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the 1–25 day band: Links with the Arctic Oscillation
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SUMMARY

Using the NCAR/NCEP reanalysis data, we analyse the atmospheric angular momentum M response to
torques T in the 1–25 d spectral band. At these periodicities, the variations in M are equally distributed between
variations in wind angular momentum MR and mass angular momentum M�. They are driven by mountain
torques TM which are substantially larger than boundary-layer torques TB. This equipartition between MR and
M� occurs because the response to TM in most cases satisfies the geostrophic balance, and because the major
mountain ranges are located in the midlatitudes. At these latitudes, an external positive zonal-mean zonal force is
in good part equilibrated by a flux of mass equatorward through the Coriolis force, a process that increases M�.
In geostrophic balance with this mass redistribution, the zonal-mean zonal wind increases where the force is
applied and MR increases as well. This process leads to MR ≈M� for parameters representative of the earth’s
atmosphere.

This explanation of the equipartition between M� and MR is confirmed by two pieces of independent
evidence. The first is based on the reanalysis data, in which we evaluate the contribution of six non-overlapping
latitudinal sectors to TM hence varying the importance of the Coriolis force. When the mountain torque TM is
produced by mountains located in the Arctic and Antarctic sectors, the changes in M� dominate those in MR .
It is the other way round when TM is produced by mountains located in the equatorial sector and M� ≈MR when
TM is due to mountains located in the subtropics or in the midlatitudes.

The second is based on results from a one-layer shallow-water axisymmetric model on a sphere, where zonal
body forces centred at different latitudes are specified. The latitudinal dependence of the repartition between MR

andM� found in the data is reproduced by the model withM� ≈MR when the force is centred in the midlatitudes.
The Arctic Oscillation (AO) pattern being associated with substantial M�, the significance of these results

for the atmospheric circulation variability is also discussed. In the 1–25 d band, the AO variations are very
significantly related to M� variations driven by TM. This result suggests that in this band the mountain ranges
substantially affect the AO variability.
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1. INTRODUCTION

Variations of the atmospheric axial angular momentum (AAM, or M in equations)
are known to occur at time-scales from daily to interannual (Rosen and Salstein 1983).
In fact, they are associated with dynamical processes having different characteristic
time-scales, such as the El Niño Southern oscillation (Wolf and Smith 1987; Chao
1984), the 40–60 d intraseasonal tropical oscillation (Madden 1987), and the 15–35 d
intraseasonal midlatitudes oscillations (Lott et al. 2004). At smaller periodicities they
are also associated with travelling Rossby waves (Lejenäs and Madden 2000) and
synoptic-scale midlatitude systems (Iskenderian and Salstein 1998).

The exchange of angular momentum with solid earth is achieved by the friction
torque TB and the mountain torque TM (Starr 1948) whose relative importance depends
on the time-scale. The mountain torque is generally weaker than the friction torque
on interannual and seasonal time-scales (Newtown 1971) with the possible exception
of periods of El Niño events (Wolf and Smith 1987). The friction torque also seems
to produce the AAM changes that occur during the intraseasonal tropical oscillation
(Madden 1987). Nevertheless, there are examples of intraseasonal tropical oscillations
during northern hemisphere winter where the mountain torque drives substantially the
AAM changes while the friction torque damps them (Weickmann and Sardeshmuckh
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1994; Weickmann et al. 1997). This fact becomes even more valid as the time-scale
decreases below the intraseasonal tropical oscillations periodicities of 40–60 d (Dickey
et al. 1991; Lott et al. 2001). At even smaller periods the mountain torque clearly drives
the changes in AAM (Swinbank 1985; Iskenderian and Salstein 1998). These results
are in agreement with Rosen’s (1993) conclusion that the friction torque dominates the
changes in AAM on time-scales of months, whereas on time-scales shorter than several
weeks the mountain torque is dominant.

Although the relative importance of mountain torques and friction torques in
producing the AAM changes has been often discussed, there are comparatively few
studies that document the relative importance of the mass angular momentum M� and
of the wind angular momentum MR for the AAM itself. This is due to the fact that M�

makes a rather small contribution to M , the changes in M� being only comparable to
those in MR at periodicities ω−1 < 25 d (Lott et al. 2004), ω being the frequency in
cycles per day. At larger periodicities the spectra of the MR tendency is much larger
than that of the M� tendency. In this case the tropical regions largely control the
AAM changes through the Pacific Ocean friction torques associated with convective
fluctuations over the Indo-Pacific warm pool (Madden 1987; Hendon 1995).

The equipartition between MR and M� can have a simple dynamical origin.
When a positive torque TM is due to a mountain range located in the extratropics,
providing we can neglect its effect over long distances through travelling Rossby waves,
it accelerates the zonal-mean flow in the extratropics. The positive barotropic zonal wind
this torque produces (producing positive MR) is affected by the geostrophic balance.
Thus, this torque also induces changes of zonal-mean mass to the north and to the
south of the central latitude of the mountain range (producing M�). Hence this torque
naturally affects both M� andMR but in a fraction that remains to be evaluated. Note as
well that this fraction has to vary with the latitude of the mountains that produce TM,
because the Coriolis parameter and the distance to the earth axis vary with latitude.

It is important to emphasize that analysing the response in M� to mountain torques
is not only relevant to understanding the AAM budget closure at high frequencies.
It is also interesting in addressing the role of mountains on the general circulation of
the atmosphere. Indeed, there are increasing evidences that AAM budget studies can
help to isolate to which extent the atmospheric variability in the midlatitudes is driven
by mountains (Lott et al. 2004). In this context, Lott et al. (2004) found that changes
in the Arctic Oscillation (Wallace 2000) in the 20–30 d band are preceded by a small
but significant signal in the mountain torque. This relationship is mainly due to the
fact that the Arctic Oscillation pattern corresponds to a redistribution of mass from
the polar latitudes to the midlatitudes, hence giving a substantial contribution to M�.
These findings are supported by von Storch (1994, 1999) who found in a coupled
general-circulation model (GCM) that two among the three dominant modes of large-
scale variability are associated with larger M� than MR . For completeness, note as
well that Kang and Lau (1994) related the principal modes of atmospheric circulation
variability to AAM fluctuations but limited their analysis to changes in MR.

