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ABSTRACT

The evolution of the two components of the Equatorial Mountain Torque (EMT) applied

by mountains on the atmosphere is analyzed in the NCEP reanalysis. A strong lagged

relationship between the EMT component along the Greenwich axis (TM1) and the EMT

component along the 90◦E axis (TM2) is found, with a pronounced signal on TM1 followed

by a signal of opposite sign on TM2. It is shown that this result holds for the major massifs

(Antarctica, Tibetan Plateau, the Rockies and the Andes) if a suitable axis system is used

for each of them. For the midlatitude mountains, this relationship is in part associated with

the development of the cold surges.

Following these results, we make the two hypothesis that the mountain forcing on the

atmosphere is well measured by the regional EMTs, and that this forcing partly drives the

cold surges. To support this, a purely dynamical linear model is proposed. This model is

written on the sphere but using a f-plane quasi-geostrophic approximation and only includes

the mountain forcings. In this model, a positive (resp. negative) peak in TM1 produced by

a mountain massif in the northern (resp. southern) hemisphere is due to a large scale high

surface pressure anomaly poleward of the massif. At a later stage, high pressure and low

temperature anomalies develop in the lower troposphere east of the mountain, explaining

the signal on TM2 and providing the favorable conditions for the cold surges development.

It is concluded that the EMT is a good measure of the dynamical forcing of the atmo-

spheric flow by the mountains and that the poleward forces exerted by mountains on the

atmosphere are substantial drivers of the cold surges, at least in their early stage. Therefore,

the EMT time series can be important diagnostics to assess the representation of mountains

in General Circulation Models.
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1. Introduction

The influence of the mountains on meteorology is a problem of long standing interest. At

the synoptic scales, this interest is due to the fact that mountains can help the development

of cyclones in their lee side, or induce cold surges that can travel equatorward along the

eastern mountain flanks. The problem of lee cyclogenesis was studied extensively in the 80s

and 90s. It has been documented in case studies (e.g. Buzzi and Tibaldi 1978; Clark 1990),

numerical studies (Egger 1988), and partly explained by theoretical models (Pierrehumbert

1985; Smith 1984, 1986; Speranza et al. 1985). The cold surges are a growing topic of interest

because they are an important source of atmospheric variability in winter along the eastern

flanks of the major mountain ranges (Hsu and Wallace 1985). They are also relevant for

the global climate because they connect the meteorology of the midlatitudes to the tropical

one (Garreaud 2001; Chen et al. 2004). As an illustration of this, the east-asian cold surges

interact with the winter monsoon over eastern Asia, the South China Sea, the Maritime

Continent, and even the Bay of Bengal (Chang et al. 1979; Chang and Lau 1980; Slingo

1998; Tangang et al. 2008; Mailler and Lott 2009).

In mountain meteorology, it is quite common to measure the dynamical influence of

mountains on the atmosphere by forces (e.g. Davies and Phillips 1985; Bessemoulin et al.

1993). In this approach, there is a distinction between the drag forces that are opposed to

the winds at low level and the lift forces that are perpendicular to them. At the mesoscales,

where the mountain flow dynamics is controlled by gravity waves and include low level flow

blocking, the drag force is very important, while at the synoptic and planetary scales, the

lift force plays a key role and causes vortex compression over mountains (Smith 1979). By
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triggering baroclinic wave development and forcing planetary scale waves, these lift forces

have an impact on the large-scale atmospheric flow and their proper representation in GCMs

is an important issue (Lott 1999).

If we adopt a planetary scale approach, which is mandatory for large-scale mountains,

the Atmospheric Angular Momentum (AAM) budget (Feldstein 2006) provides a more satis-

factory formalism to analyze these forces, with the mountain forces translating into torques

along the three planetary axes. For example, Mailler and Lott (2009) have shown that be-

fore convective events associated with the east-asian winter monsoon, there are strong signals

on the Equatorial Mountain Torque (EMT) components TM1 and TM2 due to the Tibetan

Plateau (hereinafter TP). In agreement with other authors (Egger et al. (2007), Egger and

Hoinka (2008)), they also show that the positive torques along the Greenwich axis are due

to a positive surface pressure anomaly to the North of the TP, while the negative torques

along the 90◦E axis are due to a positive pressure anomaly along its eastern slopes (see

Fig. 1 where it is also illustrated how a mountain force F translates into torques along the

equatorial axes).

In the past, the analysis of the mountain torques was mainly focused on the changes it

induces on the Atmospheric Angular Momentum and essentially to interpret the changes in

the Earth Orientation Parameters (e.g. Rosen and Salstein 1983). In this context, the axial

mountain torque TM3 has been analyzed by many authors, with among others, Iskenderian

and Salstein (1998) relating the variations of TM3 to the midlatitudes dynamics at synop-

tic scales and Weickmann and Sardeshmukh (1994) relating its variations to the tropical

dynamics at intraseasonal time scales. The two representative studies cited above are only

focused on the axial mountain torque TM3. The two components of the EMT have received
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less attention, with Feldstein (2006) analyzing their relation with the changes in the equa-

torial components of the Atmospheric Angular Momentum, and Egger and Hoinka (2008)

investigating the regional circulation patterns associated to the equatorial torques produced

by the TP.

On top of these issues, the axial mountain torque can be used to measure the dynamical

influence of the mountains on the weather and on the climate. It is in this context that

Lott et al. (2004) found that TM3 produces changes in the Arctic Oscillation at periodicities

below 30 days. Their results, based on diagnostics from the NCEP-NCAR reanalysis, have

been confirmed using a GCM (Lott et al. 2005), and explained by a simple comprehensive

model (Lott and d’Andrea 2005).

Following these lines of work, the purpose of this paper is to show that the temporal

evolution of the two components of the EMT is related to the dynamical forcing of the cold

surges by the major midlatitude mountain ranges. An emphasis will be given to the TP

and to the east-asian cold surges but the case of the Rockies and the Andes will also be

discussed. To establish the link between the EMT and the cold surges, we will use two

pieces of independent evidence. The first is based on a statistical analysis of the NCEP

reanalysis data, where the two components of the EMT are evaluated globally and for each

major mountain range separately. The temporal evolution of the surface patterns of pressure

and temperature associated to the two EMT components are then analyzed and compared

to those occurring during cold surges. The second is based on a analytical model that gives a

comprehensive explanation for the relationship between the EMT components and the cold

surges. This model is purely dynamical and only retains two essential features of the cold

surge dynamics : the cold surges are related to low level cold advection from the midlatitudes
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to the tropics, and they are preceeded by high pressure anomalies poleward of the mountain

massif. Because of its simplicity, this model is only used to show that mountain forcings

yielding to EMTs with amplitudes comparable with those observed, are largely sufficient to

trigger the initial phase of cold surges.

