Modèles simples de la Variabilité Climatique

François Lott

Cours 4: <u>Oscillations de basse fréquence dans</u> la troposphère aux latitudes tempérées

1 Observations

- 2 Le modèle simple de Charney et DeVore (1977)
- 3 Résolution numérique

Trajectoire caractéristique d'une dépression sur l'Atlantique Nord

Pression au niveau de la mer

2000 29 Decembre

2000 30 Decembre

2001 1er Janvier

2001 4 Janvier

2001 3 Janvier

4ÓW

80N

75N

70N

65N

60N

55N

50N

45N

40N

35N

30N

25N

20N

15N

10N -120W

100W

8ÓW

6ÓW

Exemple de la modification de la Trajectoire des dépressions sur l'Atlantique Nord

Pression au niveau de la mer

Exemple de la modification de la Trajectoire des dépressions sur l'Atlantique Nord

Statistiques de l'évolution du Géopotentiel à 700hPa

Mois d'hiver, 1958-1997, données NCEP

Analyse Spectrale des variations du Géopotentiel à 700hPa Données NCEP sans cycle annuel, 1958-1997 Evidence d'oscillations?

Cycle du moment Angulaire

Composites du géopotentiel à 700hPa sur les oscillatons du Pacifique Nord-Est à 15-40 jours

Approximation du plan β

Dérivée particulaire:

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \frac{u_{\lambda}}{a\cos\phi}\frac{\partial}{\partial\lambda} + \frac{u_{\phi}}{a}\frac{\partial}{\partial\phi} + w\frac{\partial}{\partial r}$$
$$\approx \frac{\partial}{\partial t} + u\frac{\partial}{\partial x} + v\frac{\partial}{\partial y} + w\frac{\partial}{\partial z}$$

Avec: $x = a \cos \phi_0 (\lambda - \lambda_0), y = a (\phi - \phi_0), \text{ et } z = r - a.$

Terme de Coriolis:

$$2\Omega \sin \phi \approx 2\Omega \sin \phi_0 + 2\Omega \cos \phi_0 (\phi - \phi_0)$$
$$\approx f_0 + \beta y$$

Continuité: (div $\vec{u} = 0$) $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$

Equations de la quantité de mouvement horizontale:

$$\frac{Du}{Dt} - (f_0 + \beta y) v = -\frac{1}{\rho_r} \frac{\partial p}{\partial x} + F_u$$
$$\frac{Dv}{Dt} + (f_0 + \beta y) u = -\frac{1}{\rho_r} \frac{\partial p}{\partial y} + F_v$$

Les termes de sphéricité $\tan \phi \frac{uv}{a}$ et $\tan \phi \frac{u^2}{a}$ sont aussi négligés.

Equilibre Hydrostatique: $p = P_0 + \rho_r g (\eta - z)$

Conditions aux limites cinématiques:

$$w = \frac{D\eta}{Dt}$$
 en $z = H + \eta$; $w = \frac{Dh}{Dt}$ en $z = h$

Dérivée particulaire:

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + u\frac{\partial}{\partial x} + v\frac{\partial}{\partial y}$$

Continuité:

$$\int_{h}^{H+\eta} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \, dz = (H+\eta-h) \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{D}{Dt} \left(H+\eta-h \right) = 0$$

Récapitulatif:

Continuité:

$$(H+\eta-h)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{D}{Dt}\left(H+\eta-h\right)=0$$

Quantité de mouvement:

$$\frac{Du}{Dt} - (f_0 + \beta y) v = -g \frac{\partial \eta}{\partial x} + F_u$$
$$\frac{Dv}{Dt} + (f_0 + \beta y) u = -g \frac{\partial \eta}{\partial y} + F_v$$

Approximation Quasi-Géostrophique:

Equilibre géostrophique:

$$f_0 u \approx -g \frac{\partial \eta}{\partial y} = f_0 u_g \; ; \; f_0 v \approx g \frac{\partial \eta}{\partial y} = f_0 v_g$$

la vitesse géostrophique (u_g, v_g) est non divergente Equations quasi-géostrophique:

$$D_{g}u_{g} - f_{0}v - \beta yv_{g} = -g\frac{\partial\eta}{\partial x} + F_{u}$$
$$D_{g}v_{g} + f_{0}u + \beta yu_{g} = -g\frac{\partial\eta}{\partial y} + F_{v}$$
$$(H + \eta - h)\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + D_{g}\left(H + \eta - h\right) = 0$$