The first purpose of the present study is to analyse the repartition between mass and
wind angular momentum due to mountain torques at periodicities for which the friction
torque makes a small contribution to the AAM budget. The second purpose is to interpret
this repartition as a natural consequence of the geostrophic equilibrium that takes place
in the midlatitude, that is at the latitudes where the mountains mainly affect the zonal-
mean flow. The third is to suggest, using different diagnostics than in Lott et al. (2004),
that mountain torques drive in part the changes in the Arctic Oscillation that occur at
periodicities ω−1 < 25 d, because they modify the mass angular momentum.
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In section 2, we present the data used and recall briefly some spectral analysis
results that motivate the present work. In section 3, we focus on the AAM budget in
the 1–25 d band and look at the real atmosphere response to torques due to mountains
located in different latitude bands. In section 4, we analyse the geostrophic adjustment
to mountain torques using a zonally averaged barotropic shallow-water model on the
sphere. Section 5 gives some conclusion.

2. DATA DESCRIPTION

(a) AAM budget and AO
We use 40 years (1958–97) of the NCEP/NCAR∗ reanalysis (Kalnay et al. 1996) to

extract the daily averages of the surface pressure field Ps, the sea-level pressure field Pm,
the zonal wind u at the 17 pressure levels given by the analysis, and the daily average
of the boundary-layer stress τB issued from 6-hour forecasts. From this set of data we
evaluate the global tendency budget of the atmospheric angular momentum M:

dM

dt
= d (MR +M�)

dt
= TM + TB, (1)

where MR, M�, TM, and TB are the wind angular momentum, the mass angular
momentum, the torque due to the mountains, and the torque due to the boundary-layer
stress, respectively. These four quantities are computed as

MR =
∫
V

ρr cos θ u dV, M� =
∫
V

ρ�r2 cos2 θ dV, (2)

TM = −
∫
S

Ps
∂Zs

∂λ
dS, TB =

∫
S

r cos θτB dS. (3)

In Eqs. (2)–(3),
∫
V

dV is the integral over the volume atmosphere,
∫
S

dS is the integral
over the earth surface, ρ is the density, λ is the longitude, θ is the latitude, r is the radius
of the earth, � is the angular velocity of earth’s rotation, and Zs is the topographic
height.

In our calculation the AAM budget is well balanced: the correlation between
d(MR +M�)/dt and TM + TB in Eq. (1) is close to 0.85 (Lott et al. 2004). Note that
the contribution of the NCEP model’s parametrized mountain gravity-wave drag was
not included in the mountain torque, because it degrades the balance between the global
AAM tendency and the torques (Huang et al. 1999).

The dominant large-scale atmospheric pattern that accompanies changes in M� is
displayed in Fig. 1(a). To reduce the influence of the annual cycle and to focus on the
northern hemisphere, it is computed as winter (December to February, hereafter DJF)
regression of the sea-surface-pressure field onto M� (Von Storch and Zwiers 1999).
Figure 1(a) shows that the northern hemisphere changes associated with positive M�

are first due to a redistribution of mass from the polar latitudes to the midlatitude ones.
The geostrophic balance implies that they are associated with changes in the midlatitude
and polar jet, with a reinforced jet over the north-east and central Pacific as well as over
the central eastern North Atlantic.

From this set of data, we also compute the Empirical Orthogonal Functions (EOFs)
(Preisendorfer 1988) of the sea-surface-pressure Pm daily variability over the northern

∗ National Centers for Environmental Prediction/National Center for Atmospheric Research.
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Figure 1. Winter (DJF) regression of sea-level-pressure maps Pm on (a) the mass angular momentum M�

(contour interval 0.5 hPa) and (b) the Arctic Oscillation index, or first principal component of DJF Pm daily
variability (contour interval 1 hPa). Negative contours are dashed.

hemisphere and during winter months. The first EOF (EOF 1) accounts for 9.3% of
the daily DJF variability. The DJF regression of the sea-level pressure Pm onto its
first principal component (PC 1), shown in Fig. 1(b), is strongly reminiscent of the
Arctic Oscillation (Thomson and Wallace 1998): it is strongly zonally symmetric and
associated with reinforced jets over the north-east and central Pacific, as well as over
the central eastern North Atlantic. Consequently, the Arctic Oscillation index used in
the rest of this paper will be the Pm PC 1. It is important to emphasize here that the
two maps in Fig. 1(a) and Fig. 1(b) have a pattern correlation above 0.6, when evaluated
north of 30◦N. This good correlation is at the basis of the lead-lag relationships between
mountain torque, mass AAM and the AO in the 20–30 d band, found in Lott et al.
(2004).

(b) Spectral analysis
To illustrate the relevance of the high-pass ω−1 < 25 d window, Fig. 2 presents

the spectra of each term in the AAM budget (Eqs. (1)–(3)), as well as the coherency
between the global AAM M and both torques TM and TB. To highlight high-frequency
contributions, the spectra in Figs. 2(a)–(b) are presented in the linear-log energy-
conserving representation. Both the spectra of the MR tendency and the spectra of
the M� tendency present a flat background of nearly equal intensity for ω−1 < 20 d.
At longer periodicities, the contribution of MR exceeds that of M�, with the latter
becoming less than half the former for ω−1 > 25 d. For the torques, the spectra in
Fig. 2(b) show that at periodicities typically above 30–40 d, the contributions of TM
and TB are comparable, while at ω−1 < 25 d the mountain torque clearly dominates the
friction torque TB.