The plan of the paper is as follows. Section 2 presents the statistical analysis. From the

NCEP-NCAR reanalysis, we evaluate the two components of the EMT globally and for each

major mountain range. For the Rockies, the Andes and the TP, we then perform a composite

analysis of the surface fields keyed to the EMT. Section 3 presents the theoretical model and

our interpretation for the relation between the mountain forcing and the EMTs. Section 4

uses the model results to interpret the observational results of section 2. Section 5 summa-

rizes and discusses the significance of our results for (i) the cold surges preconditionning,

(ii) the Equatorial Atmospheric Angular Momentum Budget, and (iii) the representation of

mountains in GCMs.

2. Statistical analysis

Our data are taken from the NCEP-NCAR reanalysis (Kalnay et al. 1996) products for

the 1979-2007 period. Specifically, we use the surface pressure, PS, the .995 sigma level

temperature, T50m, and the surface elevation, h. We will also use the tridimensional fields

of zonal wind u and temperature T . To focus on the subseasonal variability, we will remove

the annual cycle when needed. This is done by subtracting the daily climatology obtained

by averaging over the 29 years of our data set. When used, those subseasonal data will be

identified by a tilde symbol, for instance the subseasonal surface pressure will be written P̃s.
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a. Spectral analysis of the Equatorial Mountain Torques

The two components of the global subseasonal EMT acting on the atmosphere are com-

puted following Feldstein (2006):

T̃M1(t) = −a2

∫∫

φ,λ

h(λ, φ)

(
− sin λ cos φ

∂P̃s

∂φ
+ cos λ sin φ

∂P̃s

∂λ

)
dφ dλ, (1a)

T̃M2(t) = −a2

∫∫

φ,λ

h(λ, φ)

(
cos λ cos φ

∂P̃s

∂φ
+ sin λ sin φ

∂P̃s

∂λ

)
dφ dλ, (1b)

where a, φ, and λ are the Earth radius, the latitude, and the longitude respectively. In (1),

T̃M1 is the component of the EMT along the equatorial axis which is at 0◦ longitude (the

Greenwich axis) and T̃M2 is the component along the equatorial axis at 90◦E. Following Egger

and Hoinka (2000), we will express all the torques in Hadley (Ha), with 1 Ha = 1018 kg m2 s−2.

The individual contributions of the major mountain ranges (here the TP, the Rockies,

the Andes, Antarctica and Greenland) to the EMT can be computed by restricting the

integrations in (1) to sectors including the considered mountain range and which are given

in Table (1). Nevertheless, to compare the dynamics associated with the EMT produced

by these mountains, the fact that they are located at different places has to be taken into

account. For instance, the fact that a northward force applied to the atmosphere around

the central location of the TP will mainly result in a positive T̃M1 (and a small T̃M2) is due

fact that the TP is centered around the latitude 90◦E (Table (1)). In the following we will

note this latitude λTP , and note λX and φX the longitude and the latitude of the center of

mass of the mountain massif X (with X =TP, R, Ad, At, and G for the TP, the Rockies,

the Andes, Antarctica, and Greenland respectively). More precisely, they are the longitude
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and latitude of the vector

rX =

∫ λ2X

λ1X

∫ φ2X

φ1X

h(λ, φ)r(λ, φ) cos φ dφ dλ
∫ λ2x

λ1x

∫ φ2x

φ1x
h(λ, φ) cos φ dφ dλ

(2)

where r(λ, φ) = a (cos λ cos φ, sin λ cos φ, sin φ), and where λ1X , λ2X , φ1X , and φ2X are the

limits given in Table (1), where are also given the λXs and the φXs resulting from (2).

To make the results for different mountains comparable, the local equatorial torques for

a mountain range X will be computed along equatorial axes that are rotated by λX − π/2,

which means that the second equatorial axis is now at the longitude λX of the mountain

considered. As said before this rotation is not needed for the TP, and is not adapted

for Antarctica, which covers all the longitudes. In the following, the subseasonal regional

contributions to the EMTs expressed in these rotated axis will be noted (T̃X1; T̃X2) where

X is the name of the corresponding mountain massif. As an illustration, T̃X1 = 0 and

T̃X2 > 0 means that the contribution of the massif X to the EMT vector is oriented along

the longitude λX . The variance of each of the contributions is given in Tab. 2, indicating

that, while Antarctica is the strongest single contributor, the midlatitude massifs can have

a significant impact at least during the northern hemisphere winter.

To characterize the coherence and phase relationship between the two components of

the global EMT, we next perform a conventional cross-spectral analysis between the corre-

sponding series (Fig. 2, see caption for details on the method). The cospectrum between

T̃M1 and T̃M2 in Fig. 2a shows that the two torques are significantly related with each other

for periodicities between 2 and 20 days, a spectral domain that contains most of the variance

of T̃M1 and T̃M2 (see Fig. 2cd). The phase in Fig. 2b of nearly π
2

shows that T̃M1 and T̃M2

are close to being in quadrature, with the EMT vector rotating westward.
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The same analysis applied to the rotated EMTs associated with the individual mountains

(Fig. 3) shows that for the Andes, the Rockies, the TP and Antarctica, T̃X1 and T̃X2 are

close to being in quadrature as well (Fig. 3), which means that the regional EMT vectors

also rotate westward. These results are consistent with those in Egger and Hoinka (2008)

who considered the TP only and used lagged correlations rather than a spectral analysis.

The fact that all the regional EMT vectors (except Greenland, not shown) rotate west-

ward like the global EMT indicates that the global behavior of the EMT is in part the result

of regional circulations, the global EMT vector being the sum of all the regional contribu-

tions.

b. Regional circulation patterns

One of the central points we wish to make is that when a high pressure anomaly is located

poleward of a given mountain massif X (X=TP, R or Ad) in the northern (resp. southern)

midlatitudes, it gives rise to a positive (resp. negative) mountain torque T̃X1, and that this

mountain torque in part controls the future evolution of the flow, triggering a cold surge and

a negative (resp. positive) T̃X2. To support this picture observationally, composites will be

built for the surface fields keyed to the positive peaks of T̃TP1 and T̃R1, and to the negative

peaks of T̃Ad1.

