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Ensemble hydrological prediction-based real-time optimization of
a multiobjective reservoir during flood season in a semiarid basin
with global numerical weather predictions
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[1] Future streamflow uncertainties hinder reservoir real-time operation, but the ensemble
prediction technique is effective for reducing the uncertainties. This study aims to combine
ensemble hydrological predictions with real-time multiobjective reservoir optimization
during flood season. The ensemble prediction-based reservoir optimization system (EPROS)
takes advantage of 8 day lead time global numerical weather predictions (NWPs) by the
Japan Meteorological Agency (JMA). Thirty-member ensemble streamflows are generated
through running the water and energy budget-based distributed hydrological model fed with
30-member perturbed quantitative precipitation forecasts (QPFs) and deterministic NWPs.
The QPF perturbation amplitudes are calculated from the QPF intensity and location errors
during previous 8 day periods. The reservoir objective function is established to minimize
the maximum reservoir water level (reservoir and upstream safety), the downstream flood
peak (downstream safety), and the difference between simulated reservoir end water level
and target level (water use). The system is evaluated on the Fengman reservoir basin
(semiarid), which often suffers from extreme floods in summer and serious droughts in
spring. The results show the ensemble QPFs generated by EPROS are comparable to those
for JMA by using probability-based measures. The streamflow forecast error is significantly
reduced by employing the ensemble prediction approach. The system has demonstrated
high efficiency in optimizing reservoir objectives for both normal and critical flood events.
Fifty-member ensembles generate a wider streamflow and reservoir release range than
10-member ensembles, but the ensemble mean end water levels and releases are
comparable. The system is easy to operate and thereby feasible for practical operations
in various reservoir basins.

Citation: Wang, F., L. Wang, H. Zhou, O. C. Saavedra Valeriano, T. Koike, and W. Li (2012), Ensemble hydrological prediction-

based real-time optimization of a multiobjective reservoir during flood season in a semiarid basin with global numerical weather

predictions, Water Resour. Res., 48, W07520, doi:10.1029/2011WR011366.

1. Introduction
[2] The climate change induced frequent floods [Inter-

governmental Panel on Climate Change, 2007] and the con-
tinuous increase of water demand [Clark and Hay, 2004]

show the need to manage water resources appropriately
[Cai et al., 2003]. Reservoir plays a key role in water
resources management through optimal operation [Labadie,
2004]. The reservoir optimization problems are character-
ized by multiple objectives and constraints, nonlinear opti-
mization and high dimensionality [Kumar and Reddy,
2006; Yeh, 1985]. In order to solve such complex problems,
a variety of optimization algorithms [e.g., Stedinger et al.,
1984; Yeh, 1985; Labadie, 2004; Johnson et al., 1991;
Goldberg, 1989; Oliveira and Loucks, 1997; Kennedy and
Eberhart, 1995; Dorigo et al., 1996; Duan et al., 1992,
1993, 1994] and multiple objective handling techniques
[Croley and Raja Rao, 1979; Yeh and Becker, 1982; Khu
and Madsen, 2005; Ngo et al., 2007; Reddy and Kumar,
2007] have been widely employed. With the availability of
real-time data and the improvement of computational power,
the researches on real-time reservoir optimization models
also appear for optimizing real-time release [e.g., Niewia-
domska-Szynkiewicz et al., 1996; Chang et al., 2005; Hsu
and Wei, 2007; Ngo et al., 2007; Saavedra Valeriano et al.,
2010a, 2010b]. Although considerable promising results are
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obtained and progress has been made, the process of practi-
cal real-time operation remains very slow [Chang et al.,
2005; Labadie, 2004; Yeh, 1985] because of the uncertain-
ties of future streamflow [Tejada-Guibert et al., 1995; You
and Cai, 2008], and the complexity of the systems for the
actual reservoir operators [Russell and Campbell, 1996].

[3] The uncertainties in precipitation are the main source
of uncertainties for streamflow prediction [Roulin and
Vannitsem, 2005; Mascaro et al., 2010; Saavedra Valer-
iano et al., 2010a]. Although the accuracy of weather fore-
casting has improved in past years, the medium-range
quantitative precipitation forecast (QPF) in basin scale has
been still difficult to predict since the atmosphere is highly
unstable [Roulin and Vannitsem, 2005; Saavedra Valeriano
et al., 2010a]. In order to apply medium-range QPFs for res-
ervoir real-time operation, it is necessary to take into account
the QPF errors [Cui et al., 2011; Fan and van den Dool,
2011]. In recent decades, many efforts have been made on
ensemble forecasting technique to account for the uncertain-
ties (or bias) in meteorological predictions [e.g., Toth and
Kalnay, 1993, 1997; Buizza and Palmer, 1995; Molteni
et al., 1996; Houtekamer et al., 1996; Hamill et al., 2000;
Buizza et al., 2005; Schaake et al., 2007] and hydrological
predictions [e.g., Day, 1985; Clark et al., 2004; Clark and
Hay, 2004; Werner et al., 2005; Roulin and Vannitsem,
2005; Schaake et al., 2006; Dietrich et al., 2008; Cloke and
Pappenberger, 2009; Pappenberger and Buizza, 2009;
Mascaro et al., 2010; Wu et al., 2011]. The ensemble pre-
diction approach shows great potential for improving pre-
dictability and extending lead time through generating
multiple predictions for the same location and time [Cloke
and Pappenberger, 2009; Thielen et al., 2009; Faber and
Stedinger, 2001]. However, the effective use of ensemble
predictions for operational decision making (e.g., reservoir
operation) is still a challenge [Krzysztofowicz, 2001; Ramos
et al., 2007].

[4] In recent decades, several studies were carried out on
reservoir optimization using ensemble predictions. Faber
and Stedinger [2001] employed monthly ensemble stream-
flow predictions based on historical weather patterns for
reservoir operation by using sampling stochastic dynamic
programming. Saavedra Valeriano et al. [2010a] studied
reservoir optimization by taking into account the error dis-
tribution of QPFs with 18 h lead time. However, no works
have been done on generating ensemble reservoir status
(water levels and releases) by employing real-time ensemble
hydrological predictions, which are effective for conveying
forecast uncertainties to decision makers. The objective of
this study is to embed ensemble streamflow predictions into
real-time reservoir optimization model for improving reser-
voir operation during flood season. This combination would
benefit both real-time water resources management and the
practical application of ensemble predictions.

[5] The ensemble prediction-based reservoir optimiza-
tion system (EPROS) is presented in this study by improv-
ing the prototype of the dam release support system
(DRESS [Saavedra Valeriano et al., 2010a]). The EPROS
is fed with real-time 8 day global numerical weather
predictions (NWPs) obtained from the Japan Meteorologi-
cal Agency (JMA). The main improvements of the present
work can be summarized as follows. First, the QPF inten-
sity error evaluation method is improved to describe the

errors comprehensively. The definition of QPF perturbation
weight is simplified by using mathematical functions instead
of using proposed zones and a look up table. Second, the
performance of ensemble QPFs generated by EPROS is
compared with JMA’s operational ensemble NWPs using
probability-based measures (e.g., Continuous Rank Probabil-
ity Score and Rank Histogram). Third, the hydrological
model (water and energy budget-based distributed hydrologi-
cal model, WEB-DHM) is revised by updating the hydrolog-
ical status at each time step continuously. This improvement
makes the WEB-DHM more flexible and effective for reser-
voir real-time operation than that used in DRESS. Fourth,
the reservoir optimization model is improved. A new mea-
sure (reservoir and upstream flood control safety) is added
since the upstream cities and reservoir are dangers when the
reservoir water level is high. The objective function is then
normalized to the same magnitude order to keep the stability
of multiobjective optimization. The release constraint is also
considered because the dramatic changes in reservoir release
may cause damages to the downstream channels and turbine.
The dynamic penalty function approach is applied for solv-
ing multiconstraint optimization problem. Fifth, the NWPs
used in the DRESS [Saavedra Valeriano et al., 2010a] only
include QPF, while the predicted winds (zonal and meridio-
nal), air temperature, relative humidity, and surface pressure
are also embedded into EPROS. The EPROS fed with global
scale forecasts makes it feasible to be applied to other river
basins in the world. Sixth, the ensemble reservoir status
(water levels and releases) and inflows are generated by
EPROS, which provides reasonable reference for real-time
decision making. Seventh, the sensitivity of reservoir effi-
ciency to ensemble size, and the reservoir performance under
critical events are investigated through applying the EPROS
for Fengman reservoir (northeast China) within a semiarid
basin. The continental semiarid basin having most part of an-
nual precipitation concentrated in July and August, tends to
suffer from extreme floods. In the nonflood seasons (from
October to May), this region suffers from long-term serious
water shortage problem particularly in spring.