The coherencies and phases of the cross-spectra between the global AAM M and
the torques TM and TB in Fig. 2(c) are also instructive. The rather large coherency for
both torques in the upper panel of Fig. 2(c) is a sign that the AAM budget is well
closed when using the NCEP reanalysis data. The lower panel shows that at nearly
all periodicities the mountain torque TM leads M by almost a quarter of period, hence
driving the changes in the latter. This lead-lead quadrature is nearly exact at periodicities
ω−1 < 25 d, that is when TM dominates TB according to Fig. 2(b). The phase of
TB is intermediate between being in opposition and in lead-lag quadrature with M .
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Figure 2. Spectral analysis of different terms in the AAM budget Eqs. (1)–(3). (a) Spectra (S) of theMR tendency
(black solid) and the M� tendency (grey solid). (b) Spectra of TM (black solid) and TB (grey solid). (c) Coherency
(upper panel) and phase (lower panel) between the global AAMM and (i) TM (black solid) and (ii) TB (grey solid).
(d) Coherency (upper panel) and phase (lower panel) between the AO and M�. All curves in (a), (b), (c), and (d)
are built in 3 steps. First the series are tapered by a 3 d box-car average and sampled every 3 days. Second, their
Fourier coefficients are evaluated to produce the periodograms needed for (a) and (b) and the cross-periodograms
needed for (c) and (d). The spectra and cross-spectra are then extracted smoothing the (cross-)periodograms by a
30 points (33%) cosine window, yielding a resolution of 6.2 × 10−3 cycles d−1. In (d) a median level (grey solid)
and a 1% significance level (grey dashed) have also been added. They are evaluated by a Monte Carlo procedure
that applies the cross-spectral analysis to 100 pairs of red-noise uncorrelated series whose variance and lag-one
correlation fit the series of northern hemisphere PC 1 and M� both with annual cycle subtracted (see appendix for

the extraction of the series with no annual cycle).

On the one hand, the phase opposition implies that large TB are associated with smaller
than usual zonal winds (and hence MR); on the other hand, the lead-lag quadrature
implies that TB drives M changes through Eq. (1). Thus, TB has a complex and dual
relationship with M , but it remains small compared to TM (Fig. 2(b)).

The importance of this frequency band for the links between the mass AAM and
the AO is proved in Fig. 2(d) which shows a cross-spectral analysis between M� and
the AO index. The coherency between the two series is often above 0.5 for ω−1 < 25 d
while significantly below that value for ω−1 > 30 d. For all periodicities the series are
nearly in phase (lower panel in Fig. 2(d)). It is also important to emphasize that the
coherency values for ω−1 < 30 d are nearly always significant at the 1% level and rarely
significant for periodicities between 30 and 100 d. The coherency values are also largely
above the median value of 0.17 to be expected for uncorrelated series when using our
conventional spectral analysis method (see Fig. 2 caption).

Note also that the same analysis applied to MR and the AO index almost never give
significant coherencies for periodicities below 100 d (not shown).

As noted in the introduction and from the literature on this topic, none of the
results presented in Figs. 2(a)–(d) are really novel. Nevertheless, they illustrate the
specificity of the 1–25 d band, on which we will concentrate in the rest of the paper.
To summarize, in this band: M changes are little damped and predominantly driven by
the mountain torque; M changes are almost equally distributed between M� and MR;
and M� changes are significantly correlated with those in the AO.
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TABLE 1. STANDARD DEVIATION OF THE
DIFFERENT FILTERED SERIES OF AAMS,
TORQUES, AND AO INDEX USED IN THE

PAPER

All year No annual ω−1 < 25 d

M 275 Hd 92 Hd 45 Hd
MR 263 Hd 80 Hd 33 Hd
M� 67 Hd 45 Hd 31 Hd
TM 20 H 19 H 18 H
TB 10 H 8 H 6 H
AO 67 Hd 59 Hd 47 Hd

Units: Hadleys day, 1 Hd = 8.64 ×
1022 kg m2s−1; Hadleys, 1 H = 1018 kg m2s−2.
Note that the AO index is expressed in terms
of Hd instead of Pa. To do this conversion we
first normalize the PC 1 values by their DJF
standard deviation. Second, we multiply them
by the mass angular momentum M� related to
the PC 1 regression pattern in Fig. 1(b) using
Eq. (2). See text for further details.

3. AAM BUDGET COMPOSITES KEYED TO 1–25 d SERIES

In this section, we use the fact that all the terms in the AAM budget (Eq. (1)) are
linear, and consequently Eq. (1) remains valid when each series of AAM and torques are
filtered by a non-recursive high-pass filter. Hence, we build series of AAM and torques
with substantial spectral power for periodicities, ω−1 < 25 d, and very low power for
ω−1 > 35 d. In the rest of the paper, we will refer to these series as 25-days series;
details on the filter used are in appendix. Their standard deviations are given in Table 1.
They are compared with the standard deviations of the corresponding unfiltered series
and to those of the corresponding series with annual cycle subtracted (see appendix).

The values given in Table 1 clearly show that the high-pass 25 d filter keeps almost
all the standard deviation of the unfiltered mountain torque and reduces by a factor
around 2 the standard deviation of the boundary-layer torque TB. The filter also keeps
half the variance of the unfiltered mass angular momentum, but strongly attenuates
the standard deviation of the wind angular momentum MR , which possesses a strong
annual cycle. The 25-days series of MR nevertheless accounts for more than 40% of the
standard deviation of the MR series with annual cycle subtracted. Note as well that the
standard deviation of the 25-days M� and 25-days MR are comparable in amplitude,
while the 25-days standard deviation of TM is 3 times larger than the 25-days standard
deviation of TB.