In the following, the time lags are expressed in days relative to the peaks in T̃X1: D0 is

the day when T̃X1 peaks, D-2 is two days before, and D+2 is two days after. For instance, in

the case of the TP at D0, the composite is the average of the values found for the days when

T̃TP1 exceeds a given positive threshold. The threshold is chosen in order that 20 positive
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peaks in T̃TP1 are selected, and we impose a 20 days gap between the dates selected. This

last restriction, which ensures a statistical independence between the dates selected, allows

to use a Student t-test to evaluate the confidence levels. At D+l (resp. D-l), the composite

is built with the values corresponding to the dates situated at the lag l days after (resp.

before) the 20 positive peaks identified above.

Figure 4 shows the composites of T̃X2 keyed to T̃X1 for the TP, the Rockies and the

Andes. In it, we see that for these three massifs, the peaks in T̃X1 are followed by peaks

the opposite sign in T̃X2. Note that a less significant signal in T̃X2 of the same sign as T̃X1

tends to precede. This result is consistent with the cross-spectral analysis in Fig. 3a-c with

T̃X1 and T̃X2 in quadrature, but provides the additional information that the signal in T̃X2 is

larger after than before the peaks in T̃X1. This is a first indicator that T̃X1 contributes to the

establishment of T̃X2 at a later stage. From a more global viewpoint we have also analysed

the composites of the global EMT to the regional ones. In agreement with the results in

Tab. 2 we found that the peaks in the EMTs due to the Rockies and the TP are related to

significant signal on both components of the global EMT.

1) Tibetan Plateau

The composites of P̃S and T̃50m keyed on the maxima of T̃TP1 in Fig. 5 show that the

anomalies of T̃TP1 and T̃TP2 are linked to the clockwise movement of cold temperature and

high pressure anomalies around the TP, from Siberia to eastern China. This movement begins

at D-2 (Fig. 5ab) with the formation of high pressure and low temperature anomalies centered

in western Siberia, later strengthening and moving to central Siberia at D0 (Fig. 5cd). These
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anomalies are strong (16 hPa and 10 K) and largely significant. The strong anomaly of surface

pressure north of the TP at D0 corresponds to the situation presented in Fig. 1a and explains

the peak of T̃TP1 at that time (Fig. 4a).

At D+2, the surface pressure and surface temperature anomalies have shifted to eastern

China (Fig. 5ef). At this time, the pressure gradient across the TP is mostly in the zonal

direction, corresponding to the schematic picture in Fig. 1b, and this induces a negative T̃TP2

(Fig. 4a). The surface pressure and surface temperature patterns at that time (Fig. 5ef) are

strongly reminiscent of the east-asian cold surges (see Fig. 7 of Zhang et al. (1997)). Finally,

at D+4, the anomaly in surface pressure weakens and moves towards the South China Sea.

The anomaly in surface temperature remains strong (7 K in southeastern China) and moves

to the tropics (up to 4 K in the northern part of the South China sea), as occurs at the end

of the life cycle of a cold surge (Zhang et al. (1997)). It is worth noting that the anomalies

that are associated to peaks in T̃TP1 begin their life cycle in the Siberian midlatitudes and

finish it 4 to 6 days later in tropical East-Asia.

2) Rockies

The composites of P̃S and T̃50m keyed on the maxima of T̃R1 are shown on Fig. 6. These

composites are quite similar to those for the TP in Fig. 5: anomalies of high P̃S and low T̃50m

are located over Alaska and the Arctic ocean at D-2 (Fig. 6ab), and move to the Canadian

plains at D0 (Fig. 6cd), being very strong at this time (22 hPa and 12 K at D0). At D+2

(Fig. 6ef), they stretch southeastward along the eastern flank of the Rockies, covering the

Gulf of Mexico and a part of central America. The anomalies displayed at that time are very
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similar to the structure of the North-american cold surges, with cold air masses traveling

southward from Canada to the Gulf of Mexico (Colle and Mass (1995)) and occasionally

reaching the Eastern Pacific across Central America (Schultz et al. (1997))). At D+4 and

after, the composites lose significance more rapidly than in the case of the TP (not shown).

The shift of the high pressure anomaly from the northwestern slopes of the Rockies to their

eastern slopes between D-2 and D+2 explains that T̃R2 shifts from positive to negative values

during this period (Fig. 4b).

3) Andes

The composites of P̃S and T̃50m keyed on the minima of T̃Ad1 are in Fig. 7. At D-2

(Fig. 7a), a high pressure system is arriving from the Pacific to the southern tip of the Andes.

At D0 in Fig. 7cd, this anticyclone begins to interact substantially with the Andes, with a

strong ridge building up along the eastern flank of the mountains. This ridge is associated

with a cold anomaly extending meridionally from 50◦S to 20◦S along the eastern flank of the

Andes. At D+2 the signal on the eastern flank of the Andes becomes even more pronounced

(reaching 10 hPa and -10 K around 25◦S). These strong anomalies at subtropical latitudes are

quite remarkable and correspond to the ones generated by the south-american cold surges

(Seluchi and Nery (1992); Marengo et al. (1997); Garreaud (2000)), suggesting that negative

events on T̃Ad1 are an important factor in the generation of these events. Similarly to what

happens in the case of the TP (Fig. 5), the low temperature and high surface pressure

anomaly have moved further into the tropics at D+4 (Fig. 7g), being significant as far

north as 5◦N. The evolution of the surface pressure patterns explains the evolution of the
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composite T̃Ad2 as shown in Fig. 4c: T̃Ad2 has a negative peak at D-2 when the high pressure

arrives from the Pacific ocean and reaches the western slopes of the Andes (Fig.7a), then

T̃Ad2 has a positive tendency at D0 due to the ridge formation along the eastern mountain

slopes (Fig. 7c), and reaches strong positive values at D+1 and D+2 when the ridge further

strengthens and moves northward along the mountain (Fig. 7e).

