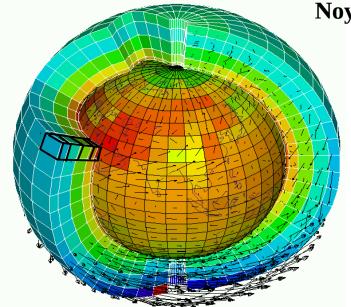
Les paramétrisations des modèles de climat

Frédéric Hourdin Laboratoire de Météorologie Dynamique / IPSL / UPMC

Responsable du développement du modèle global atmosphérique LMDZ http://www.lmd.jussieu.fr/~hourdin/COURS/Grenoble/ hourdin@lmd.jussieu.fr

- 1. Introduction et principes des paramétrisations
- 2. Un aperçu des questions de la modélisation du transfert radiatif
- 3. Décomposition de Reynolds et fermetures en diffusion turbulente
- 4. Couche limite convective
- 5. Convection / échelles / zone grises
- 6. Les modèles et leur utilisation
- Pour 2: http://www.lmd.jussieu.fr/~hourdin/PEDAGO/cours.pdf, chapitre 3 http://www.lmd.jussieu.fr/~hourdin/these.pdf, section 3.3
- Pour 3: http://www.lmd.jussieu.fr/~hourdin/HDR/habil.pdf, sec 2.2.2 et ch 3



Noyau dynamique : équations de bases discrétisées sur la sphère

Conservation de la masse

$$D\rho/Dt + \rho \operatorname{div}\underline{U} = 0$$

Conservation de la température potentielle

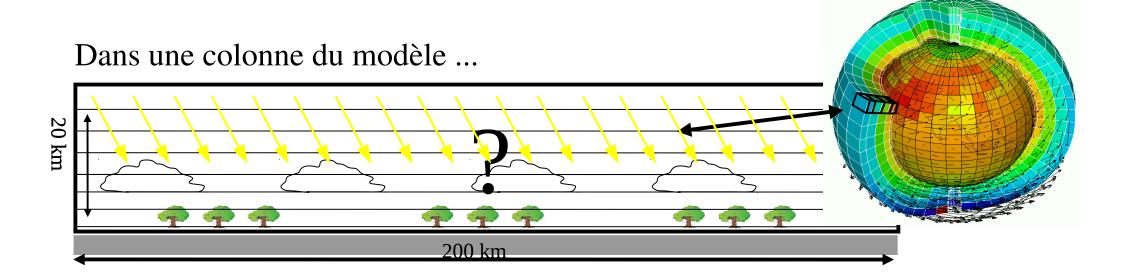
$$D\theta/Dt = Q/Cp (p_0/p)^{\kappa}$$

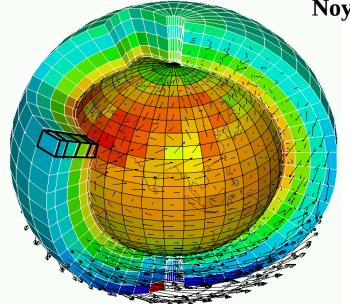
Conservation de la quantité de mouvement

$$D\underline{U}/Dt + (1/\rho) \operatorname{grad} p - g + 2 \underline{\Omega} \wedge \underline{U} = \underline{F}$$

Conservation des composants secondaires

$$Dq/Dt = Sq$$





Noyau dynamique : équations de bases discrétisées sur la sphère

Conservation de la masse

$$D\rho/Dt + \rho \operatorname{div}\underline{U} = 0$$

Conservation de la température potentielle

$$D\theta/Dt = Q/Cp (p_0/p)^{\kappa}$$

Conservation de la quantité de mouvement

$$D\underline{U}/Dt + (1/\rho) \operatorname{grad} p - g + 2 \Omega \wedge \underline{U} = \underline{F}$$

Conservation des composants secondaires

$$Dq/Dt = Sq$$

Objet des paramétrisations : rendre compte de l'effet des processus non résolus par ces équations

- → Termes « sources » additionnels dans les équations.
- Q: Chauffage par échanges radiatifs, conduction (négligée), condensation, sublimation, mouvements sous maille (nuages, turbulence, convection)
- <u>F</u>: Viscosité moléculaire (négligée), mouvements sous-maille (nuages, turbulence, convection)
- Sq: condensation/sublimation (q= vapeur d'eau ou eau condensée), réactions chimiques, photodissociation (ozone, espèces chimiques), microphysiques et lessivage (aérosols de pollution, poussières, ...), mouvements sous maille (nuages, turbulence, convection)

• Calcul de l'effet collectif des processus non résolus sur les variables d'état explicites (\underline{U} , θ , q) du modèle global

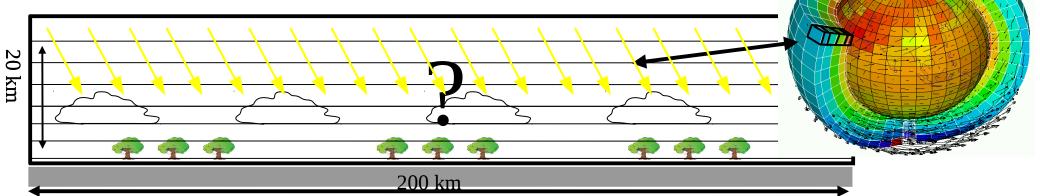
- description physique approchée du comportement collectif des processus
- qui fait intervenir des **variables internes aux paramétrisations** (caractéristiques des nuages, écart-type de la distribution sous-maille d'une variable, ...)