It is important to emphasize that our 25-days series are never small compared to the
unfiltered ones. As Table 1 shows, this is also true for the AO. Finally, it is also important
to note that the 25-days series close the AAM budget as well as the raw series do: the
correlation between the AAM tendency and total torque both evaluated using 25-days
series is above 0.88. It is 0.85 when only the contribution of the mountain torque to the
25-days total torque is taken into account.

(a) AAM budget composites
Figures 3(a)–(e) show composites of TM, TB, M�, and MR that are associated

with different 25-days series, each indicated on the right of the panels. In Fig. 3(a),
for instance, the composites are built from 25-days series of TM, TB, M� and MR ,
selected each time the 25-days AAM M exceeds a given positive threshold M+ or is
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Figure 3. Composites of mountain torque TM (thin line), boundary-layer torque TB (thin dashed), mass AAM
M� (thick solid), and wind AAM MR (thick dashed) keyed to 25-days series of: (a) total AAM M , (b) TM, (c) TB,
(d) M�, (e) MR , and (f) Arctic Oscillation (northern hemisphere DJF PC 1). The number N of cases used to build
the composites are given in parenthesis on the right of each panel. The thin (thick) bar in each panel indicates 1%
confidence level from a Monte Carlo test that uses 100 means of TM (M�), each mean being made with N values

of 25-days TM (M�) taken at random. In (f) the black squares are for the tendency of the M� composite.

below a given negative threshold M−. At zero lag the TM composite is the mean of the
25-days TM values corresponding to the N+ dates where M exceeds M+, minus the
mean of the 25-days TM values corresponding to the N− dates where M is below M−.
At non-zero lag the composites are built using the same procedure, but with TM values
corresponding to dates at fixed lag from the N = N+ + N− local extrema identified
before in the 25-days M . The threshold values are arbitrary, and the number N of dates
included in a given composite decreases whenM+ (M−) increases (decreases). We have
verified, though, that the composite curves are not very sensitive to moderate changes
in the thresholds. The threshold values M+ = 115.75 Hd and M− = −124.5 Hd are
used in Fig. 3(a) (units are explained in Table 1). They are about 1.5 times the standard
deviation of M with annual cycle subtracted (Table 1). In this case, N+ = 36, N− = 35
soN = 71. For the following composites curve (Figs. 3(b)–(e) and later in Figs. 4(a)–(f))
the threshold values for the series to which the 25-days AAM budget is keyed are always
chosen to ensure N+ ≈N− and 60<N <80, and the value of N is given in parenthesis
in all panels. Finally, note that we verified that all composite curves in Figs. 3 and 4
close well, and within the error bound for the mountain torques composite provided, the
AAM budget Eqs. (1).
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TheM� andMR composites keyed to the 25-daysM in Fig. 3(a) present substantial
maxima of comparable amplitude at zero lag. ‘Substantial’ means comparable with the
standard deviation of the unfiltered M� series given in Table 1. As suggested by the
spectral analysis in section 2, this follows from the fact that in the 1–25 d band both
MR and M� make comparable contributions to the global AAM. The black line in
Fig. 3(a), shows that the M positive anomaly at zero lag is preceded by a substantial
positive mountain torque anomaly (Table 1) that is above 15 H for lags −7 d < l < 0 d,
and followed by a subsequent negative mountain torque anomaly that is below −15 H.
This composite map thus strongly suggests that the AAM changes in the 1–25 d
band are driven by the mountain torque and divided between mass and wind angular
momentum. This conclusion is supported by the fact that the composite of the 25-days
TB keyed to the 25-days M (black dashed in Fig. 3(a)) is very small compared to the TM
composite and is in phase opposition with the M� and MR composites at nearly 0 d lag.
This corroborates the cross-spectral results in Fig. 2(c), where in the 1–25 d band the
mountain torque drives the M changes.

To support this point even further, Fig. 3(b) presents composites according to the
25-days TM. The TM composite presents a substantial spike which lasts less than 5–6 d
typically and which maximum value is almost 60 H. It is associated with rather abrupt
increases in M� and MR centred at zero lag, that are almost identical in phase and
amplitude.

To support the hypothesis that the boundary-layer torque damps the AAM anoma-
lies, we also made composites along the 25-days TB (Fig. 3(c)). The M� and MR

composites are nearly in phase with each other but almost in phase opposition with
the composite in TB. Also in this case the composite of the mountain torque seems to
remain the driver (Fig. 3(c)).

Figure 3(d), tests what can cause changes in M� only: again the mountain torque
(black solid) is the driver. Conversely, Fig. 3(e) tests what can cause changes in MR

only, giving very similar conclusions: the mountain torque again.
Finally, Fig. 3(f) presents composites keyed to the 25-days AO. At zero and small

negative lag the AO is associated with a substantial positive anomaly in M� whose
maximum is at l = −1 d. It is preceded by an extrema in TM close to 9 H at l = −3 d lag
and followed by a minimum in TM close to −14 H at l = 1 d lag. Since these extrema in
TM are significant (black arrow) and quite substantial (Table 1), the maximum in M� is
likely to be largely driven by the mountain torque. This point is confirmed by the fact that
the tendency of the M� composite (black squares in Fig. 3(f)) is very near the composite
in TM. The only fact that can complicate this interpretation is that MR varies quite
substantially during the 25-days cycle of the AO shown in Fig. 3(f). The changes in
MR at negative lag 10 d < l < 0 d seem in opposition with those in M�, suggesting that
there are torque-free exchanges betweenMR andM� during the AO cycle. Nevertheless,
we verified that these changes in MR have moderate impacts on the global compositeM
tendency which stays very near the black squares in Fig. 3(f). It thus remains true that
the AAM anomalies associated with the AO are essentially due to changes in M�, which
are themselves driven by the mountain torque.