3. Theoretical model

a. basic equations

To interpret the temporal evolution of the EMT vector and its relation with the surface

fields discussed in section 2, we will next use a linear model based on the quasi-geostrophic f -

plane approximation of the anelastic Equations on the sphere. In this model, we will impose

a background zonal geostrophic wind ug(φ, z) in thermal wind balance with a background

potential temperature θ(φ, z),

fugz =
g

aθ0

θφ (3)

with the Coriolis parameter f = 2Ω sin φr, where φr is a constant reference latitude. Still

in (3), θ0(z) is a background potential temperature corresponding to the atmosphere at rest.
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In this linear framework, the equations for the disturbance produced by the mountain are

(
∂

∂t
+

ug

a cos φ

∂

∂λ

)
u′

g +
(ug cos φ)φ

a cos φ
v′

g − fv′ = −
1

a cos φ

∂Φ′

∂λ
(4a)

(
∂

∂t
+

ug

a cos φ

∂

∂λ

)
v′

g + 2
ugu

′

g

a
tan φ + fu′ = −

1

a

∂Φ′

∂φ
+

F ′

ρr

δ(z) (4b)

∂Φ′

∂z
− g

θ′

θ0

= 0 (4c)

ρ0

a cos φ

(
∂u′

∂λ
+

∂v′ cos φ

∂φ

)
+

∂ρ0w
′

∂z
= 0 (4d)

(
∂

∂t
+

ug

a cos φ

∂

∂λ

)
θ′ +

θφ

a
v′

g +
dθ0

dz
w′ = Q′(λ, φ)

θ0z

ρ0

, (4e)

and the linear lower boundary condition writes

w′(z = 0) =
ug

a cos φ

∂h

∂λ
. (5)

In (4)-(5), the prime variables are for the disturbance fields produced by the mountain,

ρ0(z) is a background density profile, ρr = ρ0(0), ug and vg are the two components of the

geostrophic wind,

ug = −
1

af

∂Φ

∂φ
, vg =

1

af cos φ

∂Φ

∂λ
, (6)

u, v, and w are the three components of the wind, and θ is the potential Temperature.

Two unconventional terms are introduced in (4b) and (4e). The first is the lateral force

F ′δ(z)/ρr, where δ(z) is the Dirac distribution. It will only be used in a formal way, in order

to clarify the relation between the mountain forces applied to the atmosphere and the more

conventional boundary condition in (5). In (4e) the diabatic term Q′(λ, φ)θ0z/ρ0 will be used

to represent more realistically the interaction between the low-level wind and the mountain

(see section 3).
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b. Model description

To analyze the response in our model, we will first follow Bretherton (1966), and assume

that (4a)-(4e), which are written for z ≥ 0, are valid for all z once multiplied by the Heaviside

function H(z). Hence, if we derive a PV budget from 4a-4e, we obtain the PV equation:

[(
∂

∂t
+

ug

a cos φ

∂

∂λ

)
q′g +

v′

g

a
qgφ

]
H(z) (7a)

+

[(
∂

∂t
+

ug

a cos φ

∂

∂λ

)
f

Φ′

z

N2
−

f 2ugz

N2
v′

g + fw′
−

F ′

λ

ρra cos φ
−

fQ′

2θ0z

]
δ(z) = 0. (7b)

where we have used that δ(z) = Hz(z). In (7a) the inflow QG-PV is given by:

qg =
vgλ − (ug cos φ)φ

a cos φ
+

f

ρ0

(
ρ0Φz

N2

)

z

. (8)

To represent a high surface pressure anomaly poleward of (λr, φr) we impose a negative

background low level wind ug(φr, z = 0) < 0. To represent the subtropic to pole negative

temperature gradient, we will consider that the background wind has a positive vertical wind

shear characterized by the constant Λ > 0:

ug(φ, z) = (ur + Λz) cos φ (9)

where ur < 0 is a constant and where the cos φ dependence is introduced because it simplifies

considerably the lower boundary condition (7b). The zonal wind in (9) has a mean QG-PV

qg = −
(ug cos φ)φ

a cos φ
+

f(ρ0Φz)z

N2ρ0

=

(
2
ur + Λz

a
+

af 2Λ

N2H

)
sin φ. (10)

which varies in the meridional direction. Nevertheless, its meridional gradient qgφ/a com-

pares in amplitude with the planetary PV gradient. As the planetary PV gradient is not

taken into account in the f -plane approximation we make, we will consistently neglect the

influence of qgφ on the evolution of the disturbances.
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With this approximation, the disturbance inflow PV q′g stays null if it is null at t = 0

(see Eq. 7a), yielding to

∆Φ′ +
f 2

ρ0

(
ρ0Φ

′

z

N2

)

z

= 0 (11)

where ∆ = 1
a2 cos φ

∂
∂φ

cos φ ∂
∂φ

+ 1
a2 cos2 φ

∂2

∂λ2 . Using the kinematic boundary condition (5), the

lower boundary condition (7b) becomes,

(
∂t +

ur

a
∂λ

)
Φ′

z −
Λ

a

∂Φ′

∂λ
= −

N2ur

a

∂h

∂λ
, (12)

where we have set the unconventional terms F ′ = Q′ = 0. The solutions to (11)-(12) can be

computed using the spherical harmonic functions Y m
l (λ, φ), where ∆Y m

l = −
l(l+1)

a2 Y m
l and

∂λY
m
l = imY m

l . In this formalism, we can project Φ′ and h on the Y m
l ’s: Φ′ writes

Φ′(λ, φ, z, t) =
L∑

l=1

+l∑

m=−l

Φm
l (t)e−klz Y m

l (λ, φ) (13a)

h(λ, φ) =
L∑

l=1

+l∑

m=−l

hm
l (t) Y m

l (λ, φ) (13b)

where L is the truncation, and where

kl =

(
1

4H2
+

N2

f 2

l(l + 1)

a2

) 1

2

−
1

2H
> 0. (14)

The exponential term in (13a) ensures that the disturbance has 0-PV and vanishes in z = ∞.

If we take as initial condition that the flow at t = 0 is undisturbed (Φm
l = 0 at t = 0) then

a solution that satisfies the linear boundary condition in (12) is:

Φm
l (t) =

1 − exp
(
− imur

akl

(
kl + Λ

ur

)
t
)

kl + Λ
ur

N2hm
l . (15)
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c. Equatorial Mountain Torques in the model

We can calculate two different contributions to the equatorial torques from our model.