Avec:

$$D_g = \frac{\partial}{\partial t} + u_g \frac{\partial}{\partial x} + v_g \frac{\partial}{\partial y}$$

Vorticité Potentielle:

$$D_g \frac{\Delta \psi + f}{H + h - \eta} = \frac{\partial_x F_v - \partial_y F_u}{H + h - \eta}$$

 $\psi = \frac{g}{f_0} \eta$ est le fonction de courrant de la vites se géostrophique; $f = f_0 + \beta y$

Vorticité Potentielle Quasi-Géostrophique:

Linéarisation pour η et h petits:

$$D_g \underbrace{\left(\Delta \psi + f - \frac{f_0^2}{gH} \psi + \frac{f_0}{H} h \right)}_{VPQG} = \partial_x F_v - \partial_y F_u$$

Ondes de Rossby:

Sans forçage $(h = F_u = F_v = 0)$ dans un écoulement moyen au repos et pour de petites perturbations, la conservation de la VPQG devient:

$$\frac{\partial}{\partial t} \left(\Delta \psi - \frac{f_0^2}{gH} \psi \right) + \frac{\partial \psi}{\partial x} \beta = 0$$

Ce qui donne, pour une onde monochromatique,

$$\psi(x, y, t) = \Re \left(\hat{\psi} e^{i(\omega t - kx)} \right) ,$$

la relation de dispersion des ondes de Rossby:

$$\omega = -\frac{\beta k}{k^2 + \frac{f_0^2}{gH}}$$

Vitesse de phase vers l'Ouest:

$$C = \frac{\omega}{k} = -\frac{\beta}{k^2 + \frac{f_0^2}{gH}}$$

Modèle de Charney et DeVore (1979)

Canal périodique de longueur $2\pi a \cos \phi_0 = 2\pi L$ et de largeur πL

Rappel de l'écoulement vers une "climatologie":

$$F_u = -\gamma \left(u_g - u^* \right) \; ; \; \; F_v = -\gamma v_g$$

Vorticité Potentielle quasi géostrophique:

$$D_g \underbrace{\left(\Delta \psi + f - \frac{f_0^2}{gH} \psi + \frac{f_0}{H} h \right)}_{VPQG} = -\gamma \Delta \left(\psi - \psi^* \right)$$

Conditions aux limites:

$$v_g = \frac{\partial \psi}{\partial x} = 0 \text{ en } y = 0, \pi L$$

Il s'agit d'un modèle forcé et dissipatif

Ecriture sous forme non-dimensionnelle:

$$\overline{t} = f_0 t \ , \ \overline{x}, \overline{y} = \frac{x, y}{L} \ , \ \overline{\psi} = \frac{\psi}{L^2 f_0} \ , \ \overline{\beta} = \frac{\beta L}{f_0} \ , \ \overline{\gamma} = \frac{\gamma}{f_0} \ , \ \overline{h} = \frac{h}{H}$$

Vorticité Potentielle quasi géostrophique:

$$\overline{D}_g \left(\overline{\Delta \psi} + \overline{\beta} \overline{y} - \frac{\overline{\psi}}{\overline{\lambda}^2} + \overline{h} \right) = -\overline{\gamma} \overline{\Delta} \left(\overline{\psi} - \overline{\psi}^* \right)$$

Rayon de déformation de Rossby normalisé: $\overline{\lambda}^2 = \frac{gH}{f_0^2 L^2}$. On omet les $\overline{(\)}$ par la suite.

$$\frac{\partial}{\partial t} \left(\Delta \psi - \frac{\psi}{\lambda^2} \right) = -J \left(\psi, \Delta \psi - \frac{\psi}{\lambda^2} + h + \beta y \right) - \gamma \Delta \left(\psi - \psi^* \right)$$

Décomposition en série de six fonctions propres de l'opérateur Δ :

$$\Delta F_i = -a_i^2 F_i , \quad \int_0^{2\pi} \int_0^{\pi} F_i F_j dy dx = 2\pi^2 \delta_{i,j} , \quad \frac{\partial F_i}{\partial x} = 0 \quad \text{en} \quad y = 0, \pi$$

$$\psi = \psi_A(t)F_A + \psi_K(t)F_K + \psi_L(t)F_L + \psi_C(t)F_C + \psi_M(t)F_M + \psi_N(t)F_N$$

Modèle de Charney et DeVore (1979) de l'instabilité topographique

Forçage:

Topography: $h = h_o F_K$. Climatology: $\psi^* = \psi_A^* F_A$.