• dérivation d'**équations** reliant ces variables internes aux variables d'état \underline{U} , θ , q à l'instant t **variables internes** \underline{F} , \underline{Q} , \underline{Sq} \underline{U} , θ , q à t+ δ t

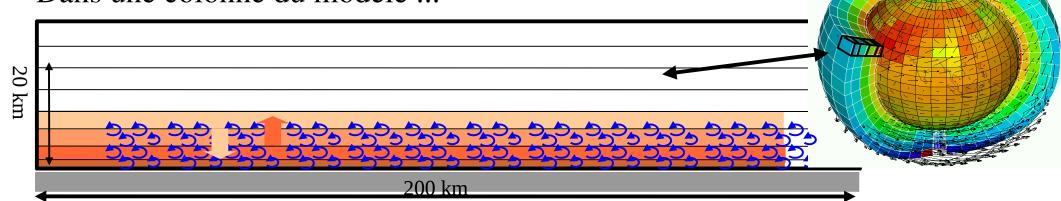
• hypothèses d'homogénéité (statistique) horizontale des processus représentés (comme dans l'hypothèse plan parallèle du transfert radiatif)

Equations uni-dimensionnelles en z (échanges verticaux) Colonnes atmosphériques indépendantes

Dans une colonne du modèle ...



Dans une colonne du modèle ...



Paramétrisation de la turbulence

→ **« Mélange turbulent »** ou diffusion turbulente.

Transport par des petits mouvements aléatoires.

Analogue à la diffusion moléculaire.

$$Dq/Dt = Sq$$
 avec $Sq. = \frac{\partial}{\partial z} \left(K_z \frac{\partial \mathbf{q}}{\partial z} \right)$

→ Longueur de mélange de Prandtl : $K_{\tau} = l |w|$

$$K_z = l|w|$$

l : longueur caractéristique des mouvements

w : vitesse caractéristique

→ Energie cinétique turbulente :

$$K_z = l\sqrt{e}$$

$$De/Dt = f(dU/dz, d\theta/dz, e,...)$$

$$Dl/dt = \dots$$

Les mêmes modèles sont utilisés en sciences de l'ingénieur Lois de similitudes → Tests à des échelles différentes en laboratoire

Un monde en soi ...

Un exemple de processus sous-maille : l'écoulement sur les reliefs

1800

1600

1400

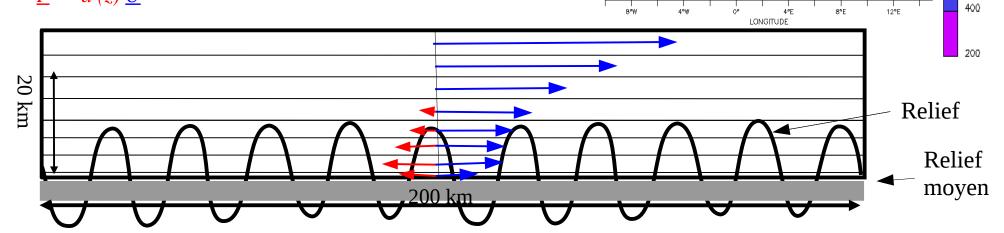
1200

Altitude (m)

- → Le **relief moyen de la surface** intervient dans le noyau dynamique comme une condition à la limite inférieure
- → Ce relief moyen ne rend pas compte de la barrière que représentent les montagnes les plus hautes pour l'écoulement
- → Exemple simple de paramétrisation possible : introduction d'un terme de freinage dans les basses couches de l'atmosphère.

$$D\underline{U}/Dt + (1/\rho) \operatorname{grad} p - g + 2 \underline{\Omega} \wedge \underline{U} = \underline{F}$$

$$\underline{F} = -a(z) \underline{U}$$



40°N

Dans les modèles actuels, on rend compte en plus de :

- → l'injection d'ondes (de gravité) dans l'atmosphère
- → l'effet de détournement (portance) du relief
- → l'effet de la stabilité de l'atmosphère (franchissement plus facile dans une atmosphère moins stratifiée)

Un exemple de processus sous-maille : l'écoulement sur les reliefs

1800

1600

1400

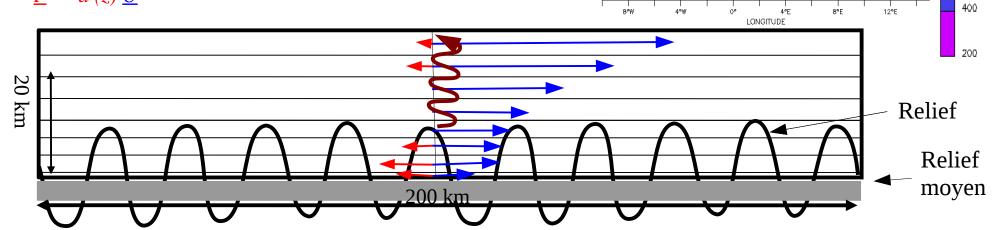
1200

Altitude (m)

- → Le **relief moyen de la surface** intervient dans le noyau dynamique comme une condition à la limite inférieure
- → Ce relief moyen ne rend pas compte de la barrière que représentent les montagnes les plus hautes pour l'écoulement
- → Exemple simple de paramétrisation possible : introduction d'un terme de freinage dans les basses couches de l'atmosphère.

$$D\underline{U}/Dt + (1/\rho) \operatorname{grad} p - g + 2 \underline{\Omega} \wedge \underline{U} = \underline{F}$$

$$\underline{F} = -a(z) \underline{U}$$



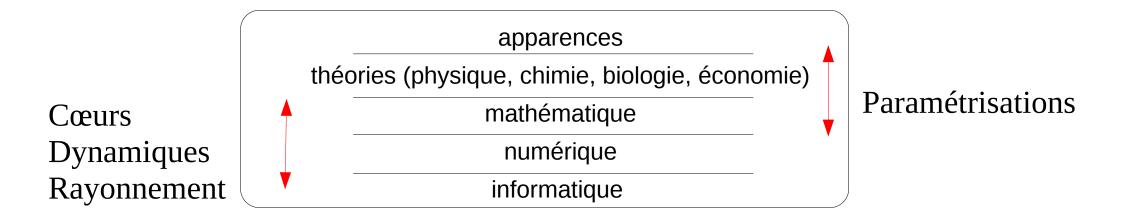
40°N -

Dans les modèles actuels, on rend compte en plus de :