The first is the one associated with the background surface pressure gradient,

fug(0) = −
1

a

∂Φs

∂φ
= −

1

ρr

1

a

∂P s

∂φ
, (16)

and that is present at the initial time in our model. If we take P s for the pressure in the

Equatorial torques in (1a) and (1b) we obtain at t = 0:

T̂X1 = − a3fρr

∫∫
sin λ cos φug(φ)h(λ, φ)dλdφ ≈ −afρrug(φr)V > 0(NH) (17a)

T̂X2 = a3fρr

∫∫
cos λ cos φug(φ)h(λ, φ)dλdφ ≈ 0, (17b)

where the hat symbol is to indicate that these torques are issued from the model. For each

mountain, they are expressed in the rotated axis system used to define the regional torques

in section 2. The approximate values to the right of (17a)-(17b), where V is the mountain

volume, are given to indicate that at t = 0 the EMT is essentially along the first rotated

equatorial axis, simply because sin λ ≈ 1 and cos λ ≈ 0 where the mountain is located and

according to the rotated axes. The sign for T̂X1 is related to the fact that ur < 0 and to the

sign of the Coriolis parameter so it is positive in the Northern Hemisphere and negative in

the Southern Hemisphere.

In this paper we argue that those torques measure the dynamical forcing of the mountain

on the flow. This assumption is not so obvious at this stage, since the evaluation of the torque

in (1) is just a diagnostic where a given surface pressure field is placed in given integrals. To

illustrate how this torque impacts the future evolution of the flow, it is worth noting that
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the model equations (7a)-(7b) remain unchanged if we impose

w′(z = 0) = 0, F ′ = −ρrfug(φ, z = 0)h, (18)

rather than F ′ = 0 and w′ given by (5), as was done before. Note also that the stress F ′ in

(18) corresponds to the lift force associated with vortex compression by mountains in Smith

(1979), which was introduced in a GCM by Lott (1999) to reduce its systematic errors.

To translate this stress F ′ into a torque, we form the cross product between the position

vector r and the momentum Eqs. (4a)–(4b) and integrate over all the atmosphere. When

doing so, the EMT vector due to the surface stress F ′ is:

TF = a3

∫ ∫

λ,φ

F ′(cosφ sinλ,− cos φ cos λ)dφdλ. (19)

If we use F ′ from (18), the torque in (19) is exactly equal to the initial torque in (1),

providing that ∂P S/∂φ = −afρrug(φ, z = 0). As F ′ is now (i) the only forcing in the model,

(ii) purely dynamical, and (iii) builds up a global torque exactly equal to the equatorial

mountain torques, it is now justified to say that the equatorial mountain torque measures

the dynamical forcing of the flow by the mountain.

The mountain torque predicted by the model and using the torque expressions (1a)-(1b)

evolves simply because the surface pressure field ρrΦ(z = 0) is not constant. Nevertheless,

the evolution of the torque in this case is purely diagnostic because the disturbance signal

does not interact in return with the orography (the model is linear). It means that this

model can explain how an initial torque along the first axis T̂X1 produces a torque along the

second axis T̂X2 at a later stage, but it can not tell how this second torque can affect T̂X1 in

return. Hence, we will always present T̂X1(t = 0) resulting from the background flow only,
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and T̂X2(t = 1 day). Note that T̂X2(t = 1 day) is essentially due to the disturbance field since

the contribution of the background flow to it is small (see (17b)).

4. Model results and comparison with the composites

a. Experimental setup

With the model described above, we analyzed the cases of the Tibetan Plateau, the

Rockies, and the Andes. In latitude, we will center our model at a latitude φr that is in

between the midlatitudes and the subtropics, with φr = +30◦N for the TP and the Rockies

and φr = −30◦S for the Andes. We will also assume that the atmosphere at rest is isothermal

(T0(z) = Tr = 285 K), which results in a mean density ρ0(z) = ρr exp(−z/H) where H =

RTr/g = 8340 m and ρr = 1.24 kg m−3, and a mean potential temperature θ0(z) = Tre
2z/7H .

From these parameters, it follows that the Brünt Väisälä frequency N = 1.83 ·10−2 s−1. This

value is quite large compared to standard tropospheric values, but we have found that in our

composites the characteristic values for N are around N = 1.5 · 10−2 s−1 between the surface

and 500 hPa (not shown). This value is not too far from the isothermal value considered in

the model.

To define the topography, we use the NCEP/NCAR topography filtered at the truncation

T21 and multiplied by a smooth plateau function (see details in the caption of Fig. 8). This

smoothing is consistent with the fact that the composite patterns in Figs. 5-6-7 are dominated

by large horizontal scales, with wavelengths around or larger than 20◦ in longitude or latitude.

To be consistent, we also verified that the EMT series are not much affected by this filtering
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(see Table (3)).

The background flow parameters ur and Λ in (9), are adjusted to the prevailing wind

conditions found in the composites along the eastern flank of the massif analyzed. The values

of the wind are taken from the eastern flanks because the cold surges develop there. Note

that the composites for the zonal wind used for this purpose include the annual cycle.

b. Evolution of the surface fields and equatorial torques

For the TP, the low level wind constant in (9) has been set to ur = −4 m s−1, which gives

a low-level background wind at 30◦N ug(φr, z = 0) = −3.46 m s−1. This value is coherent

with the composite low-level zonal wind velocities at 30◦N along the Eastern flank of the TP

shown in Fig. 9. Still according to Fig. 9, we take for the shear parameter Λ = 5.2 10−3 s−1,

so the background zonal wind in the model is around 58 m s−1 at 200 hPa and 30◦N. Note

also that with the orography in Fig. 8b, the low level wind value ur = −4 m s−1 yields to a an

equatorial mountain torque T̂TP1 = 63 Ha in the theoretical model (17a), that compares with

the peak composite value of T̃TP1 in Fig. 4a (72 Ha). A similar tuning of the flow parameters

using the composites for the Rockies and the Andes in Figs. 9bc leads to ur = −5 m s−1 for

both and Λ = 3.3 ∗ 10−3 s−1 for the Rockies and Λ = 3.1 ∗ 10−3 s−1 for the Andes. From

these setups it follows that T̂R1 = 29 Ha and T̂Ad1 = −12 Ha, again values that compare

reasonably well with those in the composites at D0 and which are around 37 Ha and −16 Ha

respectively (Table (4))

Figure 10 shows the disturbance surface pressure and surface temperature in the theo-

retical model after 1 day of integration for the TP. The choice of this 1-day interval here and
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for the other mountains is motivated by the fact that in the composites, the anomalies on

the eastern flanks of the mountains develop on such a time scale (Figs. 4a-c). On the eastern

flank of the TP, the model predicts a rise in surface pressure of about 7 hPa and a drop in

surface temperature of about 7 K (Fig. 10) both centered around (105 − 110◦E, 30 − 35◦N)

and that are reminiscent of the structure obtained in the composite at lag D+2 in Figs. 5ef.