On se limite dans un premier temps à 3 degrés de liberté Evol. Rappel Rossby-Advection Forçages Montagnes

$$\dot{\psi}_{A} = -k_{01} (\psi_{A} - \psi_{A}^{*}) + h_{01} \psi_{L}
\dot{\psi}_{K} = -k_{n1} \psi_{K} + (\beta_{n1} - \alpha_{n1} \psi_{A}) \psi_{L}
\dot{\psi}_{L} = -k_{n1} \psi_{L} - (\beta_{n1} - \alpha_{n1} \psi_{A}) \psi_{K} - h_{n1} \psi_{A}$$

Ondes de Rossby, libres: $h_0 = 0$, et $k_{01} = k_{n1} = 0$

$$\psi_{A} = 0$$

$$\psi_{K} = (\beta_{n1} - \alpha_{n1}\psi_{A})\psi_{L}$$

$$\dot{\psi}_{L} = -(\beta_{n1} - \alpha_{n1}\psi_{A})\psi_{K}$$

Solution pour un vent sous-critique: $\omega = \beta_{n1} - \alpha_{n1}\psi_{A} > 0$

$$\psi_K = \psi_{K0} \cos \omega t \; , \; \; \psi_L = -\psi_{K0} \sin \omega t$$

Propagation vers l'Ouest

Solution pour un vent sur-critique: $\omega = \alpha_{n1}\psi_A - \beta_{n1} > 0.$

$$\psi_K = \psi_{K0} \cos \omega t$$
, $\psi_L = \psi_{K0} \sin \omega t$
Propagation vers l'Est (l'advection l'emporte)

Remarque: le système peut répondre de façon raisonnante au forçage des montagnes lorsque $\beta_{n1} - \alpha_{n1}\psi_A \approx 0$

Solutions stationnaires $\dot{\psi}_A = \dot{\psi}_K = \dot{\psi}_L = 0$

$$\psi_A = \psi_A^* + \frac{h_{01}\psi_L}{k_{01}}$$

$$\psi_L = -\frac{h_{n1}k_{n1}}{(\beta_{n1} - \alpha_{n1}\psi_A)^2 + k_{n1}^2}\psi_A$$
$$\psi_K = -\frac{h_{n1}(\beta_{n1} - \alpha_{n1}\psi_A)}{(\beta_{n1} - \alpha_{n1}\psi_A)^2 + k_{n1}^2}\psi_A$$

Résolution graphique:

$$Y = -\frac{h_{01}\psi_L}{k_{01}} = \psi_A^* - \psi_A, \quad X = \frac{\alpha_{n1}\psi_A}{\beta_{n1}}$$

$$Y = -\frac{h_{01}\psi_L}{k_{01}} = \frac{h_{01}}{k_{01}} \frac{h_{n1}k_{n1}}{(\beta_{n1} - \alpha_{n1}\psi_A)^2 + k_{n1}^2}\psi_A$$
$$Y = \frac{h_{01}\psi_K}{k_{01}}$$

Solutions stationnaires

Fonctions de courrant pour $\psi_A^*=0.45$

Anomalies du Géopotentiel à 700hPa Données NCEP 1958-1997, durant les mois d'hiver Moyenne et composites suivant la hauteur du Géopotentiel sur l'Atlantique Nord-Est Localisation: 15°W, 58°N (Voir Cours 2 pour plus de détails)

Moyenne d'hiver

Anomalie Positive Situations de blocage

Anomalie négative Situations zonales

Calcul de la stabilité des solutions stationnaires

 $\psi_A^S, \psi_L^S, \psi_K^S$ on note les perturbations: $\psi_A' = \psi_A - \psi_A^S, \ \psi_L' = \psi_L - \psi_L^S, \ \text{et} \ \psi_K' = \psi_K - \psi_K^S$ $\dot{\psi}_A' = -k_{01}\psi_A' \qquad \qquad +h_{01}\psi_L'$ $\dot{\psi}_K' = -k_{n1}\psi_K' + (\beta_{n1} - \alpha_{n1}\psi_A^S) \psi_L' - \alpha_{n1}\psi_L^S \psi_A' \qquad + h_{n1}\psi_K' \psi_A' - h_{n1}\psi_A'$ $\dot{\psi}_L' = -k_{n1}\psi_L' - (\beta_{n1} - \alpha_{n1}\psi_A^S) \psi_K' + \alpha_{n1}\psi_K^S \psi_A' - h_{n1}\psi_A'$ Notation synthétique: $\dot{\psi} = L(\vec{\psi}^S)\vec{\psi}$