[6] This paper is organized as follows. Section 2 describes
the general structure of EPROS system, the QPF perturba-
tion approach, the WEB-DHM, and the reservoir optimiza-
tion model. The study region (northeast China) and data sets
are introduced in section 3. Section 4 presents the EPROS
system application results for 2004 and 2005 flood events.
Section 5 discusses the sensitivity to ensemble size, the
model applicability under critical case, and the model feasi-
bility for practical application. Conclusions are given in
section 6.

2. Methods
[7] The EPROS is composed of three modules which are

the QPF perturbation model, the hydrological prediction
model, and the reservoir optimization model. The perturbed
QPFs [Saavedra Valeriano et al., 2010a] are calculated
according to the recent 8 day QPF intensity and location
errors. The perturbed QPFs and NWP outputs (near-surface
air temperature, wind speed, air pressure, and relative hu-
midity) then force the WEB-DHM [Wang et al., 2009a,
2009b, 2009c] to generate ensemble streamflows. The res-
ervoir optimization model fed with ensemble streamflows
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is running to minimize the maximum reservoir water level
and the downstream flood peak, as well as to minimize the
difference between optimized and target reservoir water
level at the end of optimization. The dynamic penalty func-
tion techniques [Yeniay, 2005; Barakat and Ibrahim, 2011]
and the shuffled complex evolution method developed at
the University of Arizona (SCE-UA) [Duan et al., 1992,
1993, 1994] is employed to solve multiple constraints and
to search for optimal solutions, respectively.

2.1. General Structure of EPROS

[8] The EPROS system structure is presented in Figure 1.
There are six steps, and they are summarized as follows.

[9] 1. The QPFs are evaluated with observations by con-
sidering the intensity and spatial distribution errors over the
past 8 days (t � 8 � i � t � 1). The performance of the
QPFs is represented by weight (w).

[10] 2. Perturbed QPF members are generated during
lead time Tld when QPFs are issued (t � i � Tld). The per-
turbation range is calculated according to w in step 1.

[11] 3. WEB-DHM is running by using perturbed QPF to
predict ensemble dam inflows Qini (t � i � Tld).

[12] 4. The dam optimization model is running to obtain
the optimized forecast dam releases Qouti (t � i � Tld).
The actual dam release at current time step is equal to the
optimized forecast dam releases. The dam water volume Vi

is transferred to Viþ1 by using water balance equation. The

dam water level (Hi) is interpolated from Vi using the cubic
Lagrange interpolation method.

[13] 5. The WEB-DHM forced by observed forcing
data is running at the end of the current dam operation step
(i ¼ t) in order to update initial conditions for the next opti-
mization loop.

[14] 6. If terminate conditions (e.g., optimal solutions are
found or at the end of flood season) are satisfied, then the
system stopped; otherwise, steps 1 to 5 are repeated. The
models employed in steps 1–2, 3 (and 5), and 4 are elabo-
rated in sections 2.2–2.4, respectively.

2.2. QPF Perturbation Model

[15] The perturbed QPFs generation method is based on
the concept of Saavedra Valeriano et al. [2010a] but
improvements are made on perturbation w calculating.
Saavedra Valeriano et al. [2010a] defined w from a look up
table by considering the QPF intensity errors (FE) eval-
uated at different proposed zones during the previous
time step.

FE ¼ 1

2

HIQPF

HIOBS
þ MIQPF

MIOBS

� �
; (1)

where HI and MI represent high intensity and mean inten-
sity, respectively. QPF and OBS indicate forecasts and
observations, respectively. A very accurate forecast is
assumed if the FE is close to 1. FE higher than 1 (between
0 and 1) indicates that the QPF is overestimated (underesti-
mation). According to this definition, the accurate forecast
(FE� 1) may be falsely detected if the HI is underestimated
(overestimated) while the MI is overestimated (underesti-

mated) (e.g., HIQPF

HIOBS
¼ 0.6, MIQPF

MIOBS
¼ 1.4, FE ¼ 1). Moreover,

the look up table and the proposed zones are defined subjec-
tively, and they depend on the experience of the user. To
reduce subjectivity and increase simplicity, the w in this
study is defined as a function of intensity error (eitn) and
spatial distribution error (edis) within the basin during the
previous i time step (t � 8 � i � t � 1; Figure 1). The dif-
ferences between the QPFs and the observations are consid-
ered in order to avoid the false detection of the accurate
forecast,

wi ¼
1

2
ðeitn;i þ edis;iÞ; (2)

eitn;i ¼
1

2

jIF;max;i � IO;max;ij
maxðIF;max;i; IO;max;iÞ

þ jIF;mean;i � IO;mean;ij
maxðIF;mean;i; IO;mean;iÞ

� �
; (3)

edis ¼
DðLF;max;i; LO;max;iÞ

maxðDÞ ; (4)

where wi is the weights evaluated at previous time step i,
IF,max,i (IO,max,i) and IF,mean,i (IO,mean,i) are maximum and
mean intensities of QPF (observation) in the basin, LF,max,i

and LO,max,i are the maximum rainfall locations (or geomet-
rical center) of QPF and observation in the basin, and D
refers to distance and max(D) is the maximum distance

Figure 1. Flowchart of the ensemble prediction-based
reservoir optimization system (EPROS). The lead time
(Tld) is 8 days.
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within the basin. The w oscillates between 0 and 1. The
lower w is, the better the QPF performed. A perfect QPF
should have w equal to 0. The following two special cases
of equation (3) are defined:

jIF;max:i � IO;max;ij
maxðIF;max;i; IO;max;iÞ

¼ 0; maxðIF;max;i; IO;max;iÞ ¼ 0; (5)

jIF;mean;i � IO;mean;ij
maxðIF;mean;i; IO;mean;iÞ

¼ 0; maxðIF;mean;i; IO;mean;iÞ ¼ 0; (6)

[16] The perturbed [see Saavedra Valeriano et al.,
2010a; Turner et al., 2008] QPF (P_QPF) for each model
grid (x, y) and for each lead time step i (t � i � 7; Figure 1)
is then calculated from

P QPFiðx; yÞ ¼ maxfQPFiðx; yÞ½1þ wi � Nð0; 1Þ�; 0g; (7)

where N(0, 1) is normal distribution with zero mean and a
standard deviation of unity. In this way, the perturbed QPF
is estimated from the intensity (eitn) and distribution (edis)
errors in the previous time step. The better the QPF per-
formed (i.e., the lower w is), the smaller range of the
P_QPF is generated.

2.3. The WEB-DHM Model

[17] The WEB-DHM [Wang et al., 2009a, 2009b, 2009c]
was developed by fully coupling a simple biosphere
scheme (SiB2) [Sellers et al., 1996a, 1996b] with a geo-
morphology-based hydrological model (GBHM) [Yang
et al., 2002, 2004a]. It can give consistent descriptions of
water, energy and CO2 fluxes in a basin scale. The land sur-
face submodel (the hydrologically improved SiB2 [Wang
et al., 2009c]) is used to describe the turbulent fluxes
(energy, water and CO2) between the atmosphere and land
surface for each model cell. The hydrological submodel
simulates both surface and subsurface runoff, and then calcu-
lates flow routing in the river network. A complete descrip-
tion of WEB-DHM was given by Wang et al. [2009a,
2009b, 2009c].

[18] In the EPROS, the WEB-DHM model is improved
in hydrological status updating method. The WEB-DHM is
running before flood events and during flood events,
respectively. Before the flood event (e.g., from 1 January to
flood event), WEB-DHM is driven by observed atmos-
pheric forcing data in order to achieve hydrological equilib-
rium. During the flood event, the WEB-DHM is running
continuously which includes both forecast run and observa-
tion run. WEB-DHM is driven by forecast forcing data
during forecast run in order to predict dam inflows during
the lead time (e.g., t � i � t þ 7; Figure 1). During obser-
vation run, WEB-DHM is driven by observed forcing data
at the end of each dam operation step (e.g., i ¼ t ; Figure 1)
in order to update soil initial conditions for the forecast
run. In this way, the hydrological status (the soil initial
conditions) is updated continuously at each time step with
the flow of reservoir optimization. The merit of this
improvement is that the WEB-DHM model used in EPROS
model is more flexible and effective than that used in
DRESS.