- → l'injection d'ondes (de gravité) dans l'atmosphère
- → l'effet de détournement (portance) du relief
- → l'effet de la stabilité de l'atmosphère (franchissement plus facile dans une atmosphère moins stratifiée)



The world of numerical models

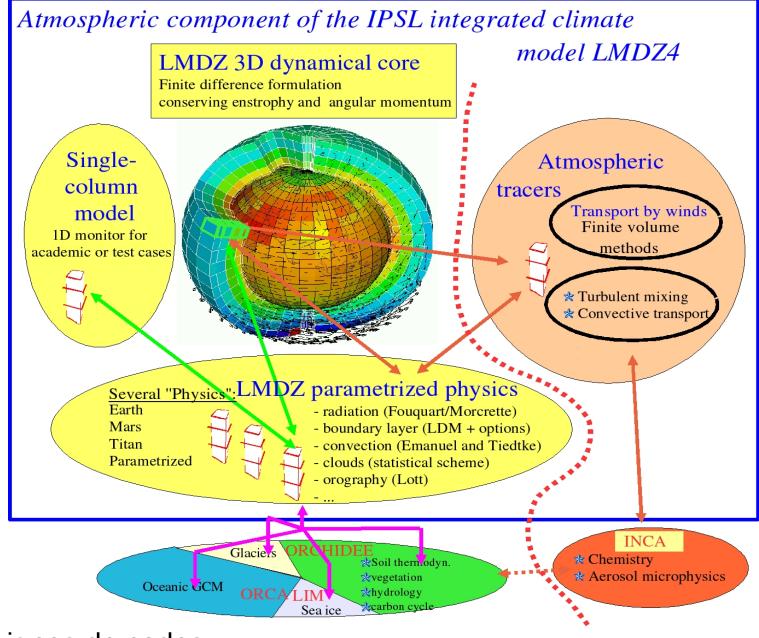


La modélisation concerne l'ensemble de ces couches.

- → L'accent est mis sur le passage d'équations bien établies à leur discrétisation pour les cœurs dynamiques.
- → Le travail porte davantage sur l'établissement de modèles mathématiques pour les paramétrisations (parfois pensés directement dans la couche numérique, voir informatique ...).

Point commun : le retour vers la couche supérieure





Lignes de codes

27000 : noyau dynamique

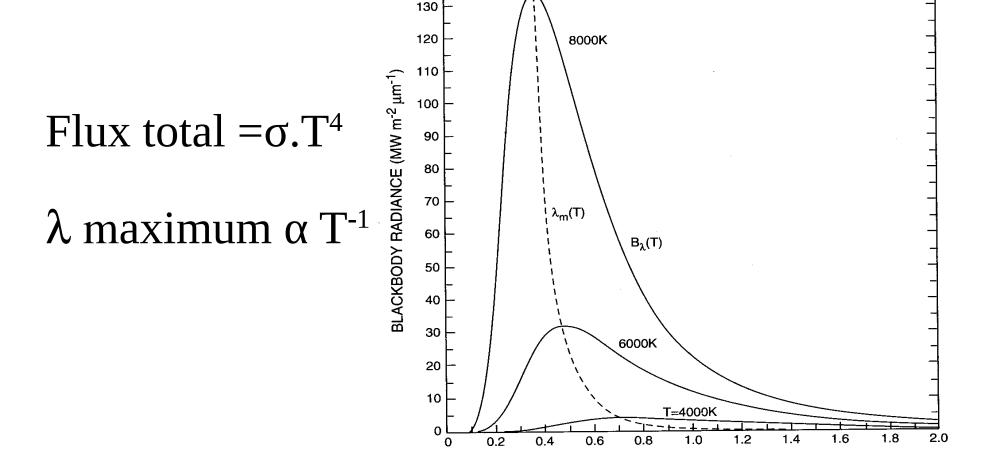
127000 : lignes, physique dont ancien rayonnement

250000 : nouveau rayonnement

Les paramétrisations des modèles de climat

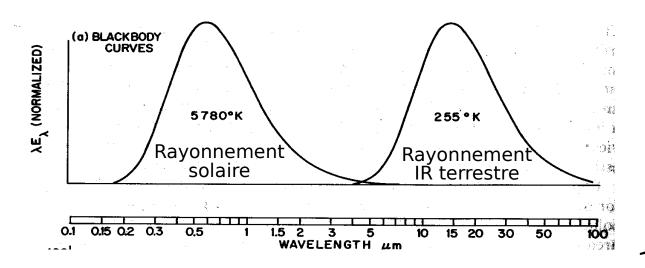
- 1. Introduction et principes des paramétrisations
- 2. Un aperçu des questions de la modélisation du transfert radiatif
- 3. Décomposition de Reynolds et fermetures en diffusion turbulente
- 4. Couche limite convective
- 5. Convection / échelles / zone grises
- 6. Les modèles et leur utilisation