En fonction des valeurs propres λ_i de $L(\vec{\psi}^S)$ on distingue trois cas:

- **1. Stable:** Pour tous les λ_i , $\Re(\lambda_i) < 0$
- **2. Instable fourche** Pour certains λ_i , $\Re(\lambda_i) > 0$ mais $\Im(\lambda_i) = 0$
- **3. Instable Hopf** Pour certains λ_i , $\Re(\lambda_i) > 0$ et $\Im(\lambda_i) \neq 0$

L'instabilité topographique

Dans le modèle de Charney et de Vore limité à 3 degrés de liberté seules 1 et 2 se produisent: la branche sous critique et la branche sur-critique pour laquelle $\vec{\psi}_A \approx \vec{\psi}_A^*$ sont stables. L'autre branche sur critique est instable (fourche).

Dans le modèle de Charney et de Vore à 6 degrés de liberté La branche souscritique devient aussi instable (Hopf puis fourche) au dela de la première bifurcation:

Exemples d'évolution Modèle complet:

Evol. Rappel Rossby-Advection Forçages Ondes-ondes

$$\begin{split} \dot{\psi_A} &= -k_{01} \left(\psi_A - \psi_A^* \right) & +h_{01} \psi_L \\ \dot{\psi_K} &= -k_{n1} \psi_K & + \left(\beta_{n1} - \alpha_{n1} \psi_A \right) \psi_L & -\delta_{n1} \psi_C \psi_N \\ \dot{\psi_L} &= -k_{n1} \psi_L & - \left(\beta_{n1} - \alpha_{n1} \psi_A \right) \psi_K & -h_{n1} \psi_A & +\delta_{n1} \psi_C \psi_M \\ \dot{\psi_C} &= -k_{02} \psi_C & +h_{02} \psi_N & +\epsilon_n \left(\psi_K \psi_N - \psi_L \psi_M \right) \\ \dot{\psi_M} &= -k_{n2} \psi_M & + \left(\beta_{n2} - \alpha_{n2} \psi_A \right) \psi_N & -\delta_{n2} \psi_C \psi_L \\ \dot{\psi_N} &= -k_{n2} \psi_N & - \left(\beta_{n2} - \alpha_{n2} \psi_A \right) \psi_M & -h_{n2} \psi_C & +\delta_{n2} \psi_C \psi_K \end{split}$$

Paramètres et constantes:

$$\begin{aligned} \frac{\gamma_{n1}}{5} &= \frac{\gamma_{n2}}{4} = \frac{\gamma_{n3}}{8} = \frac{8\sqrt{2}}{15\pi}n ,\\ \alpha_{nm} &= \frac{n^2 + m^2 - 1}{n^2 + m^2 + \lambda^{-2}}\gamma_{nm} , \quad \delta_{nm} = \frac{n^2 - m^2 + 1}{n^2 + m^2 + \lambda^{-2}}\gamma_{n3} , \quad \epsilon_n = \frac{3\gamma_{n3}}{4 + \lambda^{-2}} ,\\ k_{nm} &= \frac{n^2 + m^2}{n^2 + m^2 + \lambda^{-2}}\gamma , \quad \beta_{nm} = \frac{n}{n^2 + m^2 + \lambda^{-2}}\frac{L}{a}\cot\phi_0 ,\\ h_{01} &= \frac{\gamma_{n1}}{1 + \lambda^{-2}}\frac{h_0}{2H} , \quad h_{02} = \frac{\gamma_{n3}}{4 + \lambda^{-2}}\frac{h_0}{2H} ,\\ h_{n1} &= \frac{\gamma_{n1}}{n^2 + 1 + \lambda^{-2}}\frac{h_0}{2H} , \quad h_{n2} = \frac{\gamma_{n3}}{n^2 + 4 + \lambda^{-2}}\frac{h_0}{2H} .\end{aligned}$$

Evolutions dans le diagramme des phases ψ_A , ψ_L

Fonction de courrant tous les jours

Fonction de courrant tous les jours, modes $\psi_C \ \psi_M \ \psi_N$ seulement