2.4. Dam Optimization Model

2.4.1. Objective Function
[19] Saavedra Valeriano et al. [2010a, 2010b] estab-

lished the objective function by minimizing the flood vol-
ume at downstream control points (potential flood volume,
PFV) and maximizing reservoir storage (reservoir free vol-
ume, RFV). The PFV and RFV would be difficult to coordi-
nate if there is high discrepancy in the magnitude order of
the two objectives. In this case, the term with higher magni-
tude would be given preference. In addition, the reservoir
(and upstream) flood control safety is also essential for
actual reservoir operation [Wang et al., 1994]. The upstream
cities are dangerous when the reservoir water level is high,
and the loss of life and property is inestimable if the dam
break flood occurred. Therefore, three objectives represent-
ing reservoir (and upstream) flood control safety ( ffc,r),
downstream flood control safety ( ffc,d) and future water use
( fwu) are optimized in EPROS [Wang et al., 1994]. Parame-
ters ffc,r and ffc,d are defined by minimizing the maximum
reservoir water level and minimizing the flood peak at a
selected downstream control point, respectively. Parameter
fwu is represented by minimizing the discrepancy between
the optimized water level and target water level at the end of
optimization. The three objectives are expressed as

ffc;r ¼ minfmaxðHiÞg; 1 � i � T ; (8)

ffc;d ¼ minfmaxðQctliÞg; 1 � i � T ; (9)

fwu ¼ minfHT � Htargetg; (10)

where T is the total time step (days), Hi is reservoir water
level during time period i (m), Qctli is river discharge at the
control point (m3 s�1), and HT and Htarget are the end and
target reservoir water levels (m), respectively. These three
objectives are then normalized to same magnitude order.

ffc;r ¼ minfmaxðHiÞ=Hlmtg; 1 � i � T ; (11)

ffc;d ¼ minfmaxðQctliÞ=Qctlmaxg; 1 � i � T ; (12)

fwu ¼ minfjHT � Htargetj=jHdead � Htargetjg; (13)

where Hlmt and Hdead are limited and dead reservoir water
levels (m), Qctlmax is maximum river discharge at down-
stream control point (m3 s�1), and Htarget is the defined tar-
get reservoir water level (m). All of the ffc,r, ffc,d and fwu are
between 0 and 1. These three objectives are then formed
the objective function fobj through the aggregation approach
[Khu and Madsen, 2005; Ngo et al., 2007].

fobj ¼ ffc;r þ ffc;d þ fwu; (14)

2.4.2. Constraints
[20] The constraints include mass balance, dam release

bounds and storage bounds in the DRESS module [Saave-
dra Valeriano et al. 2010a, 2010b]. In the EPROS, the con-
straint for release amplitude is also included since dramatic
changes in reservoir release may cause damages to the
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downstream channels and turbine [Labadie, 2004]. In
DRESS, the upper and lower boundaries of release are the
mean plus and minus one standard deviation, respectively
[see Saavedra Valeriano et al., 2010a]. In EPROS, the reser-
voir release ability (related to reservoir water level) and
downstream water requirements (determined by flood control
standard and ecological water requirements) are considered.
2.4.2.1. Mass Balance Equation

[21] The mass balance equation is

Viþ1 ¼ Vi þ ðQini � Qouti � QlossiÞ�t; (15)

where Vi and Viþ1 are initial and final reservoir storage vol-
umes during time period i, (m3), Qini and Qouti are
reservoir inflow and outflow (m3 s�1), Qlossi is the reser-
voir water leakage (m3 s�1), and �t is the reservoir opera-
tion time interval (s).
2.4.2.2. Release Bounds

[22] The release bounds are described as

Qi;min � Qouti � Qi;max; (16)

where Qi,min and Qi,max are minimum and maximum reser-
voir release (m3 s�1). The Qi,min is constrained by the mini-
mum water demand. The Qi,max is constrained by reservoir
release ability and flood control requirement at control
point,

Qi;max ¼ minfQi;ability;Qctli;max � Qincig; (17)

where Qi,ability is the reservoir release ability (m3 s�1) and
Qinci is the interval coming water amount (m3 s�1).
2.4.2.3. Release Amplitude

[23] The release amplitude is

jQouti � Qouti�1j� �Q; (18)

where �Q is the variation amplitude constraint between
period i � 1 and period i (1 < i � T ; m3 s�1).
2.4.2.4. Storage Bounds

[24] The storage bounds are

Vdead � Vi � Vlmt; (19)

where Vdead and Vlmt are the water volumes corresponding
to dead water level and limited water level (m3).

2.4.3. Constraints Handling
[25] The constraints are treated simply in DRESS by

defining reservoir operation rules artificially [Saavedra
Valeriano et al., 2010a, 2010b]. In EPROS, the constraint
problem is converted to nonconstraint problem through the
widely used penalty function approach [Yeniay, 2005;
Michalewicz, 1995]. The penalty functions measure the
violation of the constraints (or penalize unfeasible solu-
tions). The dynamic penalty approach where the penalty
value is dynamically modified is superior to stationary pen-
alty approach [Yeniay, 2005; Barakat and Ibrahim, 2011].
A dynamic penalty function [Yeniay, 2005] is defined as

Hj ¼ ðCkÞ�ðfjÞ�; 1 � j � p; (20)

where C, �, and � are constants, and C ¼ 1, � ¼ 0.5, � ¼ 2
in this study; k is the algorithm’s current iteration number;
fj (1 � j � p) is defined from the constraints (equations (16)–
(19)) and p (p ¼ 5 in this study) is the total number of fi:

f1 ¼
XT

i¼1

min 0;Qouti � Qi;min

� �2
� �

; (21)

f2 ¼
XT

i¼1

max 0;Qouti � Qi;max

� �2
� �

; (22)

f3 ¼
XT

i¼2

maxð0; jQouti � Qouti�1j ��QÞ2
h i

; (23)

f4 ¼
XT

i¼1

min 0;Vi � Vi;min

� �2
� �

; (24)

f5 ¼
XT

i¼1

max 0;Vi � Vi;max

� �2
� �

; (25)

[26] The penalty function is nonzero (greater than 0)
when the constraint is violated, and it is zero in the region
where constraint is not violated [Yeniay, 2005]. By adding
the penalty function (equation (20)) to the objective func-
tion (equation (14)), the constraint problem is transformed
to nonconstraint problem,

F ¼ fobj þmin
Xp

j¼1

Hj

 !
; (26)

[27] If the constraint is violated, equation (26) will be
added by a big term (�Hj, 1 � j � p), which means the so-
lution is not feasible. In this case, the iterations will repeat
and the solution is pushed back toward the feasible region
[Yeniay, 2005] until the optimal value is found. The feasi-
ble solutions should have F between 0 and 3. The lower the
F is, the better the solution is. The state variable is Vi and
the decision variable is Qouti.

2.4.4. Optimization Scheme
[28] The shuffled complex evolution method developed

at the University of Arizona (SCE-UA) [Duan et al., 1992,
1993, 1994] is used in this study. SCE-UA is a robust and
effective global optimization strategy and based on a syn-
thesis of controlled random search, competitive evolution
and complex shuffling [Duan et al., 1992]. The SCE-UA
algorithm has been widely applied for hydrological model
parameters calibration [e.g., Sorooshian et al., 1993; Boyle
et al., 2000; Vrugt et al., 2003; Chu et al., 2010] and reser-
voir optimization [e.g., Ngo et al., 2007; Saavedra Valeriano
et al., 2010a, 2010b].

[29] A brief description of the method is given below
and detailed explanations of the method are given by Duan
et al. [1992, 1993, 1994]. First, a ‘‘population’’ of points is
randomly generated from feasible parameter space; second,
the population is partitioned into several complexes; third,
each complex is made to evolve in order to direct the
search in an improvement direction; fourth, the entire
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population is shuffled and points are reassigned to com-
plexes periodically so as to share the information gained by
each community. The above evolution and shuffling steps
are repeated until termination criteria are satisfied [Sor-
ooshian et al., 1993].