However, to the west of the longitude λ = 95◦E, the linear model predicts a drop in surface

pressure and a rise in surface temperature which are absent from the composites.

For the Rockies and the Andes the results from the model have the same level of realism

when compared to their corresponding composites (not shown): the model predicts a real-

istic large scale pressure increase and a large scale temperature decrease to the east of the

mountains, as well as changes of the opposite sign to the west of the mountains.

From the surface pressure pattern in Fig. 10, and coming back for instance to the

schematic picture in Fig. 1, it is clear that the interaction between the TP and the flow

at that time yields to a negative torque along the second equatorial axis. If we evaluate it

from the model by using (1b) we find that T̂TP2(t = 1 day) = −32 Ha, and is largely superior

in amplitude when compared to the fastest change in T̃TP2 that occurs in one day in the

composite (∆T̃TP2 = T̃TP2(D + 1) − T̃TP2(D0) = −12 Ha in Fig. 4). For the Andes and the

Rockies, the discrepancy is not as pronounced (see Table 4), providing that we take into

account that in these two regions the cold surges have started to develop around D-1. This

is clearly apparent for the composite of surface Temperature at D0 in Figs. 6d and 7d. As

a result, and for these two massifs, the largest 1-day change in T̃2X is between D-1 and D0

(see Fig. 4). For the Rockies the model predicts a torque T̂R2 = −19.8 Ha that corresponds

to ∆T̃R2 = T̃R2(D0) − T̃R2(D − 1) = −19.7 Ha. For the Andes, as for the TP, the torque is
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overestimated: T̂Ad2 = 11.6 Ha whereas ∆T̃Ad2 = T̃Ad2(D0) − T̃Ad2(D − 1) = 8.7 Ha.

c. Results with a modified lower boundary condition

The unrealistic surface responses that occur in the model to the west of the massifs

considered are due to the linear boundary condition in (12), to the positive mountain slope

∂λh west of the mountain crests, and to the zonally uniform low level wind ug(z = 0). In

reality however, the region west of the crests of the mountains corresponds either to very

high altitudes, where the surface wind is essentially positive according to the zonal wind

composite in Fig. 9, or to more moderate altitudes where the zonal wind composite is almost

null near the ground (see again Fig. 9). These effects can be accounted for by using the

lower boundary condition in (7b), with w′ = 0 and F ′ as in (18), but taking Q′ such that

(7b) becomes

(
∂t +

ur

a
∂λ

)
Φ′

z −
Λ

a

∂Φ′

∂λ
= −

N2ur

a
Min

(
∂h

∂λ
, 0

)
. (20)

This correction annihilates the forcing when the slopes are positive, but does not modify

the torque T̂X1(t = 0) since F ′ is not changed and since Q′ does not enter into the momen-

tum equation. This term counteracts the fact that the linear boundary condition (12) is

unrealistic over the western slopes of the mountains (Fig. 10). From now on, the boundary

condition (20) will be called modified boundary condition.

For the TP, the surface patterns obtained in this case (Fig. 11ab) are much closer to the

composites, essentially because the model response is now almost null to the west of 95◦E.

To make the comparison between the model at day 1 and the evolution in the composites

even more precise, Fig. 11cd shows the difference in the composite fields between D+1 and
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D0. This comparison shows that the rise in surface pressure of about 10 hPa and the drop

in surface temperature of about 6 K predicted by the model (Fig. 11ab) corresponds quite

well to the variations during the first day in the composite, which are around 9 hPa and

7 K respectively (Fig. 11cd). Note that in the composite, the maximum in surface pressure

and the minimum in surface temperature are slightly to the west and to the south of the

ones predicted by the model. However, the extension of the surface temperature signal as

predicted by the model corresponds quite well with the composite.

Another interesting property of the model is that it predicts a dome of cold air trapped

in the lower half of the troposphere over the eastern slopes of the mountains (Fig. 12a). This

vertical structure is also found in the zonal vertical section from the composite in Fig. 12b.

In this sense the model reproduces the well-known vertical structure of the temperature

signals associated to the cold surges (e.g. Garreaud 2001, and refs. therein).

For the Rockies, Fig. 13 shows that the model has some skill in reproducing the initial

development of the cold surges as observed in the composites. It predicts a temperature drop

of 6 K (Fig. 13b) that only slightly exceeds the largest 1-day tendency from the composites

in Fig. 13d. The prediction of the location of the temperature signal is also quite good, and

the model predicts a rise of 8 hPa in the surface pressure (Fig. 13a), which compares with

the value observed in the composite (9 hPa, see Fig. 13c). Accordingly, the signal on the

second EMT component (T̂R2(t = 1 day) = −14.9 Ha) compares well with the largest 1-day

T̃R2 tendency in the composite (∆T̃R2 = −19.7 Ha, see also Fig. 4b and Table (4)).

For the Andes, the model predicts a 1-day temperature drop up to 5 K in one day east

of the Andes (Fig. 14b), which is also the value given by the composite in Fig. 14d, the

location of this temperature anomaly being well reproduced. For the surface pressure, the
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model (Fig. 14a) only captures a part of the signal observed in the corresponding compos-

ite (Fig. 14c), namely the part of the signal which is confined to the eastern flank of the

mountains. There, the surface pressure increase in the model is near 10 hPa (Fig. 14a),

whereas it is 8 hPa in the composite (Fig. 14c). These last correspondences explain that

the second EMT signal from the model (T̂Ad2(1d) = 7.3 Ha) compares well with the largest

1-day tendency in the composites (∆T̃Ad2 = 8.7 Ha, see also Fig. 4c and Table (4)). The

vertical structure of the cold dome from the model (not shown) is also similar to Fig. 7

from Garreaud (2000), which shows the meridional and vertical extension of the cold domes

associated to the south-american cold surges.

5. Summary and discussion

The two components of the EMT associated with three major mountain massifs (the TP,

the Rockies and the Andes) have been analyzed in the NCEP reanalysis data. When the first

equatorial axis is placed at 90 degrees to the west of the massif and the second equatorial

axis at the longitude of the center of mass of the massif, the strong signals on T̃X1 are

followed one or two days later by strong signals of the opposite sign on T̃X2 (Figs. 3 and 4).

These regional contributions partly explain why the two equatorial components of the global

mountain torque rotate westward in the equatorial plane (Fig. 2). Their contributions can

add up constructively to the contribution of Antarctica, which is the major single contributor

to the global equatorial torque, and whose equatorial torque also rotates westward (Fig. 3d).