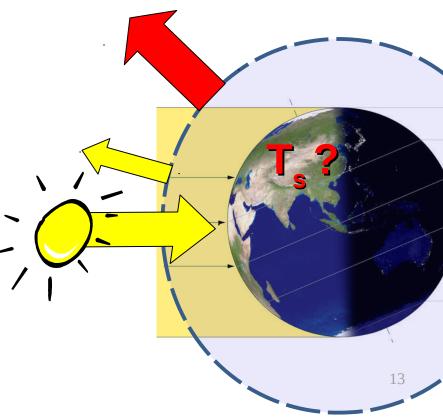
Emission du corps noir

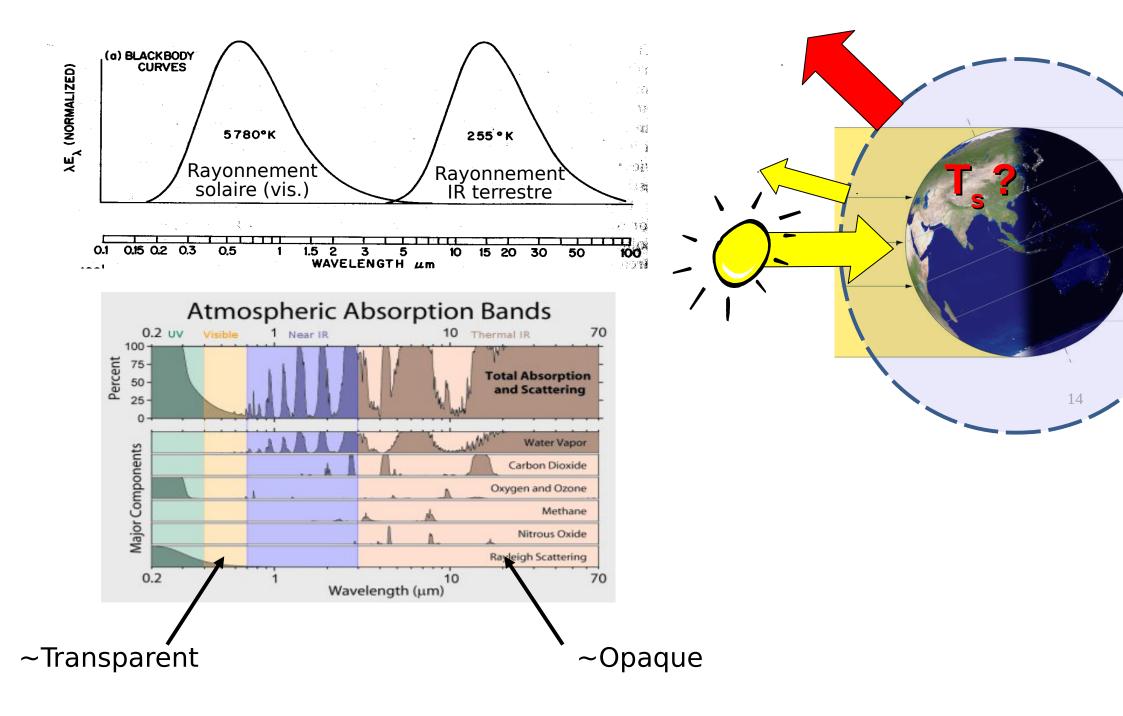


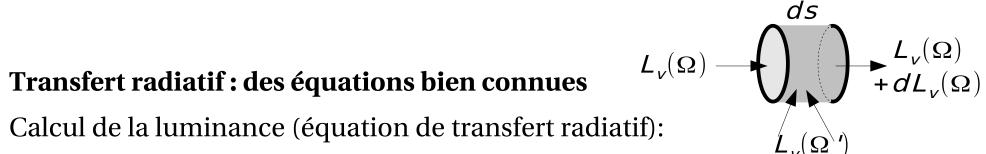
http://www.lmd.jussieu.fr/~hourdin/PEDAGO/cours.pdf, chapitre 3

WAVELENGTH (μm)









$$\frac{dL_{v}(\Omega)}{ds} = -\kappa_{v}L_{v}(\Omega) + \kappa_{v}B_{v}(T) - \sigma_{v}L_{v}(\Omega) + \sigma_{v}\frac{1}{4\pi}\int_{4\pi}P(\Omega',\Omega)L_{v}(\Omega')d\Omega'$$

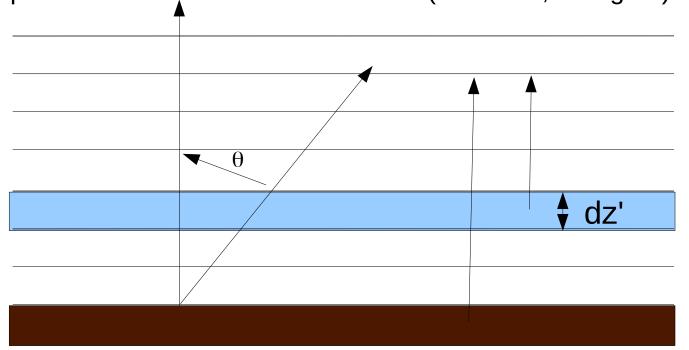
Intégration sur les fréquences (v)

Intégration sur les angles (avec diffusion mutliple P)

Infrarouge, cas non diffusant

Approximation « plan parallèle » : espace semi-infini homogène Approximation « diffuse » : un angle moyen

Séparation flux montant / descendant (2-stream, Eddigton)



$$k_{nu} \rho B_{v}(T(z')) dz'$$

 $F(z)^{\uparrow}$

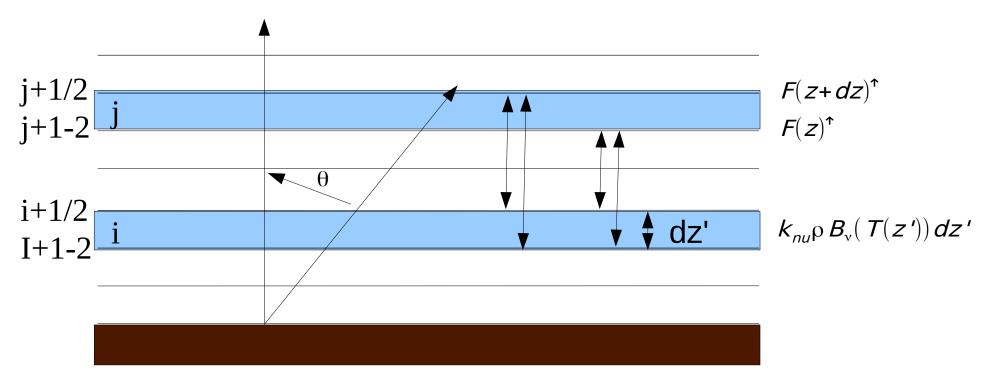
$$\frac{\partial F(z)^{\uparrow}}{\partial z} = -k_{\nu}\rho\mu F(z)^{\uparrow} + k_{\nu}\rho\mu B_{\nu}(T) \qquad \mu = \frac{1}{\cos(\theta)}$$

$$\epsilon_{v}(z_{1}, z_{2}) = \exp\left[-\mu \int_{z_{1}}^{z_{2}} k_{v}(P, T) \rho \, dz\right]$$

$$F(z)^{\dagger} = B_{v}(T_{s}) \epsilon(0, z) + \int_{0}^{z_{1}} k_{nu} \rho \, B_{v}(T(z')) \epsilon(z', z) \, dz'$$

$$F(z)^{\dagger} = B_{v}(T_{s}) \epsilon(0, z) + \int_{0}^{2} B_{v}(T(z')) \frac{\partial \epsilon(z', z)}{\partial z'} \, dz'$$

$$Q = \frac{\partial T}{\partial z} = \frac{1}{\rho C_{p}} \frac{\partial F(z)^{\dagger}}{\partial z}$$