[30] The dam operation time step is 24 h (daily) and the
lead time is 192 h (8 days). They are defined according to
the NWP product (section 3.2). The WEB-DHM running
time step is 1 h.

3. Data Sets
3.1. Study Region and Reservoir Characteristics

[31] The Fengman basin locates at the upper reach of the
Second Songhua River in Northeast part of China (Figure 2a),
and has a catchment area of 42,500 km2. The Hongshi-Feng-
man subbasin which has abundant rain gauges (data set intro-
duced in section 3.3.1) is 22,600 km2 (white in Figure 2b).
The Fengman reservoir was built in 1937 and begun to store
water in 1942. The reservoir’s target mainly includes flood
control and hydropower generation. The capacity of the reser-
voir is 10,988 million m3. The annual runoff distributed
unevenly with 70% inflow concentrating in flood season from
June to September. The annual mean runoff is also nonuni-
form with maximum and minimum values equal 737 and
164 m3 s�1, respectively. This basin is characterized by
temperate semiarid continental climate. The average annual
precipitation is approximately 700 mm with 60%–90%
precipitation concentrated in flood season (from June to
September). The large amount rainfall often occurs in a
short period of time, and they are usually violent and cover
large areas [Asian Development Bank, 2002]. This area also
subjects to long-term water shortage in nonflood seasons
particularly in spring. Furthermore, the downstream Jilin
and Harbin city are important cities for protection. There-
fore, the proper operation of Fengman reservoir is essential
to this region. The reservoir associate parameters are sum-
marized in Table 1. Other parameters include reservoir
storage-capacity curve, discharging curve, and characteris-
tic water level (not shown).

3.2. Numerical Weather Predictions

[32] The deterministic NWP data were obtained from the
Global Spectral Model (GSM) of Japan Meteorological
Agency (JMA). GSM provides deterministic NWP prod-
ucts four times a day with 84 h forecasts from 00:00, 06:00
and 18:00 UTC and 192 h forecasts from 12:00 UTC
(coordinated universal time). A more detailed description
of JMA’s NWP is given by Saito et al. [2007], Yamaguchi
et al. [2009], and JMA [2007].

[33] The available meteorological parameters for JMA’s
deterministic NWP products include winds (zonal and me-
ridional), air temperature, relative humidity, surface pres-
sure, total precipitation or rain. The forecast lead time is
192 h and the initial time is 12 UTC. The temporal resolu-
tion is 6 h within 96 h forecast and it is 12 h for a 96–192 h
forecast. The spatial resolution is 1.25�.

[34] The JMA’s operational Ensemble Prediction System
(EPS) for weekly forecasting runs up to 9 days once a day
at 12:00 UTC [JMA, 2007]. The ensemble size of 1 week
EPS is 25 until March 2006, while it is 51 after that. The
temporal resolution is 24 h. The spatial resolution is 1.875�

for Asian area, and it is 2.5� for global. The JMA’s ensemble
QPFs are used in this work. Both of the deterministic and en-
semble NWP products are available from 15 May 2002 and
they can download from http://gpvjma.ccs.hpcc.jp/�gpvjma/
and http://database.rish.kyoto-u.ac.jp/arch/jmadata/data/gpv/
original/.

3.3. Ground-Based Observations

3.3.1. Atmospheric Forcing Data
[35] The ground-based meteorological observations

include daily precipitation, relative humidity, wind speed,

Figure 2. The Fengman basin: (a) the location in China
and (b) the basic hydrometeorological data sets.
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daily maximum temperature, daily minimum temperature,
daily average temperature and sunshine duration. There are
23 rain gauges in the basin (Figure 2b) and hourly precipi-
tation data were downscaled from daily rain gauge observa-
tion data using a stochastic method [Yang et al., 2004b].
Data from 11 meteorological sites (Figure 2b) were taken.
Hourly temperatures were calculated from daily maximum
and minimum temperatures using the TEMP model [Parton
and Logan, 1981]. Downward shortwave radiation was esti-
mated from sunshine duration, temperature, and humidity
using a hybrid model developed by Yang et al. [2001,
2006]. Downward longwave radiation was estimated from
temperature, relative humidity, pressure, and solar radiation
using the relationship between shortwave radiation and
longwave radiation [Crawford and Duchon, 1999]. Air pres-
sure was estimated according to the altitude [Yang et al.,
2006]. These meteorological data were then interpolated to
3000 m model cells through inverse distance weighting
(IDW) method. The surface air temperature inputs were fur-
ther modified with a lapse rate of 6.5 K km�1 considering
the elevation differences between the model cells and mete-
orological stations.

3.3.2. Model Evaluation Data
[36] The observed daily inflows for Fengman reservoir

(Figure 2b) from 2000 to 2005 are used to evaluate the
WEB-DHM model. The observed reservoir status data
were used to examine the performance of dam operation
system. These reservoir status data include daily inflow,
release, water level (storage), as well as water loss data. The
flood events of 2001 (25 July to 25 August), 2004 (17 July
to 15 August) and 2005 (8 to 27 August) are taken in this
research because of their high flood peaks. They are once-
in-a-decade floods with the peak inflows of Fengman reser-
voir are 5328, 3242, and 3429 m3 s�1 for 2001, 2004, and
2005 flood events.

3.4. Satellite Data

[37] DEM data were obtained from the United States Ge-
ological Survey (USGS) Seamless Data Distribution Sys-
tem (http://seamless.usgs.gov/) and the subgrid topography
was described by a 100 m DEM. The elevation of the basin
varies from 168 to 2396 m (Figure 3a) and the grid slopes
vary from 0� to 27� (Figure 3b). Land use data were obtained
from the USGS (http://edc2.usgs.gov/glcc/glcc.php). The
land use types have been reclassified to SiB2 land use types
for the study [Sellers et al., 1996a]. There are 8 land use
types, with broadleaf and needleleaf trees being the main

type (Figure 3c). Soil data were obtained from the Food and
Agriculture Organization [2003] global data product. There
are 6 kinds of soil in the basin, with sandy clay loam-
lithosols (I-Bk) being the dominant type (Figure 3d).

[38] Static vegetation parameters include morphological,
optical and physiological properties defined by Sellers
et al. [1996b]. Dynamic vegetation parameters including
the leaf area index (LAI) and the fraction of photosyntheti-
cally active radiation (FPAR) absorbed by the green vegeta-
tion canopy were obtained from the MOD15A2 1 km 8 day
products [Myneni et al., 1997]. They were downloaded
through the Warehouse Inventory Search Tool (WIST,
https://wist.echo.nasa.gov/�wist/api/imswelcome/).

3.5. Reanalysis Product

[39] The interim reanalysis produced by European Center
for Medium-Range Weather Forecasts (ERA-Interim [Dee
et al., 2011]) is used as EPROS forcing data for 2001 since
the JMA’s NWP data (see section 3.2) are not available. The
temporal and spatial resolutions for ERA-Interim forecast
data are 3 h and 0.703125� (N128 reduced Gaussian grid),
respectively. ERA-Interim covers the period from 1 January
1979 onward, and continuing in near-real time. The detailed
descriptions for ERA-Interim can be found at http://
www.ecmwf.int/research/era/.

4. Results
4.1. WEB-DHM Evaluation

[40] The WEB-DHM has been carefully calibrated and
evaluated with daily discharges and 8 day land surface tem-
peratures in the upper reach of the Wudaogou subbasin
(Figure 2b) from 2000 to 2006 [see Wang et al., 2011]. It
should be noted that the real-time EPROS system is expected
to be fed with atmospheric parameters. In this study, the rain-
fall observations at the upper reach of the Hongshi reservoir
are not available. In addition, this work mainly aims to dem-
onstrate singe-reservoir (Fengman reservoir) real-time optimi-
zation method. Therefore, the observed outflows of Hongshi
(Figure 2b) reservoir are embedded into the WEB-DHM. The
following statistical variables are used to evaluate the per-
formances of the WEB-DHM:

NS ¼ 1�
Xn

i¼1

ðXoi � XsiÞ2=
Xn

i¼1

ðXoi � X 0Þ2; (27)

BIAS ¼
Xn

i¼1

Xsi �
Xn

i¼1

Xoi

 !� Xn

i¼1

Xoi

 !
� 100%; (28)

where Xoi is the observed value, Xsi is the simulated value,
n is the total number of time series for comparison, and X 0

is the mean value of Xoi over the comparison period. The
higher NS is, the better the model performs. A perfect fit
should have a NS value equal to one [Nash and Sutcliffe,
1970]. The lower BIAS is, the better the model performs. A
perfect fit should have BIAS equal to zero.