(b) Mountain torques evaluated over different latitude bands
As noted in section 1, the fact that the AAM response to mountain torques is

equally distributed between mass and wind angular momentum can simply result from
the geostrophic balance and from the fact that the major mountain ranges are located in
the midlatitudes. If such an explanation is relevant to the real atmosphere, the balance
between M� and MR must vary when the central latitude θ0 of the mountain ranges that
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produce the torque varies, simply because the Coriolis parameter varies in sin θ0 and
because the distance to the rotation axis varies in cos θ0.

To check if this is the case, we evaluate the contribution of six different non-over-
lapping latitudinal sectors to the mountain torque. For this, we limit the TM integration
in Eq. (3) to the latitude band of interest. Among the sectors selected, two cover the polar
regions, the Arctic (60◦N–90◦N) and the Antarctic (60◦S–90◦S), one covers the equa-
torial band (15◦S–15◦N) and three cover the midlatitude and subtropical latitudes,
one the southern hemisphere (15◦S–60◦S), one the subtropical northern hemisphere
(15◦N–35◦N), and one the midlatitude northern hemisphere (35◦N–60◦N). The choice
of these different latitude bands is somewhat arbitrary. It is motivated by the fact that the
latitudinal bands need to be sufficiently large to provide substantial contributions to
the mountain torque. For instance, this constraint means that we have grouped together
the subtropical and midlatitudes southern hemisphere: at these time-scales the Andes
make a rather small contribution to TM compared to the Rockies and the Himalayas.
On the other hand, because the mountain ranges in the northern hemisphere are very
large, we can distinguish in the northern hemisphere the subtropical and the midlatitude
regions.

Once these series of torque have been built, they are again filtered in the 1–25 d
band and composites of the AAM budget are constructed according to each of them.
The composites according to the 25-days TM in the Arctic region are displayed in
Fig. 4(a). The global 25-days TM composite presents a significant spike that peaks at
20 H at zero lag, and that lasts around 3 d. It is largely due to Greenland (not shown), and
the sectorial torque almost identifies with the total mountain torque. In correspondence
with this spike the mass angular momentum composite varies substantially from below
−14 Hd to 9 Hd, while the wind angular momentum varies comparatively less. Away
from this 3 d lag window, none of the values of torque and AAM are significant (black
and grey arrows in Fig. 4(a)).

A rather comparable behaviour can be seen when the contribution of Antarctica
to the torque is considered (Fig. 4(f)). It is important to note that in both Figs. 4(a)
and (f) the extrema of mass AAM obtained at small negative and positive lags are only
marginally significant. Although this can reduce the explanatory power of our interpre-
tation, one remark can be made. The change of M� from a significant negative value
at small negative lag to a significant positive one at small positive lag (Figs. 4(a)–(f))
indicates rather strong tendencies (not shown) which are far more significant than the
anomalies of M� themselves.

If we now turn to the contribution of the equatorial band to the mountain torque in
Fig. 4(d), we find a behaviour that is nearly opposite to that found in the polar regions:
a lag-zero peak close to 15 H in TM lasting nearly 6 d, corresponds within the same
period to an abrupt and significant increase in the wind AAM MR, while the mass AAM
M� varies moderately during the same interval. Note, nevertheless, that in this case the
sectorial torque is significantly smaller that the total torque indicating contributions from
extratropical latitudes to the results in Fig. 4(d) that may explain the changes in M�.

When we look at the midlatitude and subtropical sectors (Figs. 4(b), (c) and (e)),
significant peaks in mountain torques lasting a few days are associated with subsequent
increased MR and M�. For all these three sectors the increases in M� compare,
within error bounds, in phase and amplitude with those in MR. Again, some small
but significant discrepancies between sectorial mountain torques and global mountain
torques are present in Figs. 4(b) and (c). These indicate the limit of our approach,
because the major mountain ranges are not necessarily well embedded within the
latitudinal sectors that we chose.
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Figure 4. Composites of the 25-days AAM budget, keyed to 25-days mountain torques evaluated over six
different non-overlapping latitude sectors. The sector and the number of cases taken to build the composites
are given on the right of each panel. Same conventions and parameters as in Fig. 3 except that the thin dashed

lines are for the composite of the sectorial mountain torques.

When comparing the amplitude of the TM composites in each panel of Fig. 4,
it is clear that the subtropical and midlatitudes make the largest contributions to the
mountain torque. This explains why the same balance holds for the global mountain
torque anomalies in Fig. 3(b) since the subtropics and midlatitudes induce changes in
M where MR ≈M�.

4. SHALLOW-WATER MODEL FOR THE PARTITION BETWEEN M� AND MR

In this part, we present results in a very simple dynamical context to understand
more precisely the partition between mass AAM and wind AAM. We study the zonal
mean-flow response to a body force acting on a zonally symmetric shallow-water flow
on a sphere. We furthermore assume that this body force is not modulated by the
axisymmetric flow, which excludes that it can be due to frictional effects. This force
only mimics mountain torques, the latter being due to circulation patterns that are not
axisymmetric, within a good approximation (see Lott et al. 2004, Fig. 2). Accordingly,
our model is only adapted to interpret the actual AAM budget for situations where the
boundary-layer torque plays a minor role, which is the case for the 25-days series used
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in section 3. The set of equations used are similar to Gill (1982, p. 431):(
∂

∂t
+ v

r

∂

∂θ

)
u−

(
2�+ u

r cos θ

)
v sin θ = F

h
, (4)

(
∂

∂t
+ v

r

∂

∂θ

)
v +

(
2�+ u

r cos θ

)
u sin θ = −g

r

∂h

∂θ
, (5)

∂h

∂t
+ 1

r cos θ

∂hv cos θ

∂θ
= 0. (6)

In Eqs. (4)–(6), u, v and h are the zonal wind, the meridional wind and the fluid depth,
respectively; g is the gravity constant; F is a body force that varies in time and latitude.
Linearized around a state of rest with constant depth H0, the Eqs. (4)–(6) correspond to
the Laplace tidal equation for zonal wave number zero (Longuet-Higgins 1968).