Contribution de la couche i au flux en z

$$F_{i \to z} = B_{v}(T_{i})[\epsilon_{v}(Z_{i+1/2}, Z) - \epsilon_{v}(Z_{i-1/2}, Z)]$$

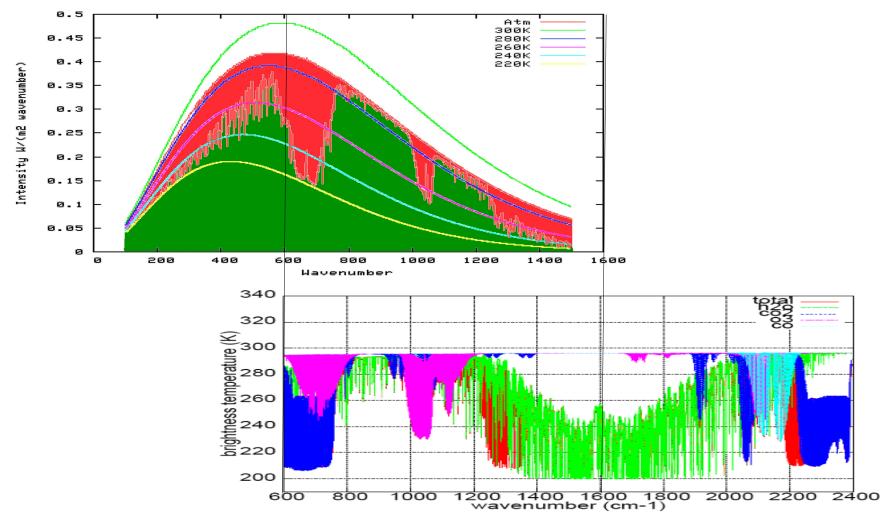
Contribution de la couche i au chauffage de la couche j

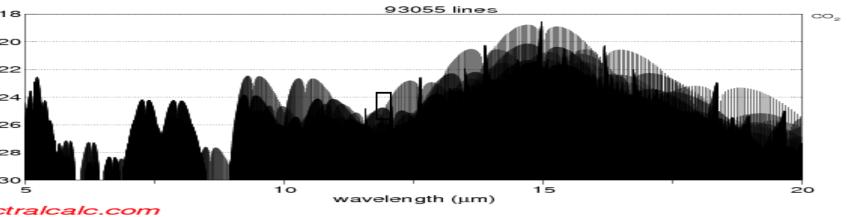
$$Q_{i \to j} = \psi_{i \to j} / (\rho C_{\rho}) \quad \text{avec}$$

$$\psi_{i \to j} = B_{\nu}(T_{i}) [\epsilon_{\nu}(z_{i+1/2}, z_{j+1/2}) - \epsilon_{\nu}(z_{i-1/2}, z_{j+1/2}) - \epsilon_{\nu}(z_{i+1/2}, z_{j-1/2}) + \epsilon_{\nu}(z_{i-1/2}, z_{j-1/2})]$$

Puissance nette échangée entre les couches i et j

$$\psi_{i \rightarrow j}^{net} = (B_{v}(T_{i}) - B_{v}(T_{j}))[\epsilon_{v}(Z_{i+1/2}, Z_{j+1/2}) - \epsilon_{v}(Z_{i-1/2}, Z_{j+1/2}) - \epsilon_{v}(Z_{i+1/2}, Z_{j-1/2}) + \epsilon_{v}(Z_{i-1/2}, Z_{j-1/2})]$$





Approches pour l'intégration spectrale

Raie-par-raie:

Discrétisation des fréquence. Trop coûteux par DES ordres des grandeur

Modèles de bandes, en émissivité

$$\epsilon_{\Delta\nu}(z_1, z_2) = \frac{1}{\Delta\nu} \int_{\Delta\nu} \epsilon_{\nu}(z_1, z_2) d\nu$$

On perd la propriété : $\epsilon_{\Delta\nu}(z_1, z_2) = \epsilon_{\Delta\nu}(z_1, z) \epsilon_{\Delta\nu}(z, z_2)$

Le coup passe de N en N2 sur la verticale.

Modèles k-correllés

On se ramène à des sommes d'exponentielles

Difficulté : k(P,T).

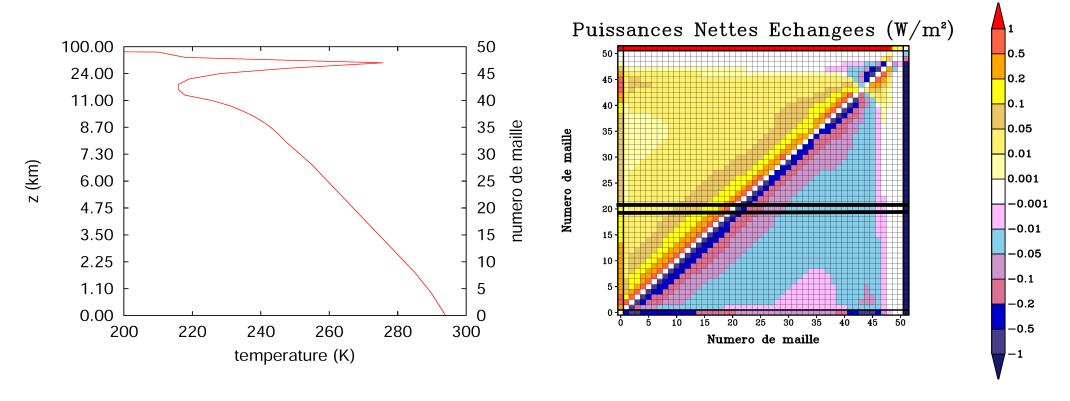
Les coeffcients ne varient pas de la même façon selon les transitions