[41] Figure 4 shows the daily discharge (Q) at Fengman
reservoir simulated by the WEB-DHM. Figure 4a reveals
the discharges are well reproduced from 2000 to 2005 with
NS equal to 0.843 and BIAS equal to 12.29%. The simulated
discharges during flood seasons in 2001 (from 25 July to

Table 1. Fengman Reservoir Characteristic Parameters

Parameters Value

Dead water level Hdead 242.00 m
Limited water level Hlmt 257.90–263.50 m
Dead water volume Vdead 26.85 � 108 m3

Water volume corresponding to
limited water level Vlmt

88.49 � 108 m3

Minimum river discharge at
control point Qctlmin

218 m3 s�1

Maximum river discharge at
control point Qctlmax

2500 m3 s�1

Variation amplitude constraint
between periods i � 1 and i (�Q)

600 m3 s�1
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25 August, Figure 4b), 2004 (from 17 July to 15 August,
Figure 4c) and 2005 (from 8 to 27 August, Figure 4d) show
the NS is larger than 0.931 and BIAS (absolute value) is
smaller than 4.39%. It is possible that the observed outflows
of Hongshi reservoir have influences on the high NS value.
However, the Fengman reservoir is the target reservoir in
this work. The observed discharges at Hongshi reservoir are
used. These evaluation results indicate the WEB-DHM is
able to predict river discharge (especially during flood

seasons) reasonably well. Therefore, the WEB-DHM is then
applied to predict Fengman reservoir inflows during flood
seasons.

4.2. QPF Perturbation and Evaluation

4.2.1. Deterministic QPF Evaluation
[42] Four rainfall events selected from the 2004 and

2005 flood seasons are evaluated because of their high rain-
fall intensities and the available data sets for both

Figure 3. (a) The digital elevation model (DEM), (b) grid slope, (c) land use, and (d) soil type used by
WEB-DHM.
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observations and forecasts. The maximum and basin average
(Hongshi-Fengman basin) rainfall intensities are 75.3 mm d�1

and 41.0 mm d�1 for 23 July 2004, 57.6 mm d�1 and 26.7
mm d�1 for 29 July 2004, 104.7 mm d�1 and 35.5 mm d�1

for 12 August 2005, and 72.4 mm d�1 and 39.1 mm d�1 for
17 August 2005. The following statistical variables are used to
evaluate the performances of the deterministic QPF:

MBE ¼
Xn

i¼1

Xsi �
Xn

i¼1

Xoi

 !
=n� 100%; (29)

RMSE ¼ 1

n
�
Xn

i¼1

ðXsi � XoiÞ2
" #1

2

; (30)

[43] The lower MBE or RMSE is, the better the model per-
forms. A perfect fit should have MBE or RMSE equal to zero.

[44] Figure 5 compares the spatial distribution of daily
accumulated precipitation between observations and JMA’s
deterministic NWP with different lead time (1 day, 2 days,
3 days, 5 days and 8 days) on 23 July 2004 (Figure 5a),
29 July 2004 (Figure 5b), 12 August 2005 (Figure 5c) and
17 August 2005 (Figure 5d). In general, the QPFs show both
intensity error (eitn) and distribution error (edis). The precipi-
tation intensities of observations (1st row of Figure 5) show
larger values than the deterministic QPFs forecasts. The spa-
tial distributions of JMA’s deterministic forecasts are more
uniform than observations because of the lower spatial reso-
lution of the JMA NWP points (1.25�) comparing with rain
gauges (around 0.25� to 0.30�). The maximum precipitation
center locates at the southwest part of the basin for all the
observations, while it locates at western part of the region
for most JMA NWP forecasts.

Figure 4. (a) The Fengman dam daily inflows simulated by the WEB-DHM and the enlarged hydro-
graph for (b) the 2001 flood season (25 July to 25 August), (c) 2004 flood season (17 July to 15 August),
and (d) 2005 flood season (8–27 August).
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[45] Figure 6 shows the variation of maximum and basin
average (Hongshi-Fengman basin) precipitation intensities
with different lead time between JMA’s deterministic
NWP and observations on 23 July 2004 (Figures 6a and
6b), 29 July 2004 (Figures 6c and 6d), 12 August 2005
(Figures 6e and 6f) and 17 August 2005 (Figures 6g and
6h). The maximum (dashed lines in Figures 6a, 6c, 6e, and
6g) and mean (dashed lines in Figures 6b, 6d, 6f, and 6h)
intensities for the deterministic QPFs are lower than obser-
vations (solid lines in Figure 6) for most events. In general,
the accuracy of QPF predictions decreases with the lead
time increasing from 1 day to 8 days.

[46] Figure 7 shows the variation of MBE and RMSE for
JMA NWP maximum and basin average (Hongshi-Fengman
basin) precipitations (deterministic forecast) with different
lead time from 17 July to 15 August 2004 (Figures 7a and
7b) and from 8 to 27 August 2005 (Figures 7c and 7d). The
MBE (absolute value) and RMSE increase with the lead time
increasing from 1 day to 8 days for all the events. The fore-
cast basin average precipitation performs better than maxi-
mum precipitation. The absolute value of MBE (RMSE) for
2004 QPF (Figures 7a and 7b) increases from 6.46 mm d�1

(19.22 mm d�1) to 14.80 mm d�1 (26.55 mm d�1) and from

1.98 mm d�1 (7.52 mm d�1) to 4.64 mm d�1 (10.94
mm d�1) with the lead time increasing from 1 to 8 days for
maximum precipitation and mean precipitation, respectively.
The QPF in 2005 shows the same trend with the QPF in
2004. Many studies depicted that the NWP forecast skill is
decreased as a function of forecast lead time [e.g., Lin et al.,
2005]. The uncertainty in atmosphere states and the com-
plexity of the atmospheric equations limit the forecast model
accuracy to about 5 or 6 days [Chakraborty, 2010].

[47] In summary, the JMA’s deterministic NWP makes
sense on precipitation forecasting but there are biases for
rainfall intensities and spatial distributions especially for
the lead time longer than 5 days. Therefore, the further
processing (e.g., perturbation) of rough deterministic QPF
is necessary before practical applications.

4.2.2. QPF Perturbation
[48] The deterministic QPFs for 2004 and 2005 are

perturbed through equation 7. The perturbation contains
30 members for illustration and the further discussions on
ensemble size are elaborated in section 5.1. Figure 8 shows
the deterministic and perturbed QPFs (1 day lead time) com-
paring with observations averaged at the Hongshi-Fengman

Figure 5. The spatial distribution of the daily accumulated precipitation (APCP; in mm) for the ob-
servation (first row) and the Japan Meteorological Agency (JMA) deterministic numerical weather pre-
dictions (NWP) with lead times of 1, 2, 3, 5, and 8 days (second to sixth rows) on (a) 23 July 2004,
(b) 29 July 2004, (c) 12 August 2005, and (d) 17 August 2005.
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basin from 17 July to 15 August 2004 (Figure 8a) and from
8 to 27 August 2005 (Figure 8b). The JMA’s deterministic
NWP successfully captures the major rainfall events (e.g.,
23 and 29 July 2004, 3 and 7 August 2004, 12 and 17 August
2005), but the amount of maximum precipitation is higher or
lower than observed values. The observed and forecast

values of the maximum precipitation on 3 August 2004 are
19.4 and 32.1 mm d�1, respectively. The perturbed forecast
values are between 6.3 and 50.7 mm d�1 (values not shown).
The perturbed forecast captures the observed sceneries cor-
rectly. The other rainfall events also demonstrate the dis-
crepancies between JMA NWP deterministic forecast and

Figure 6. The maximum and basin average (Hongshi-Fengman basin) precipitation intensities for the
observation and the JMA deterministic NWP with different lead times on (a, b) 23 July 2004, (c, d)
29 July 2004, (e, f) 12 August 2005, and (g, h) 17 August 2005.

Figure 7. The MBE and RMSE of maximum and basin average (Hongshi-Fengman basin) precipita-
tion intensities for the JMA deterministic NWP with different lead times.
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observed values are dampened by the perturbed forecasts
through generating a variety of sceneries.

