux
divergence (F , thin solid), mountain stress (T , thick black), and boundary layer stress (B thick
black dashed).
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Figure 9: Semi-diurnal responses in the shallow water model with H0 = 9.5km. a) AAM budget
when the forcing X̃ is keyed to the mountain stress T : total AAM tendency (dM

dt
thick solid),

mass AAM tendency (dM
dt

thick grey solid), torque due to the the forcing (TX plus), Coriolis

conversion term (C dots), b) Mass AAM cycle when X̃ is keyed to the various stresses in Fig. 5a:
mountain stress (T thick grey), momentum flux divergence (F thick grey dashed), boundary
layer stress (B thick grey dots), sum (T + F + B thick black solid).
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Figure 10: Semi-diurnal responses in the shallow water model with H0 = 9.5km and when X̃
is keyed to the mountain stress T : a) Surface Pressure (i.e. ρrgh̃); b) Zonal momentum (i.e.
ρrH0ũ), c) Meridional momentum (i.e. ρrH0ṽ).
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Figure 11: Semi-diurnal mass AAM response in the shallow water model when X̃ is keyed to
the mountain stress T . Sensitivity of MO to the value of the equivalent depth H0: amplitude
of MO (thick grey), phase of MO (dots).
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Figure 12: Diurnal response in the shallow water model with H0 = 2.5km and when the forcing
X̃ is keyed to the mountain stress T : a) Surface Pressure (i.e. ρrgh̃) pattern antisymmetric
with respect to the Equator; b) Zonal momentum (i.e. ρr

H0

2κ
ũ) pattern antisymmetric with

respect to the Equator; c) Meridional momentum (i.e. ρr
H0

2κ
ṽ) pattern symmetric with respect

to the Equator.
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Figure 13: Diurnal response in the shallow water model with H0 = 1km and when the forcing X̃
is keyed to the momentum flux divergence F : a) Surface Pressure (i.e. ρrgh̃) pattern symmetric
with respect to the Equator; b) Zonal momentum (i.e. ρr

H0

2κ
ũ) pattern symmetric with respect

to the Equator; c) Meridional momentum (i.e. ρr
H0

2κ
ṽ) pattern antisymmetric with respect to

the Equator.
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Figure 14: Diurnal response in the shallow water model with H0 = 1km and when the forcing
X̃ is keyed to the momentum flux divergence F . Mass AAM budget: Mass AAM (grey solid),
total AAM tendency (dM/dt = 0, black solid), mass AAM tendency (here dMO/dt/2κ, grey
solid), Mountain torque (TF = 0, plus), and Coriolis conversion (C, dots).
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