Méthodes Monte-Carlo

Echantillonage du spectre (et des autres dimensions du problème)

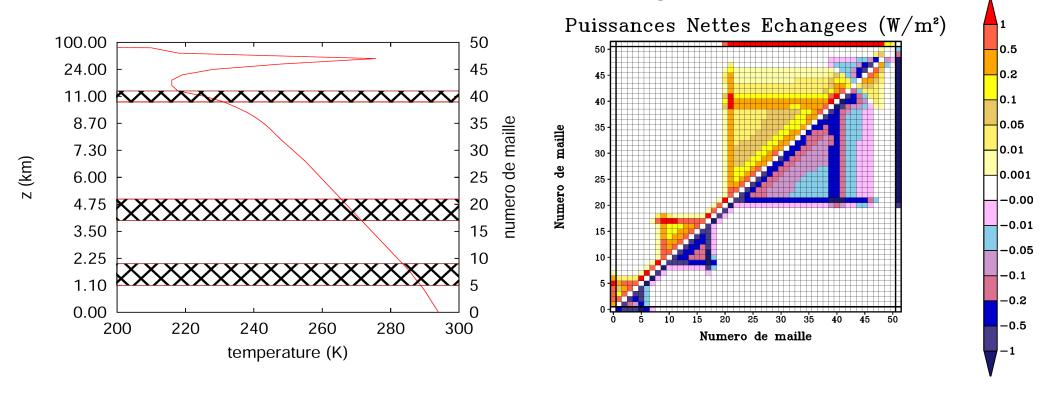
Analyse en Puissance Nette Échangée

Atmosphère moyenne latitude, été ciel clair



Analyse en Puissance Nette Échangée

Atmosphère moyenne latitude, été trois couches de nuages



Représentation des nuages

q : concentration en vapeur d'eau

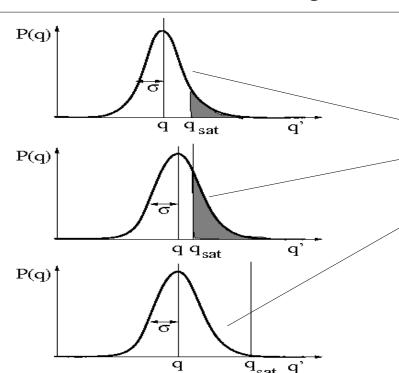
 q_{sat} : concentration maximum à saturation

Si $q > q_{sat}$:

→ la vapeur d'eau condense = nuage

On connait q et q_{sat} à l'échelle de la maille

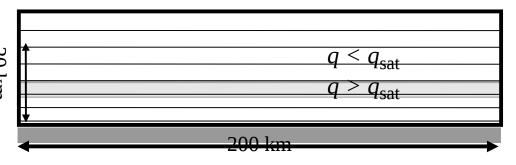
→ Fraction de la maille couverte de nuages ?



Paramétrisation simple : gaussienne σ / q = 20%

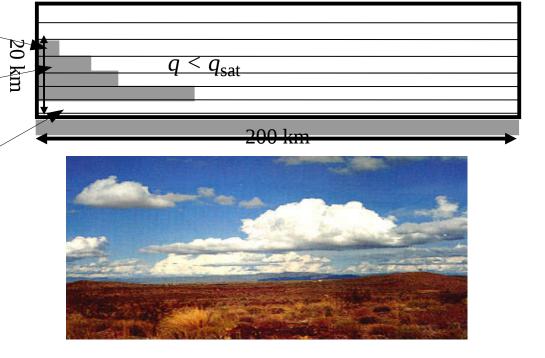
Modèle « tout ou rien » :

Si $q > q_{sat}$ maille nuageuse, sinon ciel clair.



Modèle « statistique » :

On suppose une distribution statistique de q' dans la maille autour de q



3. Couche limite et nuages

Représentation des nuages

q : concentration en vapeur d'eau

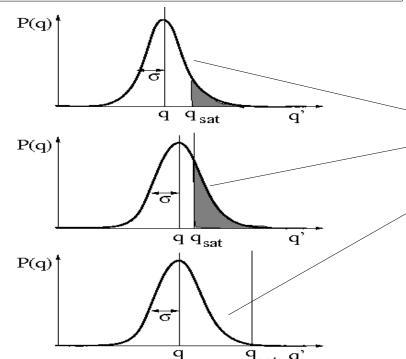
 $q_{\rm sat}$: concentration maximum à saturation

Si $q > q_{sat}$:

→ la vapeur d'eau condense = nuage

On connait q et q_{sat} à l'échelle de la maille

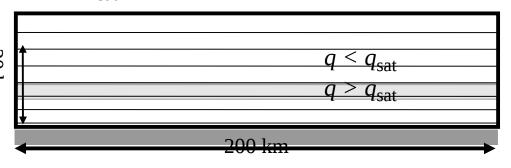
→ Fraction de la maille couverte de nuages ?



Paramétrisation simple : gaussienne σ / q = 20%

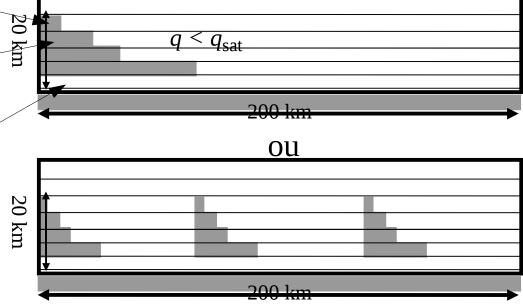
Modèle « tout ou rien » :

Si $q > q_{sat}$ maille nuageuse, sinon ciel clair.