4.2.3. Probabilistic QPF Evaluation
[49] The continuous ranked probability score (CRPS)

[Hersbach, 2000] and rank histogram (RH) [Hamill, 2001]
are used to evaluate the performance of probabilistic QPF.
The CRPS calculates the difference between the predicted
and the observed cumulative density functions (CDFs) of
variables [Candille et al., 2007]. The lower CRPS is, the
better the prediction performs. The RH checks the probability
of the verifying observations falling between any two adja-
cent members of the ensemble forecast data [Pappenberger
et al., 2009]. A perfect ensemble spread shows a flat RH
because each member represents an equally scenario [Hamill,
2001].

[50] In this section, an additional 25-member ensemble
QPFs are generated by EPROS in order to keep consistence
with JMA 25-member ensemble NWPs. Figures 9a and 9b
compare the CRPS for ensemble QPFs obtained from JMA
and EPROS during the flood seasons of 2004 and 2005.
The mean CRPS of QPFs equals 3.8 and 4.1 for JMA and
EPROS in 2004, while they are 5.1 and 3.7 in 2005. Aver-
aged for 2004 and 2005, the CRPS of QPFs is 4.3 and 4.0
for JMA and EPROS, respectively. In general, the EPROS
performed better than JMA in generating ensemble QPFs
for these particular cases. The difference in the CRPS is
significant at 0.05 (� ¼ 0.05) significance level by using
F test (F ¼ 2.68 > F0.025,50,50 � 1.7). The main reason is
the nature of ensemble generation is different. For JMA,
the initial conditions are integrated by using a low-resolution
version of JMA global spectral model (GSM) for producing
an ensemble of 9 day forecasts in the 1 week EPS. The per-
turbed initial fields are obtained using the Breeding of
Growing Modes (BGM) method [JMA, 2007]. However,
EPROS use a kind of statistical generation depending on the
error analysis using past observations.

[51] Figures 9c and 9d draw the RH for ensemble QPFs
obtained from JMA and EPROS calculated from the flood
seasons of 2004 and 2005. Both of the JMA and EPROS
ensemble QPFs show U-shaped RH. This result indicates
that many observations falling outside of the ensemble
boundaries. The RH of the two ensembles performed simi-
larly with the frequency of observations falling outside of
ensemble extremes is 0.63 and 0.65 for JMA and EPROS,
respectively.

4.3. Reservoir Optimization

[52] The EPROS system is examined on Fengman reser-
voir for 2004 and 2005 flood events. The Hongshi reservoir
(see Figure 2b) releases are embedded into the hydrological
model (WEB-DHM). The Fengman reservoir outlet is used
as the control point because of the available observations.
In this case, the discharges at the control point (Qctli) equal
to the Fengman reservoir release (Qouti). The initial reser-
voir water levels are set as 253.67 and 257.58 m (observed
values) for 2004 and 2005 flood events, respectively. In this

Figure 8. The daily precipitation of JMA deterministic
NWP forecasts and the perturbed forecasts (both with 1 day
lead time) compared to the observations averaged at the
Hongshi-Fengman basin (except the Hongshi subbasin): (a)
from 17 July to 15 August 2004 and (b) from 8 to 27 August
2005. Here the ensemble uses 30 members; fcst and obs
refer to forecast and observation, respectively.

Figure 9. Comparison of continuous ranked probability score (CRPS) and rank histogram (RH) for
ensemble quantitative precipitation forecasts (QPFs) obtained from EPROS and JMA: (a) CRPS from
17 July to 15 August 2004, (b) CRPS from 8 to 27 August 2005, and (c) RH for JMA QPFs and (d) RH
for EPROS QPFs from 17 July to 15 August 2004 and from 8 to 27 August 2005.
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section, the target water levels are set as 263.50 m (upper
bound of limited water level) for both events. The WEB-
DHM initial conditions of reservoir operation for 2004
(17 July to 15 August) and 2005 (8–27 August 2005) flood
events were obtained by running the model from 1 January
2004 to 16 July 2004 and from 1 January 2005 to 7 August
2005, respectively.

4.3.1. Control Run
[53] Figures 10a and 10b compare the simulated Feng-

man reservoir releases and water levels with observed val-
ues for 2004 and 2005 flood events. The simulated release
peak are 748 and 493 m3 s�1 for 2004 and 2005 flood events,
respectively. They are much lower than the observed values
which are 1952 and 1278 m3 s�1. The simulated maximum
amplitude of release variations are 523 and 229 m3 s�1 for
2004 and 2005 flood events. They are also lower than the
observed values (555 and 724 m3 s�1). The optimized
release with lower variation amplitude is helpful for protect-
ing downstream channels and turbine [Labadie, 2004]. The
reservoir water levels are 261.63 m and 263.14 m at the end
of the flood, while the observations are 257.44 and 262.51 m
for 2004 and 2005 flood events. Because the system takes
into account the forecast information, the floods are stored in
the reservoir during the flood peak and the optimized water
levels are higher than the observations at the end of flood
events. This is important for reservoir water utilizations (e.g.,
hydropower generation, agriculture). The optimized maxi-
mum reservoir water levels are lower than the upper bound
of limited water level (263.50 m) for both flood events. This
is important for the reservoir and upstream safety.

[54] Figures 10c and 10d plot the optimized objective
functions during the flood events for 2004 and 2005 flood
events, respectively. The objective functions are lower than
3.0 for both cases. This result demonstrates the optimized
solutions are in feasible space (see 2.4.3).

[55] In summary, JMA’s deterministic NWP provides val-
uable information in guiding real-time reservoir optimiza-
tion. However, there are uncertainties in forecast reservoir
inflows because of the QPF uncertainties. Underestimation
of inflow tends to increase water storage but decrease the
flood control capacity, while overestimation of inflow is
likely to increase flood control ability but decrease the water
use efficiency. In fact, the QPF errors are inevitable, espe-
cially for the medium- and long-term precipitation forecast,
because of the chaotic characters of atmosphere as well as
the approximate simulation of atmospheric processes by
NWP [Lorenz, 1969; Toth and Kalnay, 1993; Buizza et al.,
2005]. Therefore, it is necessary to take into account the
QPF errors for reservoir practical operations.

4.3.2. Ensemble Run
[56] Figure 11 shows the reservoir optimization results

through the use of ensemble predictions for 2004 (Figures
11a, 11c, 11e, 11g and 11i) and 2005 (Figures 11b, 11d,
11f, 11h and 11j) flood events. Figures 11a and 11c com-
pare the ensemble reservoir daily inflows (8 day lead time)
with the observations and the control run results for 2004
flood event. The predictions are initialized at 18 July 2004
(Figure 11a, flood rising) and 2 August 2004 (Figure 11c,
flood recession), respectively. The flood is underestimated
for control run (e.g., 20 and 21 July 2004) during flood
rising, while it is overestimated during flood recession
(e.g., 6 and 7 August 2004). The ensemble floods dampen
these uncertainties for most cases. The flood peaks are also
well predicted by using ensemble technique for 2005 flood
events (see Figures 11b and 11d).

[57] Figure 12 shows the CRPS and RH of ensemble res-
ervoir inflows generated by EPROS for 2004 and 2005
flood events. The CRPS of reservoir inflows varies from
1.6 to 639.0 during flood rising, and from 44.0 to 517.2 dur-
ing flood recession for 2004 flood event (Figures 12a and

Figure 10. The Fengman reservoir optimization results (daily) using JMA deterministic NWP data
from 17 July to 15 August 2004 (Figures 10a and 10c) and from 8 to 27 August 2005 (Figures 10b and
10d): (a and b) the optimized reservoir water level and release and (c and d) the optimized objective
function.
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12c). The CRPS of reservoir inflows is between 82.7 and
639.6 during flood rising, and between 185.8 and 470.4
during flood recession for 2005 flood event (Figures 12b
and 12d). Figures 12e and 12f depict the RH for 2004 and
2005 flood events. Both of the 2004 and 2005 flood events
show U-shaped RH. The frequency of observations falling
outside of ensemble extremes is 0.56 and 0.63 for the 2004
and 2005 flood events, respectively.