Returning to the TP and the Rockies, the composites of the surface pressure fields in

Figs. 5 and 6 respectively show that a positive signal in T̃X1 is in general associated with
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anomalies in surface pressure located poleward of the massif considered. As time evolves,

these anomalies shift along the eastern flank of the massif considered which explains the

negative signal on T̃X2. This characteristic evolution of the surface pressure also occurs

around the Andes (Fig. 7), provided the sign of the equatorial torques is inverted (due to the

fact that the Andes are located in the southern hemisphere). Interestingly the evolution of

the surface temperature and surface pressure east of these three massifs is very pronounced,

and strongly reminiscent of what occurs during the cold surges that severely affect the

weather to their eastern side.

From these observational results, we make two hypotheses: (i) the equatorial mountain

torques measure the dynamical forcing of the cold surges by the mountains, and (ii) this

dynamical forcing is a substantial driver of the cold surges.

To support these two hypotheses, we develop a mechanistic model for the cold surges

that only contains the basic ingredients needed to explain the above observations. For this

purpose, we follow Smith (1984) and adapt the quasi-geostrophic f -plane Eady (1949) model

for baroclinic flow by introducing a mountain forcing via a free-slip lower boundary condition,

and by formulating this model on a sphere. It is then shown that, in this framework, the

free-slip boundary condition is locally strictly equivalent to a lateral force (that is a force

which is perpendicular to the surface wind), and that the amplitude of this lateral force,

given in (18), is consistent with the mountain “lift” forces given in Smith (1979). When the

low-level background flow is easterly, this lift force results in a positive mountain torque T̂X1

(in the northern hemisphere) which is comparable to the one observed.

If we impose that at t = 0 the disturbance field is null in this model, high pressure

and low temperature anomalies develop in one day along the eastern flank of the massif.
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When the low level wind and the upper level shear correspond to the values observed at D0

in the composites keyed on the peaks in T̃X1, the 1-day tendencies of the model responses

in pressure and temperature are compatible to the ones observed in the composites of the

reanalysis data immediately after the peaks in T̃X1. Note that from the surface pressure

anomalies predicted by this mechanistic model we can evaluate a tendency on the torque

along the second axis T̂X2, which is also comparable in amplitude with the one observed. As

many other theoretical models for orographic flows (e.g. that of Smith (1984) for instance)

our model simplifies considerably the basic setup and initial conditions. It is used here mainly

to show that mountain forces translating in EMTs that are about the amplitude found in

reality are strong enough to initiate cold surges in less than few days. A more realistic

treatment of the synoptic systems that yields to the peaks in T̃X1 (i.e. the initial condition

in the model) would certainly improve our dynamical understanding of the life-cycle of the

cold surges.

As our results suggest that the existence of poleward forces imposed by the mountain

yields to cold surges in a linear baroclinic context, it needs to be put in perspective with

the other explanations for the cold surges that have been proposed in the past. In many

aspects they actually complement them. Some theories attribute the clockwise displacement

of cold surges to topographic Rossby or Kelvin waves (e.g. Hsu 1987; Compo et al. 1999, and

refs. therein). Other theories attribute the equatorward propagation of the cold surges to

nonlinear processes, where the cold advection by the meridional wind is the main contributor.

This interpretation is in good part supported by model and diagnostic studies (e.g. Sumi

1983; Colle and Mass 1995; Garreaud 2000). All these theories for the cold surge propagation

request the presence of a preexisting inversion near or below the mountain top, and do not
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take into account the background flow.

However, Reason (1994) has suggested that linear mechanisms and the effect of the

background flow are important to provide a large scale preconditioning of the cold surges

at least over the Andes and TP. Our model, by taking into account the interaction of the

large scale background flow with the orography, follows this line of work. It explains how the

mountain forcing can trigger the initial development of a cold surge by building up rapidly

the dome of cold air in which low level orographically trapped sub-synoptic disturbances can

subsequently develop (Fig. 12a).

In the past studies about the equatorial AAM budget, it has been shown that the evolu-

tion of the EAAM is largely dominated by the equivalent barotropic planetary waves with

zonal wavenumber s = 1, and that the mountain torque has a rather small impact on these

waves (Egger and Hoinka (2002)). On the contrary the evolution of the mass term plays

an important role in the EAAM evolution associated with planetary barotropic waves. In

the present study, the focus is on much smaller spatial scales so we do not try to address

this problem. The model used is in fact not adapted to this purpose since it is based on the

anelastic approximation which filters out the equivalent barotropic waves, and which has an

AAM budget that does not contain mass terms (not shown). Another reason for not trying

to adress the response of the EAAM to the Equatorial Torques is that the EAAM budget

is not well closed in the reanalysis data. It is thus extremely difficult to establish where the

EAAM anomalies produced by regional EMTs are in fact redistributed. Our model results

are only indicative in this respect, the high surface pressure patterns eastward of the moun-

tains (and produced by a positive T̃M1) corresponding to large scale anticyclones which can

affect the two components of the Equatorial AAM.
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From a practical viewpoint, these results concerning the significance of mountain-induced

lateral (or lift) forces for the regional weather can be helpful to tell if a GCM represents

well the mountains. To do so, our results indicate that one should diagnose the equatorial

components of the mountain torque and not only its axial component (as it is done in Brown

(2004) or in Lott et al. (2005)).

In GCMs, there are essentially two ways to modify these lift forces. One is very efficient,

and consists in modifying the elevation of the explicit model orography (yielding for instance

to the envelope orography in Wallace et al. (1983)). However, this solution is not completely

satisfactory since it increases the number of places that are below the ground in models. An

alternative solution consists in parameterizing them as it was done here with our term F ′

in (18) but distributing it over a finite depth. This depth could be the depth of the valleys

in which we consider that the large-scale flow does not enter, to follow the arguments in

Wallace et al. (1983) (see also Eq. (5) in Lott (1999)). The fact that this term F ′ can be

significant for the synoptic weather in key regions of the climate system stresses its potential

significance for coupled climate models. To illustrate this importance, the study of Kitoh

(2004) is very instructive. It shows that in a state of the art coupled model, the simulation

of monsoon precipitations is very sensitive to the large-scale mountain elevation. To support

that these issues may well be important for the monsoon predictions, it is also important to

recall here that Mailler and Lott (2009) found that the signals on the Equatorial mountain

torques due to the TP are followed by increased winter monsoon precipitation.
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largely contain the massifs considered.
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T21 3% 3.4% 5.6% 6.1% 2.3% 3.8% 2.1% 4.3% 19% 25% 12% 23%