Modèle « statistique » :

On suppose une distribution statistique de q' dans la maille autour de q



Quelques idées à retenir :

- → Composante essentielle d'un modèle de climat
- → Transfert radiatif, problème bien connu mais intrinsèquement extrêmement « coûteux »
- → Le poids relatif des différentes raies varie le long du trajet optique en fonction de p et T.
- → Les échanges proches sont dominés par les centres des raies alors que les échanges gazgaz à distance se passent dans les ailes
- → Deux grandes familles pour l'intégration spectrale : modèles de bandes où on perd la multiplicatbilité des transmissions et approches en k-distributions ou k-corrélé où on essaie de maintenir cette propriété dans le monde spectrale.
- → L'intégration angulaire est remplacée par un angle moyen.
- → Dans le visible : la prise en compte de la diffusion est essentielle.
- → Elle est la plupart du temps négligée dans l'infra-rouge
- → Dans beaucoup de modèles on se « débrouille » en ayant un rayonnement directionnel en provenance du soleil, et un rayonnement après diffusion traité avec le même angle moyen que l'infra-rouge.
- → Avec tout ça, on pense que le calcul radiatif ciel clair est correct à quelques W/m²
- → Les incertitudes liées à la distribution et aux propriétés optiques des aérosols et des nuages sont au moins aussi grandes.
- → Très peu d'évolution des codes terrestres. Peu de codes. Investissement énorme et pas toujours très gratifiant pour amélioration faible.
- → Reformulation possible dite en « puissances nettes échangées », basée sur la réciprocité des chemins optiques et qui garantit le second principe (une couche ne peut pas contribuer à réchauffer une couche plus chaude qu'elle).
- → Evaluation : test des méthodes d'accélération par comparaison à des calculs le plus exact possibles (raie par raie, avec intégration angulaire). Evaluation difficile / obs.

Les paramétrisations des modèles de climat

- 1. Introduction et principes des paramétrisations
- 2. Un aperçu des questions de la modélisation du transfert radiatif
- 3. Décomposition de Reynolds et fermetures en diffusion turbulente
- 4. Couche limite convective
- 5. Convection / échelles / zone grises
- 6. Les modèles et leur utilisation

3. Couche limite et nuages

Pour le calcul du transport, on considère les espèces chimiques ou aérosols comme des traceurs de l'écoulement, c'est à dire qu'on suppose que la concentration massique "c" est conservée le long des trajectoires d'air (vision Lagrangienne) :

$$\frac{dc}{dt} = 0 \quad (ou S_c)$$

Description Eulérienne du transport

Forme advective
$$\frac{\partial c}{\partial t} + \mathbf{v.grad} \, c = 0 \quad (ou \, S_c)$$

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \, \mathbf{v}) = 0$$
 Forme flux ou conservative
$$\frac{\partial \rho c}{\partial t} + \operatorname{div}(\rho \, \mathbf{v} \, c) = 0 \quad (ou \, \rho \, S_c)$$

3. Couche limite et nuages

Séparation entre transport "explicite" et "paramétrisations"

Pour une variable ρc , et un processus de moyenne \overline{X} qui commute avec les dérivations on considère la moyenne pondérée par la masse volumique de l'air $\widetilde{X} = \overline{\rho X}/\overline{\rho}$

$$X = \widetilde{X} + X'$$
 on a $\overline{\rho X'} = 0$

$$\frac{\partial \overline{\rho} \, \widetilde{c}}{\partial t} + \text{div} \left(\overline{\rho} \, \widetilde{\mathbf{v}} \, \widetilde{c} \right) + \text{div} \left(\overline{\rho} \, \mathbf{v} \, ' c \, ' \right) = 0$$
Partie explicite
Partie turbulente, fluctuations

Ecoulement "grande échelle"
ou moyenne d'ensemble

Turbulence, convection, couche limite

Moyenne zonale

Transport par les ondes planétaires

$$\frac{\partial \rho c}{\partial t} + \operatorname{div}(\rho \mathbf{v} c) = -\operatorname{div}(\overline{\rho \mathbf{v}' c'})$$

$$\frac{\partial c}{\partial t} + \mathbf{v.grad} c = -\frac{1}{\rho} \operatorname{div}(\overline{\rho \mathbf{v}' c'})$$

Paramétrisations mouvemeents sous-mailles :

$$div(\overline{\rho \mathbf{v}' c'}) = F(\mathbf{v}, c, T, ...)$$

Diffusive or local formulations for the PBL

Scale decomposition

 \overline{X} : "average" or "large scale" variable $X' = X - \overline{X}$: turbulent fluctuation $\Longrightarrow \overline{\mathbf{v}c} = \overline{\mathbf{v}} \ \overline{c} + \overline{\mathbf{v}'c'}$

$$\frac{\partial \overline{q}}{\partial t} + \overline{V}.\mathbf{grad}\ \overline{q} + \frac{1}{\rho}\mathrm{div}\left(\overline{\rho \mathbf{v}'c'}\right) = 0$$

Boundary layer approximation (horizontal homogeneity) + eddy diffusion

$$\overline{w'c'} = -K_z \frac{\partial c}{\partial z} \qquad \longrightarrow \qquad \frac{\partial c}{\partial t} = \frac{\partial}{\partial z} \left(K_z \frac{\partial c}{\partial z} \right)$$

- Analogy with molecular viscosity
 (Brownian motion ↔ turbulence)
- Down-gradient fluxes.
- Turbulence acts as a "mixing"

Turbulent diffusivity K_z

- Prandlt (1925) mixing length : $K_z = l |\overline{w'}|$ or $K_z = l^2 \frac{\partial ||\mathbf{v}||}{\partial z}$
- Accounting for static stability (Ex. Louis 1979)

$$K_z = f(Ri)l^2 \left| \frac{\partial \mathbf{v}}{\partial z} \right|, \qquad \text{with } Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\left(\frac{\partial \mathbf{v}}{\partial z}\right)^2}$$
 (1)