[58] Figures 11e and 11f give the ensemble optimized
dam releases for 2004 and 2005 flood events, respectively.
The peak values of reservoir release of ensemble optimi-
zation results and observations are 1430 and 1952 m3 s�1

for 2004 events, and they are 814 and 1278 m3 s�1 for 2005
events (Table 2). The ensemble average release peaks are
785 and 462 m3 s�1 for 2004 and 2005 events. The down-
stream flood peak is reduced by 59.8% (1167/1952) and

Figure 11. (a–d)The ensemble reservoir daily inflow, (e and f)release, (g and h) water level, and (i and j)
objective function for (left) 2004 and (right) 2005 flood events. Here obs refers to observed value, control
means the model is fed with deterministic QPF, ens_mean is the ensemble mean value. Here the ensemble
uses 30 members.
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63.8% (816/1278) for 2004 and 2005 events. The ensem-
ble dam releases provide a reasonable range for the real-
time release decision making since the ensemble dam
inflows include varies flood sceneries by considering the
QPF errors.

[59] Figures 11g and 11h draw the optimized reservoir
water levels for 2004 and 2005 flood events, respectively.
In Figure 11g, the optimized ensemble end water levels
(Hend) are between 260.83 m and 261.90 m, and the ensem-
ble average Hend is 261.51 m. In Figure 11h, the optimized
ensemble end water levels (Hend) are between 260.83 m
and 261.90 m, and the ensemble average Hend is 263.13 m.
All of the 30 ensemble dam end water levels are higher
than the observed values (257.44 m for 2004 and 262.51 m
for 2005), and they are lower than the upper bound of lim-
ited water level (263.50 m; see Table 2). The increased

water volumes are 8.67 � 108 and 1.69 � 108 m3 for 2004
and 2005 flood events, respectively. The increased water
amount is very important for alleviating long-term water
shortage problem for this semiarid region during nonflood
seasons particularly in spring. The maximum water levels
are decreased by 1.99 and 0.37 m for 2004 and 2005 flood
events, respectively (Table 2). This is essential for reservoir
and upstream safety.

[60] Figures 11i and 11j illustrate the optimized objec-
tive functions for 2004 and 2005 flood events, respectively.
All of the objective functions satisfy the constraints with
the range between 0.0 and 3.0. These results demonstrate
the well performance of the optimization system.

5. Discussion
5.1. The Sensitivity to Ensemble Size

[61] The proper ensemble size (m) is important for reser-
voir real-time optimization. The small ensemble size is
beneficial for computer storage space and computing time
but it may lose flood sceneries. The large ensemble size is
expected to generate wider flood ranges, while the comput-
ing time is long [Frogner and Iversen, 2001]. Therefore,
this section investigates the sensitivity to ensemble size for
the system optimization by comparing the 10-member and
50-member ensemble streamflows, reservoir releases, water
levels and objective functions.

[62] The spread and error diagram, as well as the per-
centage of outliers (PO) are used to measure the perform-
ance of the ensemble forecast with different ensemble size.
The PO is classified as the proportion of observations out-
side the 10% and 90% percentiles of ensemble forecasts
[Pappenberger et al., 2009]. The ensemble spread is calcu-
lated from the difference between the 90% and 10% percen-
tiles of ensemble forecasts [Pappenberger et al., 2009].

Figure 12. (a–d) The CRPS and (e and f) RH of ensemble reservoir inflows generated by EPROS for
(left) 2004 and (right) 2005 flood events.

Table 2. Fengman Reservoir Optimization Results (30-Member
Ensemble Mean) Compared With Observations

Flood
Maximum Water

Level (m)
Downstream

Flood Peak (m3 s�1)
End Water
Level (m)

2001
Optimization 261.37 1199 261.36
Observation 263.50a 1922 259.26
Benefit 2.13 723 2.10

2004
Optimization 261.51 785 261.51
Observation 263.50a 1952 257.44
Benefit 1.99 1167 4.07

2005
Optimization 263.13 462 263.13
Observation 263.50a 1278 262.51
Benefit 0.37 816 0.62

aUpper bound of limited water level, obtained from the Fengman reser-
voir operation rule.
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The ensemble average absolute error (AAE) [Pappenberger
et al., 2009; Grimit and Clifford, 2007] is defined as
follows:

AAE ¼ 1

m

Xm

i¼1

jxi � xoj; (31)

where m is the ensemble size, xi is the ith ensemble fore-
cast, and xo is the observed value.

[63] Figure 13 compares the 10-member and 50-member
ensemble optimization results. Figures 13a and 13b

(Figures 13c and 13d) show the ensemble forecast reservoir
inflows during flood rising (recession) stage for 10 and 50
ensemble members, respectively. In general, all the ensem-
ble inflows cover the flood sceneries (especially peak val-
ues) with 50-member results revealing a broader range than
10-member results. The flood peaks in Figures 13a and 13b
are between 1834 and 3360 m3 s�1 and between 1212 and
3662 m3 s�1, respectively (observation is 2950 m3 s�1).
The flood peaks in Figures 13c and 13d are between 2038
and 4483 m3 s�1 and between 1792 and 4521 m3 s�1,
respectively (observation is 3429 m3 s�1). The PO of

Figure 13. Same as Figure 11, but for (left) the 10-member ensemble results and (right) the 50-member
ensemble results from 8 to 27 August 2005.
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ensemble inflow forecast is 0.625 and 0.500 (not shown)
for 10 members and 50 members, respectively.

[64] Figure 14 shows the ensemble spread (Figures 14a
and 14b) and AAE (Figures 14c and 14d) for 10-member
and 50-member ensemble inflows. In general, the ensemble
spread for 50-member ensemble (346 m3 s�1) is larger than
that for 10 members (307 m3 s�1). The mean AAE for
50 members (486 m3 s�1) shows lower value that that for
10 members (505 m3 s�1).

[65] Figures 13e and 13f give the optimized reservoir
releases for 10 and 50 ensemble members, respectively.
The different ensemble sizes generate different release
schedule especially during the flood rising period. The
maximum releases are 928 and 1097 m3 s�1 for the 10- and
50-member ensemble sizes, respectively. The ensemble
mean release schedules are comparable with the maximum
release equal 413 and 477 m3 s�1 for 10- and 50-member
ensemble sizes, respectively.

[66] Figures 13g and 13h plot the optimized reservoir
water levels for the 10- and 50-member ensemble sizes,
respectively. All of the optimized water levels are lower
than the maximum water level requirement (263.50 m) and
higher than the measured values (262.51 m). The water
level variation process is different for the two ensemble
results, but the end water level is identical (263.12 m, en-
semble mean) for both of the 10- and 50-member ensemble
results.

[67] Figures 13i and 13j illustrate the optimized objective
functions for the 10- and 50-member ensemble sizes, respec-
tively. The objective function ranges for the 50-member en-
semble results are wider than 10-member ensemble results,
but the ensemble mean values are comparable (both between
1.15 and 1.28).

[68] In summary, the system running with 50-member
ensembles generates wider ranges of inflows and releases
than 10-member ensemble results. The ensemble mean
releases and end water levels are comparable for both
cases. The RMSE for the ensemble mean inflow errors is
466 and 480 m3 s�1 for 50 and 10 members, respectively.
This result indicates that the 50-member ensembles show
slightly better results than that for 10-member ensembles in
representing inflow uncertainties.

5.2. Critical Events

[69] This section discusses the performance of the sys-
tem under critical situations. First, the system (30 ensem-
ble members) is running with the target water levels of
262.50 m and 261.50 m (upper bound of limited water
level is 263.50 m) using 2005 flood event. Second, the sys-
tem is tested for the 2001 flood event with the target water
level equal to 263.50 m. This flood is characterized by the
high flood peak (5328 m3 s�1). Because JMA’s operational
NWPs are only available after May 2002, the system is fed
with ERA-Interim data in 2001.

[70] Figures 15a, 15c and 15e demonstrate the Fengman
reservoir optimization results with the target water level of
262.50 m for 2005 flood event. The optimized maximum
release for ensemble mean (around 970 m3 s�1) occurs on
16 August 2005 (Figure 15a), while the observed inflow
peak (3429 m3 s�1) is on 19 August 2005. This result is rea-
sonable since the system takes advantage of 8 days QPF
forecasting information for releases optimizations. The
optimized release peak occurs before the reservoir inflow
peak reached, while the actual operations fail in predis-
charge. Figure 15c shows the optimized reservoir water
levels. All of the water levels are increasingly close to the
target water level (262.50 m) at the end of optimization
with the ensemble mean equal to 262.37 m.