The set of Eqs. (4)–(6) satisfies an AAM budget of the form

d

dt
(MR +M�)= TF , (7)

where the wind AAM, the mass AAM, and the torque due to F are

MR = 2πr3
∫ +π/2

−π/2
hu cos2 θ dθ,

M� = 2πr4�

∫ +π/2

−π/2
(h−H0) cos3 θ dθ,




(8)

TF = 2πr3
∫ +π/2

−π/2
cos2 θF dθ. (9)

(a) Approximate analytical solutions
The fact that the wind AAM and the mass AAM are linked via the geostrophic

balance can be illustrated by two approximate solutions of the set of Eqs. (4)–(6). In the
first, the atmosphere response to the force F after its end is assumed to be a uniform
constant zonal wind U that is equilibrated by a surface elevation,

H =H0 + rU�

g

(
2 cos θ − π

2

)
, (10)

through the Coriolis force

2� sin θU = −g

r

∂H

∂θ
. (11)

The solution in Eq. (10) is such that H and H0 correspond to the same total mass.
For this solution, and using Eqs. (8), the fraction between mass AAM and wind AAM is

M�

MR

= r2�2

6gH0
, (12)

For parameters representative of the earth troposphere, g = 9.81 m s−2, H0 = 8 km,
r = 6400 km and �= 7.27 × 10−5 s−1 this ratio is near 0.45. Equation (12) predicts
well that geostrophy implies that M must be proportionately distributed between M�

and MR but the fraction M�/MR is underestimated by a factor around 2 compared to
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the equipartition found in Figs. 3(a) and (b). We attribute this mismatch to the fact that
the major mountain ranges are located off the equator, inducing changes in 25 d winds
that are not uniform over the entire atmosphere.

In a second approximate solution, we try to account for this geographical effect and
assume that the force F applies to the flow within a very thin latitude band with width
δθ 	 1 centred at a latitude θ0. Assuming that, after the force ends, the wind responseU
is constant in this band and null elsewhere, that the height response H equilibrates U in
this band via the Coriolis force and is constant elsewhere and that H and H0 correspond
to the same total mass, the fraction between mass AAM and wind AAM is given by

M�

MR

= r2�2

gH0

2

3
sin2 θ0. (13)

This ratio is null at the equator, approximately equal to 1.84 at the poles and to 0.95
when θ0 = ±45◦. This expression thus recovers at least qualitatively the latitudinal
dependence between MR and M� found in the observations in Fig. 4.

(b) Numerical time-dependent model
Although relevant for our study, the approximate ratios in Eqs. (12)–(13) rely on

assumptions about the spatio-temporal structure of U and H that are highly idealized.
Furthermore they do not allow us to describe the transient dynamics underlying the
redistribution between mass and momentum that leads to such ratios. To evaluate these
ratios in a more complete dynamical context, and for different forcings F , we solve
the set of Eqs. (4)–(6) with a finite-difference model that uses the transformed latitude
coordinate µ= sin θ and the set of variables h, hu cos θ and hv cos θ . In this coordinate
system the model grid is staggered, with h evaluated at M + 1 grid points that are
equally spaced and that include both poles, while hu cos θ and hv cos θ are evaluated
at the M grid points centred between the h-grid points. In all the experiment presented,
M = 1000 points is used, a value for which convergence is achieved and the AAM
budget (Eq. (7)) is perfectly closed. In space, all the differentiations in Eqs. (4)–(6) are
estimated with centred finite differences. In time, the integration is made by successive
explicit leapfrog steps followed by an Asselin filter (Haltiner and Williams 1976).

Except when specified, all the experiments presented last 30 d and have a time step
dt = 10 s. The forcing F is always centred on a latitude θ0 and covers a latitude band
of width δθ = 10◦. In time, it starts from 0 at t = 0, reaches a maximum amplitude
at t = τF and returns to zero at t = 2τF . Accordingly, it is null at all times for θ >
θ0 + δθ/2 and θ < θ0 − δθ/2, and it is null everywhere for t > 2τF . For θ0 − δθ/2 <
θ < θ0 + δθ/2 and 0 < t < 2τF it is given by

F = F0
4

δθ2

(
θ − θ0 + δθ

2

) (
θ0 + δθ

2
− θ

) {
1 − cos2

(
πt

2τF

)}
. (14)

In all experiments the value of F0 is taken so that the maximum of the torque reaches
TF (τF )= 10 H. In most experiments, we will also take the forcing time-scale τF =
2.5 d, a value which ensures that the time-scale of the response is large compared to that
of the planetary gravity modes. In non-dimensional form this condition becomes

(�τF )
2 = 225 	 r�√

gH0
= 1.66. (15)

For this value of τF we can expect that the response of the rotational modes far exceeds
the gravity modes, i.e. the situation is adjusted.
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Figure 5. Shallow-water model results, forcing F centred at θ0 = 45◦N. (a) Slowly varying case 2τF = 5 d:
Flow profiles of h−H0 (solid) u (dashed), and v (dot) at t = 3 d (thick) and t = 6 d (thin). (b) Rapidly varying

case 2τF = 12 hours: h−H0 every day. See text for further explanation.

Nevertheless, and for completeness, we will discuss as well the response when F
varies rapidly and take in one case τF = 0.25 d. In this case

(�τF )
2 = 2.8 ≈ r�

/√
gH0 = 1.66,

a situation that sometimes occurs in GCMs if not in reality, and in response to gravity-
waves parametrizations (Egger 2003).