T10 41% 26% 62% 32% 40% 19.6% 24% 42% 92% 129% 44% 124%

Table 3. Percentage of error between the raw mountain torque series and the mountain
torque series evaluated after filtering the orography and the surface pressure at different
truncations. For all series the annual cycle has been subtracted. For the regional torques
the filtered orography is also tapered by the smooth plateau function described in section 4.a.
For a given mountain X, a given equatorial axis i, and a given truncation Tnn, the values

shown correspond to square of the error:
(
ǫTnn
Xi

)2
=< (T̃Xi − T̃Tnn

Xi )2 > / < T̃ 2
Xi > .
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Massif ur Λ T̂X1(t = 0) T̃X1(D0) T̂X2 T̂m
X2 ∆T̃X2

(m s−1) (10−3 s−1) (Ha) (Ha) (Ha) (Ha) (Ha)
Tibet −4. 5.2 63 72 −32.7 −24.9 −12.2

Rockies −5. 3.3 29 37 −19.8 −14.9 −19.7
Andes −5. 3.1 −12 −16 11.6 7.3 8.7

Table 4. Parameters ur and Λ used for the model simulations (see (9)), resulting values

of T̂X1(t = 0) compared to T̃X1(D0), value of T̂X2(t = 1 day) simulated with the complete
boundary condition (column T̂X2), and with the modified boundary condition (20) (column

T̂m
X2, compared to ∆T̃X2 from the composites (Fig. 4a-c)
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TM1 > 0 TM2 < 0

Fig. 1. Schematic pictures of NH midlatitude and subtropical anomalies in surface pressure
yielding to anomalous equatorial torques. This schematic figure is for the Himalayas, and
the surface pressure anomalies are representative of two successive stages in the life cycle of
an east-asian cold surge.
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Fig. 2. Spectral analysis of T̃M1 and T̃M2. (a) coherency between T̃M1 and T̃M2; (b) phase

difference between T̃M1 and T̃M2; (c) spectrum of T̃M1; (d) spectrum of T̃M2. The spectra
and the cross-spectrum are deduced from the two periodograms and the cross periodogram
of the series, each of them being smoothed by a 80-point 10% cos window. In the frequency
domain this yields a resolution of 8 · 10−2cycles/d. The mean level (gray solid) and the
99% significance level (gray dashed) are evaluated by a Monte-Carlo procedure, which uses
an ensemble of 500 pairs of red noise series whose variances and lag-1 autocorrelations
correspond to those of T̃M1 and T̃M2.
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Fig. 3. Coherence and phase relationship between (a) T̃TP,1 and T̃TP,2; (b) T̃R,1 and T̃R,2;

(c) T̃Ad,1 and T̃Ad,2; and (d) T̃At,1 and T̃At,2. Same conventions and method as in Fig. 2
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Fig. 4. (a) composite time series of T̃TP1 (gray, solid) T̃TP2 (black, solid) keyed on the 20

strongest positive peaks of T̃TP1, and corresponding 99% significance levels; (b) same for

T̃R1 and T̃R2 keyed on T̃R1; and (c) composite time series of T̃Ad1 and T̃Ad2 keyed on the 20

strongest negative peaks of T̃Ad1
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Fig. 5. Composite of the surface pressure anomalies (a,c,e,g) and surface temperature

anomalies (b,d,f,h) for the 20 strongest positive peaks of T̃TP1, at lag D-2 (a,b), D0 (c,d),
D+2 (e,f) and D+4 (g,h); 99% confidence level (shaded). Contour interval is 2 hPa for the
surface pressures, 2 K for the surface temperatures. Zero-contours are omitted.
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Fig. 6. Same as Fig. 5 but keyed on the positive peaks of T̃R1
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Fig. 7. Same as Fig. 5 but keyed on the negative peaks of T̃Ad1
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(a) (b)

Fig. 8. (a)topography retained for the model run and (b)NCEP topography (meters above
sea level). The model topography is obtained by multiplying the T21-filtered NCEP topog-
raphy by α(λ)β(φ), where α(λ) (resp. β(φ)) is a function whose value is 1 in the interval
[λ1; λ2] (resp. [φ1; φ2]) corresponding to the longitude (resp. latitude) range in Table 1; 0
outside [λ1 − 15◦; λ2 + 15◦] (resp. [φ1 − 15◦; φ2 + 15◦]); and a smooth connection is ensured
by the use of an exponential taper ϕ(t) = exp(t2/(t2 − 1)).
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(a) (b) (c)

Fig. 9. (a)composite of the zonal wind at 30◦N keyed on the 20 strongest positive peaks of

T̃TP,1; (b) same as (a) but for the composite keyed on T̃R1; (c) composite of the zonal wind

at 30◦S keyed on the 20 strongest negative peaks of T̃Ad1. The contours are every 10 ms−1

for positive (westerly) winds, at -3 ms−1 and -5 ms−1 for negative (easterly) winds.
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(a) (b)

Fig. 10. (a) Sea level pressure tendency between time 0d and time +1d in the model
simulation for the Tibetan Plateau (contours every 1 hPa, zero-contour omitted); (b) Surface
potential temperature tendency between time 0d and time +1d in the model simulation for
the Tibetan Plateau (contours every 1 K, zero-contour omitted)
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(a) (b)

(c) (d)

Fig. 11. (a) and (b): same as Fig. 10 but with the modified boundary condition; (c)

tendency of P̃S between lag 0d and 1d in the composite keyed on the 20 strongest events
on T̃TP1 (contours every 1 hPa, zero-contour omitted); (d) tendency of T̃50m between lag

0d and 1d in the composite keyed on the 20 strongest events on T̃TP1 (contours every 1 K,
zero-contour omitted)
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(a) (b)

Fig. 12. (a) air temperature anomaly (K, thin contours) at 32.5◦N at time +1d in the model
simulation. The thick black line represents the model ground elevation. (b) composite of air
temperature anomaly (relative to the climatology) 1d after after the 20 strongest peaks in

T̃TP1

54



(a) (b)

(c) (d)

Fig. 13. Same as Fig. 11 but for the Rockies. The 1d differences in (c) and (d) are between
the composites at lag 0d and −1d
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(a) (b)

(c) (d)

Fig. 14. Same as Fig. 13 but for the Andes
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