[71] Figures 15b, 15d, and 15f draw the Fengman reser-
voir optimization results with the target water level of
261.50 m for 2005 flood event. The optimized maximum
release for ensemble mean is 1410 m3 s�1 on 16 August
2005, and it decreases to 894 m3 s�1 during the reservoir
inflow peak (19 August 2005, 3429 m3 s�1). The ensemble
mean water level is 261.45 m at the end of optimization
(target level is 261.50 m). For both cases (target level of
262.50 m and 261.50 m), the objective functions satisfy the
constraint requirements (Figures 15e and 15f).

[72] Figure 16 shows the reservoir optimization results
for 2001 flood event (25 July to 25 August) fed with ERA-
Interim data. The optimized maximum reservoir release
(1199 m3 s�1) is lower than the observation (1922 m3 s�1).
The optimized end water level (261.36 m) is higher than
the observed value (259.26 m) but lower than the constraint

Figure 14. Comparison of (a and b) ensemble spread and (c and d) average absolute error (AAE) for
10-member and 50-member ensemble inflow forecasts (left) from 10 to 17 August 2005 (flood rising)
and (right) from 15 to 22 August 2005 (flood recession).
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level (263.50 m). The objective functions also satisfy the
constraint requirements (Figure 16b). These results reveal
the system’s capability of directing real-time operation
under critical situation.

5.3. The Feasibility of Practical Operation

[73] The running time for 8 day lead time optimization
with 30 ensemble members is approximately 33 min using
a 3 GHz CPU personal computer. The total execution time
(33 min) includes ensemble streamflow forecasting (29.6 min,
89.7%), hydrological states updating (3.3 min, 10.0%), and
reservoir release optimization (0.09 min, 0.3%) time. The rel-
atively high cost of ensemble streamflow forecasting is due to
the fine resolution of WEB-DHM model (3 km and 1 h). The
time can be reduced dramatically using a parallel computing
system. The JMA NWP data issued interval is 24 h. There-
fore, the system is feasible for real-time reservoir operation.

[74] The model parameters contain reservoir characteris-
tic parameters, hydrological model (WEB-DHM) parame-
ters, and initial and target water levels. The reservoir
characteristics include reservoir characteristic water levels,
reservoir storage capacity curve, discharging curve, and
downstream flood control requirements. These parameters
are depending on the reservoirs. The WEB-DHM parame-
ters include soil surface saturated hydraulic conductivity;
anisotropy ratio, maximum surface water storage, and van
Genuchen’s parameter [see Wang et al., 2011]. They can
be calibrated before embedding into the operation system.
The reservoir initial and target water levels are set by reser-
voir operators. Therefore, the system is easy to operate
even though the reservoir operators have not been involved
in the formulation and development of the simulation and
optimization models.

Figure 15. Same as Figure 11, but for (a and b) reservoir release, (c and d) water level, and (e and f)
objective function from 8 to 27 August 2005 with lower target reservoir water levels : (left) 262.50 and
(right) 261.50 m.

Figure 16. Same as Figure 10, but for (a) optimized res-
ervoir release and water level and (b) objective function for
the 2001 flood event (from 25 July to 25 August). The sys-
tem is forced by ERA-Interim data.
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6. Conclusions
[75] Despite the fact that considerable progress has been

made on reservoir operation, it has still been very slow in
finding its way into practice because of the uncertainties in
streamflow forecasting and the complexity of the operation
models [Yeh, 1985; Russell and Campbell, 1996; Chang
et al., 2005]. The objective of this study was to propose an
ensemble prediction-based reservoir optimization system
(EPROS) considering the QPF errors. The EPROS is devel-
oped from the prototype of DRESS model [Saavedra
Valeriano et al., 2010], but enhanced features were added
with a wider application in a semiarid basin (northeast
China) using global data sets and longer QPF. The extreme
floods (flood seasons) and long-term serious drought (non-
flood seasons) often happen in this region. The EPROS sys-
tem consists of three submodels: a QPF perturbation
model, a hydrological prediction model (WEB-DHM) and
a reservoir optimization model. The EPROS objectives
include minimizing the maximum reservoir water level (for
reservoir and upstream safety), minimizing the downstream
flood peak, and minimizing the difference between the opti-
mized and the target water levels at the end of operation
(for future water use).

[76] The main improvements of EPROS include (1)
improving the QPF intensity error definition method (to
avoid the compensation of inaccurate forecast) and defining
the perturbation weight using intensity error and location
error objectively instead of using proposed zones and look
up table, (2) comparing the performance of ensemble QPFs
generated by EPROS with JMA’s ensemble NWPs using
probability-based measures (e.g., CRPS and RH), (3) updat-
ing the hydrological status of WEB-DHM at each time step
continuously, (4) improving the reservoir optimization model
by normalizing the objectives to the same magnitude order
(to improve the stability of optimization), as well as adding a
new objective (reservoir and upstream flood control safety),
a new constraint (release amplitude) and a dynamic penalty
function, (5) embedding all of the JMA NWPs’ (global scale)
atmospheric forcing parameters (QPF, winds, air tempera-
ture, relative humidity, and surface pressure) into EPROS,
(6) generating the ensemble reservoir status (water levels
and releases) for real-time decision making, and (7) analyzing
the sensitivity of reservoir efficiency to ensemble size and
the performance of EPROS under critical events. The reser-
voir (and upstream) flood control safety is essential for actual
reservoir operation. The release amplitude constraint is im-
portant for protecting the downstream channels and turbine.
The dynamic penalty function is efficient for solving multi-
constraint optimization problem. The EPROS fed with global
scale forecasts makes it feasible to be applied to other river
basins in the world.

[77] The EPROS system has been evaluated on Fengman
reservoir in northeast China for the flood events in 2004
(from 17 July to 15 August) and 2005 (from 8 to 27
August). The initial reservoir water levels of the optimiza-
tion system were set as the observed values and the target
water levels were set as 263.50 m (the upper bound of limit
water level). For both events, the QPFs capture the major
rainfall event but the accuracy decreases with the lead time
increasing from 1 to 8 days. The ensemble QPFs generated
by EPROS are comparable to that obtained from JMA by

measuring their performances using CRPS and RH. The
system was driven by deterministic QPFs and perturbed
QPFs. The ensemble-based streamflow predictions reduced
the uncertainties of single prediction by generating multiple
(e.g., 30 members) streamflow sceneries. All of the ensemble
release peaks were lower than the observed values. The en-
semble mean release peaks were 785 m3 s�1 for 2004 and
462 m3 s�1 for 2005, while the observed release peaks were
1952 m3 s�1 for 2004 and 1278 m3 s�1 for 2005. As a result,
the ensemble mean end water levels (261.51 m for 2004 and
263.13 m for 2005) were higher than the observations
(257.44 m for 2004 and 262.51 m for 2005). This is very im-
portant for alleviating long-term water shortage problem for
this semiarid region. The optimized maximum reservoir
water levels also satisfied the constraint requirements
(263.50 m), which are important for reservoir and upstream
safety.

[78] In general, the system is not sensitive to the ensem-
ble sizes. Although 50-member ensemble generated wider
range for streamflows and releases than 10-member ensem-
ble results, the ensemble mean values (e.g., water levels,
releases) were comparable. The system’s capability was
also evaluated under critical situations by decreasing the
maximum water level from 263.50 m to 262.50 m. The sys-
tem was robust in reducing downstream flood peak and
decreasing maximum reservoir water level, as well as
decreasing the discrepancies between optimized end water
level and target water level by predischarges before flood
peaks reached. The system is of high efficiency and easy to
operate. It can provide not only deterministic release sched-
ules (ensemble mean) but also the uncertainty range
(ensemble range) for practical operation.

[79] The research would promote the practical applica-
tions of QPFs and provide a blueprint for real-time reser-
voir operation for other river basins. Further efforts are
encouraged to examine the applicability of the system to
different reservoirs under different meteorological condi-
tions. Because the observed discharge data are embedded to
the EPROS system in the present work, it is also necessary to
expand the single-reservoir model to multireservoir optimiza-
tion when the precipitation data are available for the Hongshi
basin. Besides, mesoscale NWP models (e.g., weather
research and forecasting model) are expected to obtain more
reliable meteorological predictions with finer resolutions
(both spatial and temporal) for the EPROS system.
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