• Turbulent kinetic energy $\overline{w'}^2 \simeq e = \frac{1}{2} \left[\overline{u'^2} + \overline{v'^2} + \overline{w'^2} \right]$

$$\frac{\partial e}{\partial t} = -\overline{w'u'}\frac{\partial u}{\partial z} - \overline{w'v'}\frac{\partial v}{\partial z} + \frac{g}{\theta}\overline{w'\theta'} - \frac{1}{\rho}\frac{\partial\overline{w'p'}}{\partial z} - \frac{\partial\overline{w'e}}{\partial z} - \epsilon$$

Spécificités des formulations diffuses dans les différents modèles

Mellor et Yamada 2.5 : $\overline{w'\phi'} = -K_{\phi} \frac{\partial \phi}{\partial z}$ with $K_{\phi} = l\sqrt{e}S_{\phi}(Ri)$ $\epsilon = e^{l(3/2)}/\Lambda$, équation (mal établie) pour la longueur de mélange.

$$\frac{\partial e}{\partial t} = K_m \left(\frac{\partial \mathbf{v}}{\partial z}\right)^2 - K_\theta \frac{g}{\theta} \frac{\partial \theta}{\partial z} + K_e \frac{1}{\rho} \frac{\partial}{\partial z} \left(\rho \frac{\partial e}{\partial z}\right) - \epsilon$$

$$\frac{\partial e}{\partial t} = l\sqrt{e}S_m \left(\frac{\partial \mathbf{v}}{\partial z}\right)^2 - l\sqrt{e}S_\theta \frac{g}{\theta} \frac{\partial \theta}{\partial z} - e^{3/2}/(l\Lambda)$$

Yamada 1983 dans LMDZ, Cuxart 2000 dans dans ARPEGE/AROME/MesoNH

MY 2.0 :
$$\frac{\partial e}{\partial t} = 0$$

$$l^2 S_m \left(\frac{\partial \mathbf{v}}{\partial z}\right)^2 - l^2 S_\theta \frac{g}{\theta} \frac{\partial \theta}{\partial z} = e/\Lambda$$

$$\implies K_m = lS_m \sqrt{e} = f(Ri)l^2 \left| \frac{\partial \mathbf{v}}{\partial z} \right|$$
, dans Arpege AR5 et LMDZ5A

Modèles K- ϵ : $\frac{\partial e}{\partial t} = ...$ et $\frac{\partial \epsilon}{\partial t} = ...$, Utilisé dans MAR (Duynkerque 1988)

Les différents types de modèles et les fermetures turbulentes.

DNS: Direct Numerical Simulation. Ecoulement résolu jusqu'à l'échelle visqueuse. Pas de fermeture turbulente.

LES: Large Eddy simulations. Mailles de quelques dizaines de mètres dans l'atmosphère et quelques mètres (?) dans l'océan. Fermeture turbulente tri-dimensionnelle. Non hydrostatique.

Grande échelle : Climat/météo. Mailles plus grandes que quelques km. Diffusion turbulente sur la verticale uniquement. Hydrostatiques. Ajout d'une dissipation horizontale, basée sur des images de turbulence bi-dimensionnelle de l'écoulement à grande échelle.

CRM: Cloud Resolving Model. Mailles 1-2 km. Non hydrostatiques. Turbulence 1 ou 3D.

Schémas numériques et conditions aux limitex

Intégration numérique

- Implicite en temps car constantes de temps très rapides.
- Centré en espace. Schéma naturel, esprit volumes finis.
- Intégration des équations de TKE très tatillone.

Condition à la limite inférieure :

$$\frac{\partial c}{\partial t} = -\frac{1}{\rho} \frac{\partial F_c(z)}{\partial z} \tag{2}$$

$$F_c(z > 0) = -K_z \rho \frac{\partial c}{\partial z} \tag{3}$$

A la surface:

$$F_c(z=0)$$
imposé ou (4)

$$F_c(z=0) = \rho C_d ||V[[(c_s - c_1)]|]$$
(5)

où c_1 et c_s sont des valeurs de c dans la première couche du modèle et à la surface.

3. Couche limite et nuages

Quelques idées à retenir (1/2)

A La paramétrisation des mouvements convectifs et turbulents repose sur la décomposition de Reynolds. $\frac{\partial \rho c}{\partial t} + \text{div}(\rho \mathbf{v} c) = -\text{div}(\overline{\rho \mathbf{v}' c'}) \qquad \frac{\partial c}{\partial t} + \mathbf{v.grad} c = -\frac{1}{\rho} \text{div}(\overline{\rho \mathbf{v}' c'})$

- → Cette décomposition ne nécessite pas d'hypothèses incompressible ou Boussinesq
- → Dans les modèles « grande échelle » seuls les termes verticaux sont considérés alors que la

$$\frac{\partial c}{\partial t}$$
+v.grad $c = -\frac{1}{\rho} \frac{\partial \overline{\rho w' c'}}{\partial z}$

diffusion 3D est importante dans les simulations LES (mailles de quelques dizaines de m).

- → Les développements aux perturbations des équations permettent de repousser la « fermeture » à des ordres plus loin.
- → Les fermetures en diffusion turbulente utilisant la TKE pour pronostiquer l'intensité de la turbulence sont largement utilisées dans les modèles d'océan et d'atmosphère. $\overline{\rho \, w \, ' \, c \, '} \! = \! - \rho \, l \, \sqrt{e} \, \frac{\partial \, c}{\partial \, z}$

$$\overline{\rho w' c'} = -\rho l \sqrt{e} \frac{\partial c}{\partial z}$$

- → Les fermetures sont rarement poussées à un ordre supérieur dans les modèles de climat mais l'ordre 3 permet une asymétrie dans les distributions et un transport remontant le gradient.
- → Le couplage entre les modèles se passe au niveau des couches limites.
- → Utilisation systématique de schémas implicites.
- → Le découpage entre systèmes nécessite de penser spécifiquement leur raccordement.