(c) Results
Figure. 5(a) shows the flow response in the slowly varying case τF = 2.5 d, and

when the forcing F is centred at the latitude θ0 = 45◦N. The response in Fig. 5(a) is
shown at two different instants, one chosen when the force F is non-zero (t = 3 d) and
one after the force has stopped (t = 6 d). At t = 3 d, the positive force F essentially
produces a meridional ageostrophic negative velocity v that presents a minimum near θ0
where it does equilibrate F via the Coriolis force. This southward velocity is associated
with a southward flux of mass whose minimum is near θ0 as well. Accordingly,
the surface elevation increases to the south of θ0 and decreases to the north of it.
In geostrophic equilibrium with h, the zonal wind presents a pronounced positive zonal
jet u in the area where F is non-zero and where the elevation h shows a strong negative
gradient (between θ0 − δθ/2 = 40◦N and θ0 + δθ/2 = 50◦N). Away from that area the
gradient of h is everywhere positive and by geostrophy u is negative in the northern
hemisphere and positive in the southern hemisphere. Note that the final profiles of h
and u differ substantially from the idealized case considered in Eq. (13), which assume
constant height and zero velocity at all locations apart from the narrow latitude band
θ0 − δθ/2< θ < θ0 + δθ/2.

Such a balanced description of the flow evolution remains valid as long as F is
non-zero, and the force keeps deepening the trough in h north of θ0 and raising the
high south of it. Hence the zonal flow u keeps increasing in amplitude around θ0. For
t > 2τF , F = 0 and the ageostrophic velocity it induces, v = 0, as well (Fig. 5(a)). At
this time the profiles of h and u no longer evolve, and they keep the values they reached
at t = 2τF (see also Fig. 5(a)).

The fact that the flow no longer evolves after the forcing ends reflects the fact that
the dynamics is essentially linear and balanced. Indeed, for all the waves that could exist
after the forcing ends, the dispersion relationship of the balanced ones degenerate into
ω = 0 (for a rigorous derivation of the rotational modes in the context of tides with zonal
wave number 0 see Tanaka and Kasahara (1992); but this is classic behaviour, see for
instance the k = 0 axis of the tropical wave dispersion relationship given in Gill 1982).
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Figure 6. AAM and torque evolutions in the shallow-water model, forcing F centred at θ0 = 37.5◦N:
(a) Slowly varying case 2τF = 5 d, (b) Rapidly varying case 2τF = 12 hours. M (dotted), M� (thick solid),

MR (dashed), and TF (thin solid). See text for explanation of symbols.

In contrast, when the forcing varies rapidly (τF = 6 hours, Fig. 5(b)) the response
never reaches a steady state and some of the gravest gravity modes are substantially
excited. After the forcing ends, they induce planetary-scale oscillations (Fig 5(b)) that
modulate the surface elevation around the steady response depicted in Fig. 5(a).

(d) Angular momentum budget
The evolution of the angular momentum in the slowly varying and in the rapidly

varying cases described above are presented in Figs. 6(a) and (b), respectively. In both
cases the torque TF reaches a maximum value of 10 H at t = τF and induces an increase
in total AAM M that lasts 2τF . After the torque returns to 0 (t > 2τF ) M stays constant.
In the slowly varying case (Fig. 6(a)), and at all times during the simulation,M is equally
distributed betweenM� and MR. In this case, the change in distribution of mass seen in
the profile of h ( Fig. 5(a)) is associated with an increase in M� that equals the increase
in MR associated with the zonal wind u (Fig. 5(a)) in geostrophic balance with h.

When the force varies rapidly, the partition between MR and M� never reaches a
constant value (Fig. 6(b)). At the very beginning for instance, the force varies so fast
that it induces a zonal-wind acceleration instead of being equilibrated by a meridional
velocity via the Coriolis force and MR increases first (Fig. 6(b)). Rapidly, and within a
time-scale that compares with the inertial oscillation periodicity, M� starts to increase
as well to become twice as big as MR at t = 2τF = 12 h. Thereafter, the presence of
gravity-wave modes in the system makes both M� and MR oscillate with a periodicity
which in that case is slightly below 1 d. For both MR and M� these oscillations take
place around a mean value that is close to M/2 and have an amplitude that approaches
as well M/2.

Since the dataset derived from the NCEP/NCAR reanalysis cannot properly sample
oscillations with periods close to 1 d, we will focus next on sensitivity tests to the forcing
location rather than duration. We assume that the balance dynamics at work in Fig. 5(a)
are good enough in reality to explain our composite results in section 3, so we take
2τF = 5 d.

Figure 7(a) presents the ten profiles of F that have been used to test the sensitivity
of our results to the latitude. Figure 7(b) presents the final values of MR and M�

corresponding to these ten forcings. First, in all ten experiments, the final value of the
AAM is MR +M� = 25 Hd, which follows that TF is not changed from one experiment
to the other. Second, the latitudinal dependence on the forcing found in the dataset in
section 3 is well reproduced by the model. In particular, when the forcing is centred at
the equator (θ0 = 0) it only induces a zonal-wind acceleration as the Coriolis force is
very small and the AAM is almost entirely due to MR .
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Figure 7. Sensitivity of the shallow-water model response to the central latitude θ0 of the forcing F .
(a) 10 Profiles of F used. (b) Final model values of M� (thick solid with dots) and MR (thick dashed with dots);
theoretical values deduced from Eq. (13) are in thin solid (M�) and thin dashed (MR). See text for explanation

of symbols.

As the forcing moves off the equator, it induces meridional ageostrophic circula-
tions whose importance increases as a function of latitude. As this meridional circulation
directly affects the surface elevation, the importance of M� compared to that of MR in
the budget of M increases. When the force is centred at midlatitudes, M� and MR are
approximatively equal. When F is centred at northern and polar latitudes, M� exceeds
MR substantially.

The results in Fig. 7 compare also rather well with the theoretical result in Eq. (13),
at least in the Tropics and in the midlatitudes. The skill of Eq. (13) nevertheless
degrades north of 45◦N. At 80◦N, for instance, the ratio M�/MR ≈ 4.4 in the numerical
simulations while Eq. (13) gives M�/MR ≈ 1.8.

For completeness, we have also made sensitivity tests of the results in Fig. 7 to the
model parameters g and H0. When those parameters vary, the qualitative behaviour of
Fig. 7 remains the same. The importance of M� increases as the forcing moves towards
the pole. The central latitude for whichM� ≈MR is nevertheless quite sensible to these
two parameters: it moves towards the pole as

√
gH0 increases. This behaviour is also

predicted by Eq. (13).

5. CONCLUSION

(a) Summary
This study seeks to identify the relative importance of wind AAM MR versus

mass AAM M� in the high-frequency (ω−1 ≤ 25 d) fluctuations of global AAM
M , identify the dynamical origin of this balance, and isolate one mechanism that
drives high-frequency fluctuations in the Arctic Oscillation. We find that the mountain
torque TM is producing the AAM fluctuations, the friction torque TB being much
smaller and essentially damping them. Composite anomalies of the AAM budget
keyed to the 25 d TM reveal that the characteristic M response to mountain torques
is equally distributed between M� and MR. We interpret this result as a signature of the
balanced dynamics affecting the atmospheric response to mountain torque anomalies at
periodicities above 1 d.

To corroborate this interpretation we present composite anomalies of the AAM
budget keyed to mountain torques evaluated over different latitudinal sectors (hence
changing the Coriolis force). For TM anomalies produced in the polar regions, the
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response in M� exceeds that in MR while it is the other way around when the mountain
torque is produced in the Tropics. When TM is produced in the subtropics and in the
midlatitudes the response in M is equally distributed between MR and M�. Since these
sectors also contain the major mountain ranges, this explains why the same balance
holds for the global mountain torque. The dependence on the latitude of the forcing is
the first confirmation that the geostrophic balance controls the distribution ofM between
MR and M�, as expected from simple theoretical considerations.

Further evidence is provided by a one-layer shallow-water model for zonal flow on a
rotating sphere. In this model, positive forces lasting a finite amount of time and centred
at different latitudes are specified and the adjustment of the system to these forces is
analysed. When the forcing varies sufficiently slowly so that the response is devoid of
large-scale gravity modes, the model reproduces qualitatively the observational results.
In particular, MR ≈M� when the force is centred around 45◦N, while MR → 0 when
the force is moved towards the poles, and M� → 0 when the force is moved towards
the equator. When the forcing varies sufficiently fast so that large-scale gravity modes
are excited, steady values for MR and M� are never obtained. MR and M� present
substantial oscillations but their time-mean values retains the ratio predicted in the
slowly varying context.

(b) Bearings on the AO
The fact that the AO can be affected during the exchanges of momentum between

the solid earth and the atmosphere that occur in the polar and midlatitude is quite an
interesting result in itself. This is due to the fact that the AO pattern is associated with
substantial mass AAM, as it corresponds to a redistribution of mass from the polar
latitude to the midlatitudes. This suggests that the mountain torque could be used as one
of the predictors of its changes as already found by Lott et al. (2004) in the 20–30 d
band. On top of the spectral coherency between the AO and M� given in Fig. 2(d),
more quantitative arguments to support this finding are also given here. One of them is
little discussed in the text but is implicit in Table 1, where the AO standard deviation is
expressed in Hd. The conversion is done by using the surface pressure map regressed
onto the DJF PC 1 (Fig. 1(b)) into the mass angular momentum (Eq. (2)). In amplitude,
the AO standard deviation compares well with that of M� (Table 1) which means that
mountain torques are large enough to drive AO changes, at least in part. This is of
course confirmed by the composites of the AAM budget keyed to the 25-days AO in
Fig. 3(f): they present substantial variations in M� driven in good part by the mountain
torque TM. Another argument refers to the model in section 4: if we transform the
surface elevation in the model into surface pressure, the variations of 20 m due to a
10 H torque that lasts 5 d (seen in Fig. 5) correspond to surface pressure variations
close to 2 hPa. For torque values close to 50 H (consistent with the values of the
composites in Figs. 3–4), the surface pressure signature can easily reach more than
10 hPa. This value is close to the largest pressure difference in the AO regression map
in Fig. 1(b).

These findings can be useful in the context of mountains representation in GCMs
(Lott 1999; Webster et al. 2003). As mountains affect substantially at least one of the
dominant modes of atmospheric variability, it is clear that the way they are taken into
account should be tested against the AAM budget issued from reanalysis data. In this
context, it is noteworthy that the subgrid-scale orographic representation scheme that has
been validated at best against field data (Lott and Miller 1997) should also be validated
globally, and designed to improve the spectra of the different term of the AAM budget,
at least at periodicities ω−1 < 25 d.
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APPENDIX

Filtered series
To focus on the 1–25 d band revealed by the spectral analysis in section 2, a high-

pass non-recursive filter is applied to the AAM budget series. This filter uses a Kaiser
window with parameters adjusted to minimize Gibbs effects (Hamming 1983; Scavuzzo
et al. 1998). Its transfer function (Fig. A.1) has its half-power point at ω−1 = 30 d, is
close to zero at periodicities ω−1 > 40 d, and is close to one for ω−1 < 25 d. Also note
that we applied a comparable filter with half-power point at 120 d to the series when
needed (essentially in Table 1). This filter attenuates strongly the annual and semi-annual
cycles: its transfer function (Fig. A.1) is close to zero, for ω−1 > 180 d and close to one
for ω−1 < 90 d.
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